1,102
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives

, , , , ORCID Icon, , , , , , ORCID Icon, & ORCID Icon show all

References

  • Aa, L.-X., F. Fei, Q. Qi, R.-B. Sun, S.-H. Gu, Z.-Z. Di, J.-Y. Aa, G.-J. Wang, and C.-X. Liu. 2020. Rebalancing of the gut flora and microbial metabolism is responsible for the anti-arthritis effect of kaempferol. Acta Pharmacologica Sinica 41 (1):73–81. doi: 10.1038/s41401-019-0279-8.
  • Adhikari-Devkota, A., A. I. Dirar, A. Kurizaki, K. Tsushiro, and H. P. Devkota. 2019. Extraction and isolation of kaempferol glycosides from the leaves and twigs of Lindera neesiana. Separations 6 (1):10. doi: 10.3390/separations6010010.
  • Afonina, I. S., Z. Zhong, M. Karin, and R. Beyaert. 2017. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nature Immunology 18 (8):861–9. doi: 10.1038/ni.3772.
  • Ajila, C. M., F. Gassara, S. K. Brar, M. Verma, R. D. Tyagi, and J. R. Valero. 2012. Polyphenolic antioxidant mobilization in apple pomace by different methods of solid-state fermentation and evaluation of its antioxidant activity. Food and Bioprocess Technology 5 (7):2697–707. doi: 10.1007/s11947-011-0582-y.
  • Alam, W., H. Khan, M. A. Shah, O. Cauli, and L. Saso. 2020. Kaempferol as a dietary anti-inflammatory agent: Current therapeutic standing. Molecules 25: 4073. doi: 10.3390/molecules25184073.
  • Alkhalidy, H., W. Moore, Y. Wang, J. Luo, R. P. McMillan, W. Zhen, K. Zhou, and D. Liu. 2018. The flavonoid kaempferol ameliorates streptozotocin-induced diabetes by suppressing hepatic glucose production. Molecules (Basel, Switzerland) 23 (9):2338. doi: 10.3390/molecules23092338.
  • Al-Numair, K. S., G. Chandramohan, C. Veeramani, and M. A. Alsaif. 2015. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Report: Communications in Free Radical Research 20 (5):198–209. doi: 10.1179/1351000214Y.0000000117.
  • Alseekh, S., L. Perez de Souza, M. Benina, and A. R. Fernie. 2020. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry 174:112347. doi: 10.1016/j.phytochem.2020.112347.
  • Altemimi, A. B., M. J. Mohammed, L. Yi-Chen, D. G. Watson, N. Lakhssassi, F. Cacciola, and S. A. Ibrahim. 2020. Optimization of Ultrasonicated Kaempferol Extraction from Ocimum basilicum Using a Box-Behnken Design and Its Densitometric Validation. Foods (Basel, Switzerland) 9 (10):1379. doi: 10.3390/foods9101379.
  • Araki, K., and K. Nagata. 2012. Protein folding and quality control in the ER. Cold Spring Harbor Perspectives in Biology 4 (8):a015438. doi: 10.1101/cshperspect.a015438.
  • Ben Saad, H., M. Gargouri, F. Kallel, R. Chaabene, T. Boudawara, K. Jamoussi, C. Magné, K. Mounir Zeghal, A. Hakim, I. Ben Amara, et al. 2017. Flavonoid compounds from the red marine alga Alsidium corallinum protect against potassium bromate-induced nephrotoxicity in adult mice. Environmental Toxicology 32 (5):1475–86. doi: 10.1002/tox.22368.
  • Bobe, G., L. B. Sansbury, P. S. Albert, A. J. Cross, L. Kahle, J. Ashby, M. L. Slattery, B. Caan, E. Paskett, F. Iber, et al. 2008. Dietary flavonoids and colorectal adenoma recurrence in the Polyp Prevention Trial. Cancer Epidemiology, Biomarkers & Prevention 17 (6):1344–53. doi: 10.1158/1055-9965.EPI-07-0747.
  • Boeltz, S., M. Hagen, J. Knopf, A. Mahajan, M. Schick, Y. Zhao, C. Erfurt-Berge, J. Rech, L. E. Muñoz, M. Herrmann, et al. 2019. Towards a pro-resolving concept in systemic lupus erythematosus. Seminars in Immunopathology 41 (6):681–97. doi: 10.1007/s00281-019-00760-5.
  • Bokkenheuser, V. D., C. H. Shackleton, and J. Winter. 1987. Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. The Biochemical Journal 248 (3):953–6. doi: 10.1042/bj2480953.
