885
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Utilization of diverse protein sources for the development of protein-based nanostructures as bioactive carrier systems: A review of recent research findings (2010–2021)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abaee, A., M. Mohammadian, and S. M. Jafari. 2017. Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends in Food Science & Technology 70:69–81. doi:10.1016/j.tifs.2017.10.011.
  • Abbasi, A., Z. Emam-Djomeh, M. A. E. Mousavi, and D. Davoodi. 2014. Stability of vitamin D(3) encapsulated in nanoparticles of whey protein isolate. Food Chemistry 143:379–83. doi:10.1016/j.foodchem.2013.08.018.
  • Aberkane, L., G. Roudaut, and R. Saurel. 2014. Encapsulation and oxidative stability of PUFA-rich oil microencapsulated by spray drying using pea protein and pectin. Food and Bioprocess Technology 7 (5):1505–17. doi:10.1007/s11947-013-1202-9.
  • Adjonu, R., G. Doran, P. Torley, and S. Agboola. 2014. Whey protein peptides as components of nanoemulsions: A review of emulsifying and biological functionalities. Journal of Food Engineering 122:15–27. doi: 10.1016/j.jfoodeng.2013.08.034.
  • Ahmed, E. M. 2015. Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research 6 (2):105–21. doi:10.1016/j.jare.2013.07.006.
  • Ansarifar, E., M. Mohebbi, F. Shahidi, A. Koocheki, and N. Ramezanian. 2017. Novel multilayer microcapsules based on soy protein isolate fibrils and high methoxyl pectin: Production, characterization and release modeling. International Journal of Biological Macromolecules 97:761–9. doi:10.1016/j.ijbiomac.2017.01.056.
  • Ansarifar, E., F. Shahidi, M. Mohebbi, N. Ramezanian, A. Koocheki, and A. Mohamadian. 2019. Optimization of limonene microencapsulation based on native and fibril soy protein isolate by VIKOR method. LWT 115:107884. doi:10.1016/j.lwt.2019.02.071.
  • Arroyo-Maya, I. J., and D. J. McClements. 2015. Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food Research International 69:1–8. doi:10.1016/j.foodres.2014.12.005.
  • Arroyo-Maya, I. J., J. O. Rodiles-López, M. Cornejo-Mazón, G. F. Gutiérrez-López, A. Hernández-Arana, C. Toledo-Núñez, G. V. Barbosa-Cánovas, J. O. Flores-Flores, and H. Hernández-Sánchez. 2012. Effect of different treatments on the ability of α-lactalbumin to form nanoparticles. Journal of Dairy Science 95 (11):6204–14. doi:10.3168/jds.2011-5103.
  • Aspevik, T., A. Oterhals, S. B. Rønning, T. Altintzoglou, S. G. Wubshet, A. Gildberg N. K. Afseth R. D. Whitaker D. Lindberg. 2017. Valorization of proteins from co- and by-Products from the fish and meat industry. In Chemistry and Chemical Technologies in Waste Valorization, ed. C. Lin. Topics in Current Chemistry Collections Springer, Cham. doi:10.1007/978-3-319-90653-9_5
  • Babbar, N., H. S. Oberoi, and S. K. Sandhu. 2015. Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues. Critical Reviews in Food Science and Nutrition 55 (3):319–37. doi:10.1080/10408398.2011.653734.
  • Bagheri, L., A. Madadlou, M. Yarmand, and M. E. Mousavi. 2013. Nanoencapsulation of date palm pit extract in whey protein particles generated via desolvation method. Food Research International 51 (2):866–71. doi:10.1016/j.foodres.2013.01.058.
  • Bai, X., C. Li, L. Yu, Y. Jiang, M. Wang, S. Lang, and D. Liu. 2019. Development and characterization of soybean oil microcapsules employing kafirin and sodium caseinate as wall materials. LWT 111:235–41. doi:10.1016/j.lwt.2019.05.032.
  • Barac, M., S. Cabrilo, M. Pesic, S. Stanojevic, S. Zilic, O. Macej, and N. Ristic. 2010. Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes. International Journal of Molecular Sciences 11 (12):4973–90. doi:10.3390/ijms11124973.
  • Başyiğit, B., M. Yücetepe, A. Karaaslan, and M. Karaaslan. 2021. High efficiency microencapsulation of extra virgin olive oil (EVOO) with novel carrier agents: Fruit proteins. Materials Today Communications 28:102618. doi:10.1016/j.mtcomm.2021.102618.
  • Belitz, P. D. I. H. D., and P. D. I. W. Grosch. 2013. Food chemistry. Berlin, Heidelberg: Springer.
  • Betz, M., B. Steiner, M. Schantz, J. Oidtmann, K. Mäder, E. Richling, and U. Kulozik. 2012. Antioxidant capacity of bilberry extract microencapsulated in whey protein hydrogels. Food Research International 47 (1):51–7. doi: 10.1016/j.foodres.2012.01.010.
  • Bevernage, J., J. Brouwers, S. Clarysse, M. Vertzoni, J. Tack, P. Annaert, and P. D. Augustijns. 2010. Drug Supersaturation in simulated and human intestinal fluids representing different nutritional states. Journal of Pharmaceutical Sciences 99 (11):4525–34. doi:10.1002/jps.22154.
  • Bolisetty, S., C. S. Boddupalli, S. Handschin, K. Chaitanya, J. Adamcik, Y. Saito, M. G. Manz, and R. Mezzenga. 2014. Amyloid fibrils enhance transport of metal nanoparticles in living cells and induced cytotoxicity. Biomacromolecules 15 (7):2793–9. doi:10.1021/bm500647n.
  • Bourbon, A. I., M. A. Cerqueira, and A. A. Vicente. 2016. Encapsulation and controlled release of bioactive compounds in lactoferrin-glycomacropeptide nanohydrogels: Curcumin and caffeine as model compounds. Journal of Food Engineering 180:110–9. doi:10.1016/j.jfoodeng.2016.02.016.
  • Bourne, G. H. 2014. The biochemistry and physiology of bone. New York, USA: Elsevier Science.
  • Can Karaca, A. C., N. H. Low, and M. T. Nickerson. 2015. Potential use of plant proteins in the microencapsulation of lipophilic materials in foods. Trends in Food Science & Technology 42 (1):5–12. doi:10.1016/j.tifs.2014.11.002.
  • Chang, C., T. G. Meikle, Y. Su, X. Wang, C. Dekiwadia, C. J. Drummond, C. E. Conn, and Y. Yang. 2019. Encapsulation in egg white protein nanoparticles protects anti-oxidant activity of curcumin. Food Chemistry 280:65–72. doi:10.1016/j.foodchem.2018.11.124.
  • Chang, C., F. Niu, L. Gu, X. Li, H. Yang, B. Zhou, J. Wang, Y. Su, and Y. Yang. 2016. Formation of fibrous or granular egg white protein microparticles and properties of the integrated emulsions. Food Hydrocolloids 61:477–86. doi:10.1016/j.foodhyd.2016.06.002.
  • Chapeau, A. L., G. M. Tavares, P. Hamon, T. Croguennec, D. Poncelet, and S. Bouhallab. 2016. Spontaneous co-assembly of lactoferrin and β-lactoglobulin as a promising biocarrier for vitamin B9. Food Hydrocolloids 57:280–90. doi:10.1016/j.foodhyd.2016.02.003.
  • Cheng, X., X. Wang, Z. Cao, W. Yao, J. Wang, and R. Tang. 2017. Folic acid-modified soy protein nanoparticles for enhanced targeting and inhibitory. Materials Science & Engineering. C, Materials for Biological Applications 71:298–307. doi:10.1016/j.msec.2016.10.018.
  • Chen, F., L. Liang, Z. Zhang, Z. Deng, E. A. Decker, and D. J. McClements. 2017. Inhibition of lipid oxidation in nanoemulsions and filled microgels fortified with omega-3 fatty acids using casein as a natural antioxidant. Food Hydrocolloids 63:240–8. doi:10.1016/j.foodhyd.2016.09.001.
  • Chen, W., Q. Lin, S. Cheng, M. Wu, Y. Tian, K. Ni, Y. Bai, and H. Ma. 2019. Synthesis and adsorption properties of amphoteric adsorbent HAx/CMC-yAl. Separation and Purification Technology 221:338–48. doi:10.1016/j.seppur.2019.04.009.
  • Chen, H., H. Wooten, L. Thompson, and K. Pan. 2019. Nanoparticles of casein micelles for encapsulation of food ingredients. Biopolymer Nanostructures for Food Encapsulation Purposes, ed. S. M. Jafari, 39–68. Academic Press. doi:10.1016/B978-0-12-815663-6.00002-1.
  • Chen, N., M. Zhao, F. Niepceron, T. Nicolai, and C. Chassenieux. 2017. The effect of the pH on thermal aggregation and gelation of soy proteins. Food Hydrocolloids 66:27–36. doi:10.1016/j.foodhyd.2016.12.006.
  • Chen, H., and Q. Zhong. 2014. Processes improving the dispersibility of spray-dried zein nanoparticles using sodium caseinate. Food Hydrocolloids 35:358–66. doi:10.1016/j.foodhyd.2013.06.012.
  • Cui, H., M. Bai, M. M. Rashed, and L. Lin. 2018. The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. International Journal of Food Microbiology 266:69–78. doi:10.1016/j.ijfoodmicro.2017.11.019.
  • Dai, L., Y. Wei, C. Sun, L. Mao, D. J. McClements, and Y. Gao. 2018. Development of protein-polysaccharide surfactant ternary complex particles as delivery vehicles for curcumin. Food Hydrocolloids 85:75–85. doi:10.1016/j.foodhyd.2018.06.052.
  • Dai, L., H. Zhou, Y. Wei, Y. Gao, and D. J. McClements. 2019. Curcumin encapsulation in zein-rhamnolipid composite nanoparticles using a pH-driven method. Food Hydrocolloids 93:342–50. doi:10.1016/j.foodhyd.2019.02.041.
  • de Azevedo Bittencourt, L. L., C. Pedrosa, V. P. de Sousa, A. P. T. Pierucci, and M. Citelli. 2013. Pea protein provides a promising matrix for microencapsulating iron. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 68 (4):333–9. doi:10.1007/s11130-013-0383-8.
  • de Castro, R. J. S., M. A. F. Domingues, A. Ohara, P. K. Okuro, J. G. dos Santos, R. P. Brexó, and H. H. Sato. 2017. Whey protein as a key component in food systems: Physicochemical properties, production technologies and applications. Food Structure 14:17–29. doi:10.1016/j.foostr.2017.05.004.
  • de Souza Simões, L., D. A. Madalena, A. C. Pinheiro, J. A. Teixeira, A. A. Vicente, and Ó. L. Ramos. 2017. Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science 243:23–45. doi:10.1016/j.cis.2017.02.010.
  • Delfiya, D. A., K. Thangavel, and D. Amirtham. 2016. Preparation of curcumin loaded egg albumin nanoparticles using acetone and optimization of desolvation process. The Protein Journal 35 (2):124–35. doi:10.1007/s10930-016-9652-3.
  • Deng, L., X. Kang, Y. Liu, F. Feng, and H. Zhang. 2017. Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin. Food Chemistry 231:70–7. doi:10.1016/j.foodchem.2017.03.027.
  • Desai, N. 2016. Nanoparticle albumin bound (nab) technology: Targeting tumors through endothelial gp60 receptor and SPARC. Nanomedicine: Nanotechnology, Biology and Medicine 3:339. doi:10.1016/j.nano.2007.10.021.
  • Devi, N., and D. K. Kakati. 2013. Smart porous microparticles based on gelatin/sodium alginate polyelectrolyte complex. Journal of Food Engineering 117 (2):193–204. doi:10.1016/j.jfoodeng.2013.02.018.
  • Devi, N., and T. K. Maji. 2011. Study of complex coacervation of gelatin a with sodium carboxymethyl cellulose: Microencapsulation of neem (Azadirachta indica A. Juss.) seed oil (NSO). International Journal of Polymeric Materials 60 (13):1091–105. doi:10.1080/00914037.2011.553851.
  • Diba, M., B. Pape, A. Klymov, Y. Zhang, J. Song, D. W. P. M. Löwik, H. Seyednejad, and S. C. G. Leeuwenburgh. 2017. Nanostructured raspberry-like gelatin microspheres for local delivery of multiple biomolecules. Acta Biomaterialia 58:67–79. doi:10.1016/j.actbio.2017.05.059.
  • Ding, X., and P. Yao. 2013. Soy protein/soy polysaccharide complex nanogels: Folic acid loading, protection, and controlled delivery. Langmuir: The ACS Journal of Surfaces and Colloids 29 (27):8636–44. doi:10.1021/la401664y.
  • Dong, F., X. Dong, L. Zhou, H. Xiao, P. Y. Ho, M. S. Wong, and Y. Wang. 2016. Doxorubicin-loaded biodegradable self-assembly zein nanoparticle and its anti-cancer effect: Preparation, in vitro evaluation, and cellular uptake. Colloids and Surfaces. B, Biointerfaces 140:324–31. doi:10.1016/j.colsurfb.2015.12.048.
  • Donsì, F., M. Sessa, H. Mediouni, A. Mgaidi, and G. Ferrari. 2011. Encapsulation of bioactive compounds in nanoemulsion-based delivery systems. Procedia Food Science 1:1666–71. doi:10.1016/j.profoo.2011.09.246.
  • Eckert, C., V. G. Serpa, A. C. F. dos Santos, S. M. da Costa, V. Dalpubel, D. N. Lehn, and C. F. V. de Souza. 2017. Microencapsulation of Lactobacillus plantarum ATCC 8014 through spray drying and using dairy whey as wall materials. LWT - Food Science and Technology 82:176–83. doi:10.1016/j.lwt.2017.04.045.
  • Elzoghby, A. O., El-Fotoh, A. W. S. and Elgindy, N. A. 2011. Casein-based formulations as promising controlled release drug delivery systems. Journal of Controlled Release 153 (3):206–16. doi: 10.1016/j.jconrel.2011.02.010.
  • Elzoghby, A. O., M. W. Helmy, W. M. Samy, and N. A. Elgindy. 2013a. Novel ionically crosslinked casein nanoparticles for flutamide delivery: Formulation, characterization, and in vivo pharmacokinetics. International Journal of Nanomedicine 8:1721–32. doi:10.2147/IJN.S40674.
  • Elzoghby, A. O., W. M. Samy, and N. A. Elgindy. 2013a. Novel spray-dried genipin-crosslinked casein nanoparticles for prolonged release of alfuzosin hydrochloride. Pharmaceutical Research 30 (2):512–22. doi:10.1007/s11095-012-0897-z.
  • Estrada, P. D., C. C. Berton-Carabin, M. Schlangen, A. Haagsma, A. P. T. R. Pierucci, and A. J. van der Goot. 2018. Protein oxidation in plant protein-based fibrous products: Effects of encapsulated iron and process conditions. Journal of Agricultural and Food Chemistry 66 (42):11105–12. doi: 10.1021/acs.jafc.8b02844.
  • Fan, Y., Y. Liu, L. Gao, Y. Zhang, and J. Yi. 2018. Improved chemical stability and cellular antioxidant activity of resveratrol in zein nanoparticle with bovine serum albumin-caffeic acid conjugate. Food Chemistry 261:283–91.
  • Fathi, M., F. Donsi, and D. J. McClements. 2018. Protein-based delivery systems for the nanoencapsulation of food ingredients. Comprehensive Reviews in Food Science and Food Safety 17 (4):920–36. doi:10.1111/1541-4337.12360.
  • Feng, J.-L., J.-R. Qi, S.-W. Yin, J.-M. Wang, J. Guo, J.-Y. Weng, Q. R. Liu, and X.-Q. Yang. 2015. Fabrication and characterization of stable soy β-conglycinin-dextran core-shell nanogels prepared via a self-assembly approach at the isoelectric point . Journal of Agricultural and Food Chemistry 63 (26):6075–83. doi:10.1021/acs.jafc.5b01778.
  • Feng, J., S. Wu, H. Wang, and S. Liu. 2016. Improved bioavailability of curcumin in ovalbumin-dextran nanogels prepared by Maillard reaction. Journal of Functional Foods 27:55–68. doi:10.1016/j.jff.2016.09.002.
  • Florowska, A., A. Hilal, T. Florowski, and M. Wroniak. 2020. Addition of selected plant-derived proteins as modifiers of inulin hydrogels properties. Foods 9 (7):845. doi:10.3390/foods9070845.
  • Foegeding, E. A. 2015. Food protein functionality-A new model. Journal of Food Science 80 (12):C2670–C2677. doi:10.1111/1750-3841.13116.
  • Foox, M., and M. Zilberman. 2015. Drug delivery from gelatin-based systems. Expert Opinion on Drug Delivery 12 (9):1547–63. doi:10.1517/17425247.2015.1037272.
  • Fuciños, C., M. Míguez, P. Fuciños, L. M. Pastrana, M. L. Rúa, and A. A. Vicente. 2017. Creating functional nanostructures: Encapsulation of caffeine into α-lactalbumin nanotubes. Innovative Food Science & Emerging Technologies 40:10–7. doi:10.1016/j.ifset.2016.07.030.
  • Gao, Z.-M., L.-P. Zhu, X.-Q. Yang, X.-T. He, J.-M. Wang, J. Guo, J.-R. Qi, L.-J. Wang, and S.-W. Yin. 2014. Soy lipophilic protein nanoparticles as a novel delivery vehicle for conjugated linoleic acid. Food & Function 5 (6):1286–93. DOI . doi:10.1039/c3fo60497g.
  • Gómez-Mascaraque, L. G., M. Hernández-Rojas, P. Tarancón, M. Tenon, N. Feuillère, J. F. V. Vélez Ruiz, S. Fiszman, and A. López-Rubio. 2017. Impact of microencapsulation within electrosprayed proteins on the formulation of green tea extract-enriched biscuits. LWT - Food Science and Technology 81:77–86. doi:10.1016/j.lwt.2017.03.041.
  • Gómez-Mascaraque, L. G., J. M. Lagarón, and A. López-Rubio. 2015. Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocolloids 49:42–52. doi:10.1016/j.foodhyd.2015.03.006.
  • Guan, X., T. Yin, and F. Han. 2015. Light stability controlled-release and antioxidation of Resveratrol-hordein composite nanoparticles. Chemical Journal of Chinese University 36:1707–12.
  • Guerin, J., J. Petit, J. Burgain, F. Borges, B. Bhandari, C. Perroud, S. Desobry, J. Scher, and C. Gaiani. 2017. Lactobacillus rhamnosus GG encapsulation by spray-drying: Milk proteins clotting control to produce innovative matrices. Journal of Food Engineering 193:10–9. doi:10.1016/j.jfoodeng.2016.08.008.
  • Gulfam, M., J. E. Kim, J. M. Lee, B. Ku, B. H. Chung, and B. G. Chung. 2012. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells. Langmuir: The ACS Journal of Surfaces and Colloids 28 (21):8216–23. doi:10.1021/la300691n.
  • Gülseren, İ., Y. Fang, and M. Corredig. 2012. Zinc incorporation capacity of whey protein nanoparticles prepared with desolvation with ethanol. Food Chemistry 135 (2):770–4. doi:10.1016/j.foodchem.2012.04.146.
  • Gültekin Subaşı, B., B. Vahapoğlu, E. Capanoglu, and M. A. Mohammadifar. 2021. A review on protein extracts from sunflower cake: Techno-functional properties and promising modification methods. Critical Reviews in Food Science and Nutrition 61:1–16. doi:10.1080/10408398.2021.1904821 PMID:33792434.
  • Gumus, C. E., E. A. Decker, and D. J. McClements. 2017. Gastrointestinal fate of emulsion-based ω-3 oil delivery systems stabilized by plant proteins: Lentil, pea, and faba bean proteins. Journal of Food Engineering 207:90–8. doi:10.1016/j.jfoodeng.2017.03.019.
  • Gupta, A., H. B. Eral, T. A. Hatton, and P. S. Doyle. 2016. Nanoemulsions: Formation, properties and applications. Soft Matter 12 (11):2826–41. doi:10.1039/c5sm02958a.
  • Gutiérrez, S., J. Pérez-Andrés, H. Martínez-Blanco, M. A. Ferrero, L. Vaquero, S. Vivas, J. Casqueiro, and L. B. Rodríguez-Aparicio. 2017. The human digestive tract has proteases capable of gluten hydrolysis. Molecular Metabolism 6 (7):693–702. doi:10.1016/j.molmet.2017.05.008.
  • Gutiérrez, T. J., and K. Álvarez. 2017. Biopolymers as microencapsulation materials in the food industry. Advances in Physicochemical Properties of Biopolymers: Part 2:296–322.
  • Hacker, M. C., J. Krieghoff, and A. G. Mikos. 2019. Synthetic polymers. In Principles of regenerative medicine, 559–90. Academic Press.
  • Hameed, A. M., T. Asiyanbi-H, M. Idris, N. Fadzillah, and M. E. S. Mirghani. 2018. A review of gelatin source authentication methods. Tropical Life Sciences Research 29 (2):213–27. doi:10.21315/tlsr2018.29.2.15.
  • He, J. R., J. J. Zhu, S. W. Yin, and X. Q. Yang. 2022. Bioaccessibility and intracellular antioxidant activity of phloretin embodied by gliadin/sodium carboxymethyl cellulose nanoparticles. Food Hydrocolloids 122:107076. doi:10.1016/j.foodhyd.2021.107076.
  • Huang, J., Q. Shu, L. Wang, H. Wu, A. Y. Wang, and H. Mao. 2015. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials 39:105–13. doi:10.1016/j.biomaterials.2014.10.059.
  • Humblet-Hua, K. N. P., G. Scheltens, E. Van Der Linden, and L. M. C. Sagis. 2011. Encapsulation systems based on ovalbumin fibrils and high methoxyl pectin. Food Hydrocolloids 25 (4):569–76. doi:10.1016/j.foodhyd.2011.01.003.
  • Hu, S., T. Wang, M. L. Fernandez, and Y. Luo. 2016. Development of tannic acid cross-linked hollow zein nanoparticles as potential oral delivery vehicles for curcumin. Food Hydrocolloids 61:821–31. doi:10.1016/j.foodhyd.2016.07.006.
  • Iqbal, S., A. Ayyub, H. Iqbal, and X. D. Chen. 2021. Protein microspheres as structuring agents in lipids: Potential for reduction of total and saturated fat in food products. Journal of the Science of Food and Agriculture 101 (3):820–30. doi:10.1002/jsfa.10645.
  • Jain, A., G. Sharma, G. Ghoshal, P. Kesharwani, B. Singh, U. S. Shivhare, and O. P. Katare. 2018. Lycopene loaded whey protein isolate nanoparticles: An innovative endeavor for enhanced bioavailability of lycopene and anti-cancer activity. International Journal of Pharmaceutics 546 (1-2):97–105. doi:10.1016/j.ijpharm.2018.04.061.
  • Jalilpour, Y., B. Abdollahzade, G. ParviziFard, M. Aghazadeh, A. Zahedi Bialvaei, and H. Samadi Kafil. 2017. A simple route for preparation of pH-sensitive hydrogels by using egg white proteins in Alginate scaffold for the encapsulation of probiotics. ARS Pharmaceutica 58:127–36. http://hdl.handle.net/10481/55538.
  • Jansen, L. E., L. D. Amer, E. Y. T. Chen, T. V. Nguyen, L. S. Saleh, T. Emrick, W. F. Liu, S. J. Bryant, and S. R. Peyton. 2018. Zwitterionic PEG-PC hydrogels modulate the foreign body response in a modulus-dependent manner. Biomacromolecules 19 (7):2880–8. doi:10.1021/acs.biomac.8b00444.
  • Jansen-Alves, C., D. S. V. Maia, F. D. Krumreich, M. M. Crizel-Cardoso, J. B. Fioravante, W. P. da Silva, C. D. Borges, and R. C. Zambiazi. 2019. Propolis microparticles produced with pea protein: Characterization and evaluation of antioxidant and antimicrobial activities. Food Hydrocolloids 87:703–11. doi:10.1016/j.foodhyd.2018.09.004.
  • Ji, N., Y. Hong, Z. Gu, L. Cheng, Z. Li, and C. Li. 2018. Preparation and characterization of insulin-loaded zein/carboxymethylated short-chain amylose complex nanoparticles. Journal of Agricultural and Food Chemistry 66 (35):9335–43. doi:10.1021/acs.jafc.8b02630.
  • Jiang, J., Q. Wang, and Y. L. Xiong. 2018. A pH shift approach to the improvement of interfacial properties of plant seed proteins. Current Opinion in Food Science 19:50–6. doi:10.1016/j.cofs.2018.01.002.
  • Jin, B., X. Zhou, X. Li, W. Lin, G. Chen, and R. Qiu. 2016. Self-assembled modified soy protein/dextran nanogel induced by ultrasonication as a delivery vehicle for riboflavin. Molecules (Basel, Switzerland) 21 (3):282. doi:10.3390/molecules21030282.
  • Jonker, A. M., D. W. P. M. Löwik, and J. C. M. van Hest. 2012. Peptide- and protein-based hydrogels. Chemistry of Materials 24 (5):759–73. doi:10.1021/cm202640w.
  • Joye, I. J., G. Davidov-Pardo, and D. J. McClements. 2015. Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 2: Stability and functionality. Food Hydrocolloids. 49:127–34. doi: 10.1016/j.foodhyd.2015.02.038.
  • Kamau, S. M., S. C. Cheison, W. Chen, X. M. Liu, and R. R. Lu. 2010. Alpha‐lactalbumin: Its production technologies and bioactive peptides. Comprehensive Reviews in Food Science and Food Safety 9 (2):197–212. doi:10.1111/j.1541-4337.2009.00100.x.
  • Khan, A., C. Wang, X. Sun, A. Killpartrick, and M. Guo. 2019. Preparation and characterization of whey protein isolate–DIM nanoparticles. International Journal of Molecular Sciences 20 (16):3917. doi:10.3390/ijms20163917.
  • Lam, R. S., and M. T. Nickerson. 2013. Food proteins: A review on their emulsifying properties using a structure-function approach. Food Chemistry 141 (2):975–84. doi:10.1016/j.foodchem.2013.04.038.
  • Larkins, B. A., & Vasil, I. K. (Eds.). 2013. Cellular and molecular biology of plant seed development (Vol. 4). Netherlands: Springer Science & Business Media.
  • Lee, S. J., and D. J. McClements. 2010. Fabrication of protein-stabilized nanoemulsions using a combined homogenization and amphiphilic solvent dissolution/evaporation approach. Food Hydrocolloids 24 (6–7):560–9. doi:10.1016/j.foodhyd.2010.02.002.
  • Lee, S. Y., L. Gradon, S. Janeczko, F. Iskandar, and K. Okuyama. 2010. Formation of highly ordered nanostructures by drying micrometer colloidal droplets. ACS Nano 4 (8):4717–24. doi: 10.1021/nn101297c.
  • Leon, A. M., W. T. Medina, D. J. Park, and J. M. Aguilera. 2016. Mechanical properties of whey protein/Na alginate gel microparticles. Journal of Food Engineering 188:1–7. doi:10.1016/j.jfoodeng.2016.05.005.
  • Lestringant, P., A. Guri, I. Gülseren, P. Relkin, and M. Corredig. 2014. Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes. Journal of Agricultural and Food Chemistry 62 (33):8357–64. doi:10.1021/jf5029834.
  • Li, X., L. Maldonado, M. Malmr, T. B. Rouf, Y. Hua, and J. Kokini. 2019. Development of hollow kafirin-based nanoparticles fabricated through layer-by-layer assembly as delivery vehicles for curcumin. Food Hydrocolloids 96:93–101. doi:10.1016/j.foodhyd.2019.04.042.
  • Lin, L., W. Xu, H. Liang, L. He, S. Liu, Y. Li, B. Li, and Y. Chen. 2015. Construction of pH-sensitive lysozyme/pectin nanogel for tumor methotrexate delivery. Colloids and Surfaces. B, Biointerfaces 126:459–66. doi:10.1016/j.colsurfb.2014.12.051.
  • Liu, Y., L. Deng, C. Zhang, F. Feng, and H. Zhang. 2018. Tunable physical properties of ethylcellulose/gelatin composite nanofibers by electrospinning. Journal of Agricultural and Food Chemistry 66 (8):1907–15. doi:10.1021/acs.jafc.7b06038.
  • Liu, H., J. Gong, D. Chabot, S. S. Miller, S. W. Cui, J. Ma, F. Zhong, and Q. Wang. 2016. Incorporation of polysaccharides into sodium caseinate-low melting point fat microparticles improves probiotic bacterial survival during simulated gastrointestinal digestion and storage. Food Hydrocolloids 54:328–37. doi:10.1016/j.foodhyd.2015.10.016.
  • Liu, L. L., X. T. Li, N. Zhang, and C. H. Tang. 2019. Novel soy β-conglycinin nanoparticles by ethanol-assisted disassembly and reassembly: Outstanding nanocarriers for hydrophobic nutraceuticals. Food Hydrocolloids 91:246–55. doi:10.1021/acs.jafc.8b05822.
  • Liu, G., J. Yang, Y. Wang, X. Liu, L. L. Guan, and L. Chen. 2019. Protein-lipid composite nanoparticles for the oral delivery of vitamin B12: Impact of protein succinylation on nanoparticle physicochemical and biological properties. Food Hydrocolloids 92:189–97. doi:10.1016/j.foodhyd.2018.12.020.
  • Liu, F., S. Zhang, J. Li, D. J. McClements, and X. Liu. 2018. Recent development of lactoferrin-based vehicles for the delivery of bioactive compounds: Complexes, emulsions, and nanoparticles. Trends in Food Science & Technology 79:67–77. doi:10.1016/j.tifs.2018.06.013.
  • Li, H., D. Wang, C. Liu, J. Zhu, M. Fan, X. Sun, T. Wang, Y. Xu, and Y. Cao. 2019. Fabrication of stable zein nanoparticles coated with soluble soybean polysaccharide for encapsulation of quercetin. Food Hydrocolloids 87:342–51. doi:10.1016/j.foodhyd.2018.08.002.
  • Li, H., M. Wang, G. R. Williams, J. Wu, X. Sun, Y. Lv, and L. M. Zhu. 2016. Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials. RSC Advances 6 (55):50267–77. doi:10.1039/C6RA05092A.
  • Lohcharoenkal, W., L. Wang, Y. C. Chen, and Y. Rojanasakul. 2014. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Research International 2014:180549. doi:10.1155/2014/180549.
  • López-Rubio, A., and J. M. Lagaron. 2012. Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innovative Food Science & Emerging Technologies 13:200–206. doi: 10.1016/j.ifset.2011.10.012.
  • Loyeau, P. A., M. J. Spotti, N. V. Braber, Y. E. Rossi, M. A. Montenegro, G. Vinderola, and C. R. Carrara. 2018. Microencapsulation of Bifidobacterium animalis subsp. lactis INL1 using whey proteins and dextrans conjugates as wall materials. Food Hydrocolloids 85:129–13. doi:10.1016/j.foodhyd.2018.06.051.
  • Luo, Y., Z. Teng, and Q. Wang. 2012. Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. Journal of Agricultural and Food Chemistry 60 (3):836–43. doi:10.1021/jf204194z.
  • Luo, Y., B. Zhang, M. Whent, L. L. Yu, and Q. Wang. 2011. Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids and Surfaces. B, Biointerfaces 85 (2):145–52. doi:10.1016/j.colsurfb.2011.02.020.
  • Maltais, A., G. E. Remondetto, and M. Subirade. 2010. Tabletted soy protein cold-set hydrogels as carriers of nutraceutical substances. Food Hydrocolloids 24 (5):518–24. doi:10.1016/j.foodhyd.2009.11.016.
  • Mao, L., Q. Pan, Z. Hou, F. Yuan, and Y. Gao. 2018. Development of soy protein isolate-carrageenan conjugates through Maillard reaction for the microencapsulation of Bifidobacterium longum. Food Hydrocolloids 84:489–97. doi:10.1016/j.foodhyd.2018.06.037.
  • Maqsood, S., A. Al-Dowaila, P. Mudgil, H. Kamal, B. Jobe, and H. M. Hassan. 2019. Comparative characterization of protein and lipid fractions from camel and cow milk, their functionality, antioxidant and antihypertensive properties upon simulated gastro-intestinal digestion. Food Chemistry 279:328–38. doi:10.1016/j.foodchem.2018.12.011.
  • Martins, J. T., S. F. Santos, A. I. Bourbon, A. C. Pinheiro, Á. González-Fernández, L. M. Pastrana, M. A. Cerqueira, and A. A. Vicente. 2016. Lactoferrin-based nanoparticles as a vehicle for iron in food applications - Development and release profile. Food Research International (Ottawa, ON) 90:16–24. doi:10.1016/j.foodres.2016.10.027.
  • Mehryar, L., M. Esmaiili, F. Zeynali, M. Imani, and R. Sadeghi. 2021. Fabrication and characterization of sunflower protein isolate nanoparticles, and their potential for encapsulation and sustainable release of curcumin. Food Chemistry 355:129572. doi:10.1016/j.foodchem.2021.129572.
  • Metwally, A. A., S. H. El-Ahmady, and R. M. Hathout. 2016. Selecting optimum protein nano-carriers for natural polyphenols using chemoinformatics tools. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 23 (14):1764–70. doi:10.1016/j.phymed.2016.10.020.
  • Mirshahi, T., J. M. Irache, J. Gueguen, and A. M. Orecchioni. 1996. Development of drug delivery systems from vegetal proteins: Legumin nanoparticles. Drug Development and Industrial Pharmacy 22 (8):841–6. doi:10.3109/03639049609065914.
  • Mirshahi, T., J. M. Irache, C. Nicolas, M. Mirshahi, J. P. Faure, J. Gueguen, C. Hecquet, and A. M. Orecchioni. 2002. Adaptive immune responses of legumin nanoparticles. Journal of Drug Targeting 10 (8):625–31. doi:10.1080/1061186021000066237.
  • Mohammadian, M., M. I. Waly, M. Moghadam, Z. Emam-Djomeh, M. Salami, and A. A. Moosavi-Movahedi. 2020. Nanostructured food proteins as efficient systems for the encapsulation of bioactive compounds. Food Science and Human Wellness 9 (3):199–213. doi:10.1016/j.fshw.2020.04.009.
  • Moreno, T., M. J. Cocero, and S. Rodríguez-Rojo. 2018. Storage stability and simulated gastrointestinal release of spray dried grape marc phenolics. Food and Bioproducts Processing 112:96–107. doi:10.1016/j.fbp.2018.08.011.
  • Murali, S., A. Kar, A. S. Patel, D. Mohapatra, and P. Krishnakumar. 2017. Optimization of rice bran oil encapsulation using jackfruit seed starch–whey protein isolate blend as wall material and its characterization. International Journal of Food Engineering 13 (4), 20160409 doi:10.1515/ijfe-2016-0409.
  • Nagarajan, S., S. Radhakrishnan, S. N. Kalkura, S. Balme, P. Miele, and M. Bechelany. 2019. Overview of protein‐based biopolymers for biomedical application. Macromolecular Chemistry and Physics 220 (14):1900126. doi:10.1002/macp.201900126.
  • Nishinari, K., Y. Fang, S. Guo, and G. O. Phillips. 2014. Soy proteins: A review on composition, aggregation, and emulsification. Food Hydrocolloids 39:301–18. doi:10.1016/j.foodhyd.2014.01.013.
  • Nyemb, K., C. Guérin-Dubiard, D. Dupont, J. Jardin, S. M. Rutherfurd, and F. Nau. 2014. The extent of ovalbumin in vitro digestion and the nature of generated peptides are modulated by the morphology of protein aggregates. Food Chemistry 157:429–38. doi:10.1016/j.foodchem.2014.02.048.
  • O’Sullivan, J. J., and J. A. O’Mahony. 2016. Food ingredients. In Reference module in food science. 1–3 Elsevier. doi:10.1016/B978-0-08-100596-5.03407-7.
  • Odent, J., T. J. Wallin, W. Pan, K. Kruemplestaedter, R. F. Shepherd, and E. P. Giannelis. 2017. Highly elastic, transparent, and conductive 3D‐printed ionic composite hydrogels. Advanced Functional Materials 27 (33):1701807. doi:10.1002/adfm.201701807.
  • Oliveira, A. M., K. L. Guimarães, N. N. Cerize, A. S. Tunussi, and J. G. Poço. 2013. Nano spray drying as an innovative technology for encapsulating hydrophilic active pharmaceutical ingredients (API). Journal of Nanomedicine and Nanotechnology 4, 6. doi:10.4172/2157-7439.1000186.
  • Oliver, C. M., L. D. Melton, and R. A. Stanley. 2006. Creating proteins with novel functionality via the Maillard reaction: A review. Critical Reviews in Food Science and Nutrition 46 (4):337–50. doi:10.1080/10408690590957250.
  • Osamede Airouyuwa, J., and T. Kaewmanee. 2019. Microencapsulation of Moringa oleifera leaf extracts with vegetable protein as wall materials. Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional 25 (6):533–43.
  • Ozturk, B., S. Argin, M. Ozilgen, and D. J. McClements. 2015. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. Food Chemistry 188:256–63. doi:10.1016/j.foodchem.2015.05.005.
  • Pan, K. 2015. Self-assembled casein nanostructures to deliver novel functionalities. PhD diss., University of Tennessee.
  • Pan, K., and Q. Zhong. 2016. Low energy, organic solvent-free co-assembly of zein and caseinate to prepare stable dispersions. Food Hydrocolloids 52:600–6. doi:10.1016/j.foodhyd.2015.08.014.
  • Pascoli, M., R. de Lima, and L. F. Fraceto. 2018. Zein nanoparticles and strategies to improve colloidal stability: A mini-review. Frontiers in Chemistry 6:6. doi:10.3389/fchem.2018.00006.
  • Patel, A., Y. C. Hu, J. K. Tiwari, and K. P. Velikov. 2010. Synthesis and characterisation of zein-curcumin colloidal particles. Soft Matter 6 (24):6192–9. doi:10.1039/c0sm00800a.
  • Pathak, Y., and D. Thassu. 2009. Drug delivery nanoparticles formulation and characterization. Informa Healthcare USA. Inc.
  • Penalva, R., C. J. González-Navarro, C. Gamazo, I. Esparza, and J. M. Irache. 2017. Zein nanoparticles for oral delivery of quercetin: Pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia. Nanomedicine: Nanotechnology, Biology, and Medicine 13 (1):103–10. doi:10.1016/j.nano.2016.08.033.
  • Peng, D., W. Jin, C. Tang, Y. Lu, W. Wang, J. Li, and B. Li. 2018. Foaming and surface properties of gliadin nanoparticles: Influence of pH and heating temperature. Food Hydrocolloids 77:107–16. doi:10.1016/j.foodhyd.2017.09.026.
  • Perez, A. A., R. B. Andermatten, A. C. Rubiolo, and L. G. Santiago. 2014. β-Lactoglobulin heat-induced aggregates as carriers of polyunsaturated fatty acids. Food Chemistry 158:66–72. doi:10.1016/j.foodchem.2014.02.073.
  • Pérez-Masiá, R., R. López-Nicolás, M. J. Periago, G. Ros, J. M. Lagaron, and A. López-Rubio. 2015. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chemistry 168:124–33. doi:10.1016/j.foodchem.2014.07.051.
  • Prasad Yadav, T., R. Manohar Yadav, and D. Pratap Singh. 2012. Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites. Nanoscience and Nanotechnology 2 (3):22–48. doi:10.5923/j.nn.20120203.01.
  • Pujara, N., S. Jambhrunkar, K. Y. Wong, M. McGuckin, and A. Popat. 2017. Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate. Journal of Colloid and Interface Science 488:303–8. doi: 10.1016/j.jcis.2016.11.015.
  • Qadir, A., M. D. Faiyazuddin, M. T. Hussain, T. M. Alshammari, and F. Shakeel. 2016. Critical steps and energetics involved in a successful development of a stable nanoemulsion. Journal of Molecular Liquids 214:7–18. doi:10.1016/j.molliq.2015.11.050.
  • Qiu, C., M. Zhao, E. A. Decker, and D. J. McClements. 2015. Influence of protein type on oxidation and digestibility of fish oil-in-water emulsions: Gliadin, caseinate, and whey protein. Food Chemistry 175:249–57. doi:10.1016/j.foodchem.2014.11.112.
  • Rath, G., T. Hussain, G. Chauhan, T. Garg, and A. K. Goyal. 2016. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. Journal of Drug Targeting 24 (6):520–9. doi:10.3109/1061186X.2015.1095922.
  • Rubio, L. A., Pérez, A. Ruiz, R. Guzmán, M. Á. Aranda, ‐Olmedo, I. Clemente. and A. 2014. Characterization of pea (Pisum sativum) seed protein fractions. Journal of the Science of Food and Agriculture 94 (2):280–7. doi:10.1016/j.febslet.2008.04.057
  • Rui, L., M. Xie, B. Hu, L. Zhou, D. Yin, and X. Zeng. 2017. A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid. Carbohydrate Polymers 173:473–81. doi:10.1016/j.carbpol.2017.05.072.
  • Sadeghi, R., A. Kalbasi, Z. Emam-Jomeh, S. H. Razavi, J. Kokini, and A. A. Moosavi-Movahedi. 2013. Biocompatible nanotubes as potential carrier for curcumin as a model bioactive compound. Journal of Nanoparticle Research 15 (11):1–11. doi:10.1007/s11051-013-1931-8.
  • Sadeghi, R., A. A. Moosavi-Movahedi, Z. Emam-Jomeh, A. Kalbasi, S. H. Razavi, M. Karimi, and J. Kokini. 2014. The effect of different desolvating agents on BSA nanoparticle properties and encapsulation of curcumin. Journal of Nanoparticle Research 16 (9):1–14. doi:10.1016/j.ijpharm.2012.10.022.
  • Sahoo, N., Sahoo R. K., Biswas, N. Guha, A., & Kuotsu, K. 2015. Recent advancement of gelatin nanoparticles in drug and vaccine delivery. International Journal of Biological Macromolecules, 81, 317–331. doi:https://doi.org/10.1016/j.ijbiomac.2015.08.006
  • Sahoo, M., S. Vishwakarma, C. Panigrahi, and J. Kumar. 2021. Nanotechnology: Current applications and future scope in food. Food Frontiers 2 (1):3–22. doi:10.1002/fft2.58.
  • Sailaja, A. K., P. Amareshwar, and P. Chakravarty. 2011. Different techniques used for the preparation of nanoparticles using natural polymers and their application. International Journal of Pharmacy and Pharmaceutical Sciences 3 (2):45–50.
  • Sáiz-Abajo, M. J., C. González-Ferrero, A. Moreno-Ruiz, A. Romo-Hualde, and C. J. González-Navarro. 2013. Thermal protection of β-carotene in re-assembled casein micelles during different processing technologies applied in food industry. Food Chemistry 138 (2–3):1581–7. doi:10.1016/j.foodchem.2012.11.016.
  • Sarabandi, K., P. Gharehbeglou, and S. M. Jafari. 2020. Spray-drying encapsulation of protein hydrolysates and bioactive peptides: Opportunities and challenges. Drying Technology 38 (5–6):577–95. doi:10.1080/07373937.2019.1689399.
  • Sarika, P. R., and N. R. James. 2016. Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery. Carbohydrate Polymers 148:354–61.
  • Sarmah, M., N. Banik, A. Hussain, A. Ramteke, H. K. Sharma, and T. K. Maji. 2015. Study on crosslinked gelatin–montmorillonite nanoparticles for controlled drug delivery applications. Journal of Materials Science 50 (22):7303–13. doi:10.1007/s10853-015-9287-3.
  • Saul, J. M., and D. F. Williams. 2011. Hydrogels in regenerative medicine. In Principles of regenerative medicine, 637–61. Elsevier.
  • Scherer, R. 2016. Casein: its preparation and technical utilisation. Scottland, Greenwood: BiblioLife.
  • Scherf, K. A., P. Koehler, and H. Wieser. 2016. Gluten and wheat sensitivities–an overview. Journal of Cereal Science 67:2–11. doi:10.1016/j.jcs.2015.07.008.
  • Schöttler, S., G. Becker, S. Winzen, T. Steinbach, K. Mohr, K. Landfester, V. Mailänder, and F. R. Wurm. 2016. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers . Nature Nanotechnology 11 (4):372–7. https://www.nature.com/articles/nnano.2015.330. doi:10.1038/nnano.2015.330.
  • Shin, G. H., J. T. Kim, and H. J. Park. 2015. Recent developments in nanoformulations of lipophilic functional foods. Trends in Food Science & Technology 46 (1):144–57. doi:10.1016/j.tifs.2015.07.005.
  • Shpigelman, A., Y. Cohen, and Y. D. Livney. 2012. Thermally-induced β-lactoglobulin-EGCG nanovehicles: Loading, stability, sensory and digestive-release study. Food Hydrocolloids 29 (1):57–67. doi:10.1016/j.foodhyd.2012.01.016.
  • Silva, D. F., Favaro -Trindade, C. S., Rocha, G. A. and Thomazini M. 2012. Microencapsulation of lycopene by gelatin–pectin complex coacervation. Journal of Food Processing and Preservation 36 (2):185–90. doi: 10.1111/j.1745-4549.2011.00575.x.
  • Singh, H. 2016. Nanotechnology applications in functional foods; opportunities and challenges. Preventive Nutrition and Food Science 21 (1):1–8. doi:10.3746/pnf.2016.21.1.1.
  • Somchue, W., W. Sermsri, J. Shiowatana, and A. Siripinyanond. 2009. Encapsulation of α-tocopherol in protein-based delivery particles. Food Research International 42 (8):909–14. doi:10.1016/j.foodres.2009.04.021.
  • Spizzirri, U. G., G. Cirillo, M. Curcio, T. Spataro, N. Picci, and F. Iemma. 2015. Coated biodegradable casein nanospheres: A valuable tool for oral drug delivery. Drug Development and Industrial Pharmacy 41 (12):2006–17. doi:10.3109/03639045.2015.1040415.
  • Sponton, O. E., A. A. Perez, C. R. Carrara, and L. G. Santiago. 2015. Linoleic acid binding properties of ovalbumin nanoparticles. Colloids and Surfaces. B, Biointerfaces 128:219–26. doi:10.1016/j.colsurfb.2015.01.037.
  • Sripriyalakshmi, S., P. Jose, A. Ravindran, and C. H. Anjali. 2014. Recent trends in drug delivery system using protein nanoparticles. Cell Biochemistry and Biophysics 70 (1):17–26. doi:10.1007/s12013-014-9896-5.
  • Takagi, K., R. Teshima, H. Okunuki, and J. I. Sawada. 2003. Comparative study of in vitro digestibility of food proteins and effect of preheating on the digestion. Biological & Pharmaceutical Bulletin 26 (7):969–73. doi:10.1248/bpb.26.969.
  • Taokaew, S., S. Seetabhawang, P. Siripong, and M. Phisalaphong. 2013. Biosynthesis and characterization of nanocellulose-gelatin films. Materials 6 (3):782–94. doi: 10.3390/ma6030782.
  • Tarhan, O., and S. Harsa. 2014. Nanotubular structures developed from whey-based α-lactalbumin fractions for food applications. Biotechnology Progress 30 (6):1301–10. doi:10.1002/btpr.1956.
  • Tarhini, M., I. Benlyamani, S. Hamdani, G. Agusti, H. Fessi, H. Greige-Gerges, … A. Elaissari. 2018. Protein-based nanoparticle preparation via nanoprecipitation method. Materials, 11:394. doi:10.3390/ma11030394.
  • Tarone, A. G., L. H. Fasolin, F. d A. Perrechil, M. D. Hubinger, and R. L. d Cunha. 2013. Influence of drying conditions on the gelling properties of the 7S and 11S soy protein fractions. Food and Bioproducts Processing 91 (2):111–20. doi:10.1016/j.fbp.2012.11.010.
  • Tavassoli-Kafrani, E., S. A. H. Goli, and M. Fathi. 2018. Encapsulation of orange essential oil using cross-linked electrospun gelatin nanofibers. Food and Bioprocess Technology 11 (2):427–34. link.springer.com/article/ doi:10.1007/s11947-017-2026-9.
  • Teng, Z., Y. Luo, T. Wang, B. Zhang, and Q. Wang. 2013. Development and application of nanoparticles synthesized with folic acid conjugated soy protein. Journal of Agricultural and Food Chemistry 61 (10):2556–64. doi:10.1021/jf4001567.
  • Teng, Z., Y. Luo, and Q. Wang. 2012. Nanoparticles synthesized from soy protein: Preparation, characterization, and application for nutraceutical encapsulation. Journal of Agricultural and Food Chemistry 60 (10):2712–20. doi:10.1021/jf205238x.
  • Varca, G. H. C., R. G. Queiroz, and A. B. Lugão. 2016. Irradiation as an alternative route for protein crosslinking: Cosolvent free BSA nanoparticles. Radiation Physics and Chemistry 124:111–5. doi:10.1016/j.radphyschem.2016.01.021.
  • Veneranda, M., Q. B. Hu, T. R. Wang, Y. C. Luo, Y. C. Castro, and J. M. Madariaga. 2018. Formation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of eugenol. LWT 89:596–603. doi:10.1016/j.lwt.2017.11.040.
  • Verhoeckx, K. C. M., Y. M. Vissers, J. L. Baumert, R. Faludi, M. Feys, S. Flanagan, C. Herouet-Guicheney, T. Holzhauser, R. Shimojo, N. van der Bolt, et al. 2015. Food Processing and Allergenicity. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 80:223–40. doi:10.1016/j.fct.2015.03.005.
  • Verma, D., N. Gulati, S. Kaul, S. Mukherjee, and U. Nagaich. 2018. Protein based nanostructures for drug delivery. Journal of Pharmaceutics 2018:9285854. doi: 10.1155/2018/9285854.
  • Walia, N., and L. Chen. 2020. Pea protein based vitamin D nanoemulsions: Fabrication, stability and in vitro study using Caco-2 cells. Food Chemistry 305:125475. doi:10.1016/j.foodchem.2019.125475.
  • Wang, L., J. Xue, and Y. Zhang. 2019. Preparation and characterization of curcumin loaded caseinate/zein nanocomposite film using pH-driven method. Industrial Crops and Products 130:71–80. doi: 10.1016/j.indcrop.2018.12.072.
  • Wang, X., B. Ding, G. Sun, M. Wang, and J. Yu. 2013b. Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Progress in Materials Science 58 (8):1173–243. doi:10.1016/j.pmatsci.2013.05.001.
  • Wang, Y., S. Xu, W. Xiong, Y. Pei, B. Li, and Y. Chen. 2016. Nanogels fabricated from bovine serum albumin and chitosan via self-assembly for delivery of anticancer drug. Colloids and Surfaces. B, Biointerfaces 146:107–13. doi:10.1016/j.colsurfb.2016.05.043.
  • Wang, R. Q., Y. J. Yin, H. Li, Y. Wang, J. J. Pu, R. Wang, H. J. Dou, C. J. Song, and R. Y. Wang. 2013a. Comparative study of the interactions between ovalbumin and three alkaloids by spectrofluorimetry. Molecular Biology Reports 40 (4):3409–18. doi:10.1007/s11033-012-2418-x.
  • Wei, Y., A. Guo, Z. Liu, L. Mao, F. Yuan, Y. Gao, and A. Mackie. 2021. Structural design of zein-cellulose nanocrystals core-shell microparticles for delivery of curcumin. Food Chemistry 357:129849. doi:10.1016/j.foodchem.2021.129849.
  • Wei, Y., C. Li, L. Zhang, L. Dai, S. Yang, J. Liu, L. Mao, F. Yuan, and Y. Gao. 2020b. Influence of calcium ions on the stability, microstructure and in vitro digestion fate of zein-propylene glycol alginate-tea saponin ternary complex particles for the delivery of resveratrol. Food Hydrocolloids 106:105886. doi:10.1016/j.foodhyd.2020.105886.
  • Wei, Y., C. Sun, L. Dai, X. Zhan, and Y. Gao. 2018. Structure, physicochemical stability and in vitro simulated gastrointestinal digestion properties of β-carotene loaded zein-propylene glycol alginate composite nanoparticles fabricated by emulsification-evaporation method. Food Hydrocolloids 81:149–58. doi:10.1016/j.foodhyd.2018.02.042.
  • Wei, Y., Z. Yu, K. Lin, C. Sun, L. Dai, S. Yang, L. Mao, F. Yuan, and Y. Gao. 2019. Fabrication and characterization of resveratrol loaded zein-propylene glycol alginate-rhamnolipid composite nanoparticles: Physicochemical stability, formation mechanism and in vitro digestion. Food Hydrocolloids 95:336–48. doi:10.1016/j.foodhyd.2019.04.048.
  • Wei, Y., Z. Yu, K. Lin, S. Yang, K. Tai, J. Liu, L. Mao, F. Yuan, and Y. Gao. 2020a. Fabrication, physicochemical stability, and microstructure of coenzyme Q10 pickering emulsions stabilized by resveratrol-loaded composite nanoparticles. Journal of Agricultural and Food Chemistry 68 (5):1405–18. doi:10.1021/acs.jafc.9b06678.
  • Wei, Y., X. Zhan, L. Dai, L. Zhang, L. Mao, F. Yuan, J. Liu, and Y. Gao. 2021. Formation mechanism and environmental stability of whey protein isolate-zein core-shell complex nanoparticles using the pH-shifting method. LWT 139:110605. doi:10.1016/j.lwt.2020.110605.
  • Xiao, J., X. Lu, and Q. Huang. 2017. Double emulsion derived from kafirin nanoparticles stabilized Pickering emulsion: Fabrication, microstructure, stability and in vitro digestion profile. Food Hydrocolloids 62:230–8. doi:10.1016/j.foodhyd.2016.08.014.
  • Xu, W., W. Jin, C. Zhang, Z. Li, L. Lin, Q. Huang, S. Ye, and B. Li. 2014. Curcumin loaded and protective system based on complex of κ-carrageenan and lysozyme. Food Research International 59:61–6. doi:10.1016/j.foodres.2014.01.059.
  • Xu, H., L. Shen, L. Xu, and Y. Yang. 2015. Controlled delivery of hollow corn protein nanoparticles via non-toxic crosslinking: In vivo and drug loading study. Biomedical Microdevices 17 (1):8. doi:10.1007/s10544-014-9926-5[PMC].
  • Yang, S., L. Dai, C. Sun, and Y. Gao. 2018. Characterization of curcumin loaded gliadin-lecithin composite nanoparticles fabricated by antisolvent precipitation in different blending sequences. Food Hydrocolloids 85:185–94. doi:10.1016/j.foodhyd.2018.07.015.
  • Yi, J., Y. Fan, Y. Zhang, Z. Wen, L. Zhao, and Y. Lu. 2016. Glycosylated α-lactalbumin-based nanocomplex for curcumin: Physicochemical stability and DPPH-scavenging activity. Food Hydrocolloids 61:369–77. doi:10.1016/j.foodhyd.2016.05.036.
  • Yi, J., T. I. Lam, W. Yokoyama, L. W. Cheng, and F. Zhong. 2015. Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells. Food Hydrocolloids 43:31–40. doi:10.1016/j.foodhyd.2014.04.028.
  • Yin, L., C. Yuvienco, and J. K. Montclare. 2017. Protein based therapeutic delivery agents: Contemporary developments and challenges. Biomaterials 134:91–116. doi: 10.1016/j.biomaterials.2017.04.036.
  • Yu, Z., M. Yu, Z. Zhang, G. Hong, and Q. Xiong. 2014. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. Nanoscale Research Letters 9 (1):343–7. http://www.nanoscalereslett.com/content/9/1/343. doi:10.1186/1556-276X-9-343.
  • Zhang, S., D. J. Alvarez, M. V. Sofroniew, and T. J. Deming. 2015. Design and synthesis of nonionic copolypeptide hydrogels with reversible thermoresponsive and tunable physical properties. Biomacromolecules 16 (4):1331–40. doi:10.1021/acs.biomac.5b00124.
  • Zhang, L., S. Boeren, M. Smits, T. van Hooijdonk, J. Vervoort, and K. Hettinga. 2016. Proteomic study on the stability of proteins in bovine, camel, and caprine milk sera after processing. Food Research International 82:104–11. doi:10.1016/j.foodres.2016.01.023.
  • Zhang, Y., L. Cui, X. Che, H. Zhang, N. Shi, C. Li, Y. Chen, and W. Kong. 2015. Zein-based films and their usage for controlled delivery: Origin, classes and current landscape. Journal of Controlled Release: Official Journal of the Controlled Release Society 206:206–19. doi:10.1016/j.jconrel.2015.03.030.
  • Zhang, J., C. J. Field, D. Vine, and L. Chen. 2015. Intestinal uptake and transport of vitamin B12-loaded soy protein nanoparticles. Pharmaceutical Research 32 (4):1288–303. doi:10.1007/s11095-014-1533-x.
  • Zhang, Z., G. Hao, C. Liu, J. Fu, D. Hu, J. Rong, and X. Yang. 2021. Recent progress in the preparation, chemical interactions and applications of biocompatible polysaccharide-protein nanogel carriers. Food Research International (Ottawa, ON) 147:110564. doi:10.1016/j.foodres.2021.110564.
  • Zhang, S., M. Holmes, R. Ettelaie, and A. Sarkar. 2020. Pea protein microgel particles as Pickering stabilisers of oil-in-water emulsions: Responsiveness to pH and ionic strength. Food Hydrocolloids 102:105583. doi:10.1016/j.foodhyd.2019.105583.
  • Zhang, J., L. Liang, Z. Tian, L. Chen, and M. Subirade. 2012. Preparation and in vitro evaluation of calcium-induced soy protein isolate nanoparticles and their formation mechanism study. Food Chemistry 133 (2):390–9. doi:10.1016/j.foodchem.2012.01.049.
  • Zhu, K., T. Ye, J. Liu, Z. Peng, S. Xu, J. Lei, D. Hongbing, and B. Li. 2013. Nanogels fabricated by lysozyme and sodium carboxymethyl cellulose for 5-fluorouracil controlled release. International Journal of Pharmaceutics 441 (1-2):721–7. doi: 10.1016/j.ijpharm.2012.10.022.
  • Zhao, X.-H., and C.-H. Tang. 2016. Spray-drying microencapsulation of CoQ10 in olive oil for enhanced water dispersion, stability and bioaccessibility: Influence of type of emulsifiers and/or wall materials. Food Hydrocolloids. 61:20–30. doi: 10.1016/j.foodhyd.2016.04.045.
  • Zimet, P., and Y. D. Livney. 2009. Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloids. 23 (4):1120–6. doi: 10.1016/j.foodhyd.2008.10.008.
  • Zimet, P., D. Rosenberg, and Y. D. Livney. 2011. Re-assembled casein micelles and casein nanoparticles as nano-vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloids 25 (5):1270–6. doi:10.1016/j.foodhyd.2010.11.025.
  • Zink, J., T. Wyrobnik, T. Prinz, and M. Schmid. 2016. Physical, chemical and biochemical modifications of protein-based films and coatings: An extensive review. International Journal of Molecular Sciences 17:1376. doi:10.3390/ijms17091376.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.