  • Boutros, T., E. Chevet, and P. Metrakos. 2008. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: Roles in cell growth, death, and cancer. Pharmacological Reviews 60 (3):261–310. doi: 10.1124/pr.107.00106.
  • Brown, M. D., and D. B. Sacks. 2009. Protein scaffolds in MAP kinase signalling. Cellular Signalling 21 (4):462–9. doi: 10.1016/j.cellsig.2008.11.013.
  • Calder, P. C. 2020. Eicosanoids. Essays in Biochemistry 64 (3):423–41. doi: 10.1042/EBC20190083.
  • Cao, R., K. Fu, X. Lv, W. Li, and N. Zhang. 2014. Protective effects of kaempferol on lipopolysaccharide-induced mastitis in mice. Inflammation 37 (5):1453–8. doi: 10.1007/s10753-014-9870-9.
  • Chen, A. Y., and Y. C. Chen. 2013. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chemistry 138 (4):2099–107. doi: 10.1016/j.foodchem.2012.11.139.
  • Chen, C., Y. H. Chen, and W. W. Lin. 1999. Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages. Immunology 97 (1):124–9. doi: 10.1046/j.1365-2567.1999.00747.x.
  • Chen, Y.-C., Y.-F. Guo, H. He, X. Lin, X.-F. Wang, R. Zhou, W.-T. Li, D.-Y. Pan, J. Shen, H.-W. Deng, et al. 2016. Integrative analysis of genomics and transcriptome data to identify potential functional genes of BMDs in females. Journal of Bone and Mineral Research 31 (5):1041–9. doi: 10.1002/jbmr.2781.
  • Cheng, K. C., J. Y. Wu, J. T. Lin, and W. H. Liu. 2013. Enhancements of isoflavone aglycones, total phenolic content, and antioxidant activity of black soybean by solid-state fermentation with Rhizopus spp. European Food Research and Technology 236 (6):1107–13. doi: 10.1007/s00217-013-1936-7.
  • Cheng, X., Y. L. Yang, H. Yang, Y. H. Wang, and G. H. Du. 2018. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway. International Immunopharmacology 56:29–35. doi: 10.1016/j.intimp.2018.01.002.
  • Cheng, Y., J. Nie, H. Liu, L. Kuang, and G. Xu. 2020. Synthesis and characterization of magnetic molecularly imprinted polymers for effective extraction and determination of kaempferol from apple samples. Journal of Chromatography A 1630:461531. doi: 10.1016/j.chroma.2020.461531.
  • Ciucci, A., G. F. Zannoni, D. Travaglia, M. Petrillo, G. Scambia, and D. Gallo. 2014. Prognostic significance of the estrogen receptor beta (ERβ) isoforms ERβ1, ERβ2, and ERβ5 in advanced serous ovarian cancer. Gynecologic Oncology 132 (2):351–9. doi: 10.1016/j.ygyno.2013.12.027.
  • Cushing, K., and P. D. R. Higgins. 2021. Management of crohn disease: A review. JAMA 325 (1):69–80. doi: 10.1001/jama.2020.18936.
  • Dang, Q., W. Song, D. Xu, Y. Ma, F. Li, J. Zeng, G. Zhu, X. Wang, L. S. Chang, D. He, et al. 2015. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis. Molecular Carcinogenesis 54 (9):831–40. doi: 10.1002/mc.22154.
  • de La Motte Rouge, T., A. Valent, D. Ambrosetti, P. Vielh, and L. Lacroix. 2007. Clinical and molecular predictors of response to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Annales de Pathologie 27 (5):353–63. doi: 10.1016/S0242-6498(07)78274-3.
  • de Laurentis, N., L. Stefanizzi, M. A. Milillo, and G. Tantillo. 1998. Flavonoids from leaves of Olea europaea L. cultivars. Annales Pharmaceutiques Francaises 56 (6):268–73.
  • de Vries, J. H., P. C. Hollman, S. Meyboom, M. N. Buysman, P. L. Zock, W. A. van Staveren, and M. B. Katan. 1998. Plasma concentrations and urinary excretion of the antioxidant flavonols quercetin and kaempferol as biomarkers for dietary intake. The American Journal of Clinical Nutrition 68 (1):60–5. doi: 10.1093/ajcn/68.1.60.
  • Dicks, N., K. Gutierrez, M. Michalak, V. Bordignon, and L. B. Agellon. 2015. Endoplasmic reticulum stress, genome damage, and cancer. Frontiers in Oncology 5:11. doi: 10.3389/fonc.2015.00011.
  • Dokalis, N., and M. Prinz. 2019. Resolution of neuroinflammation: Mechanisms and potential therapeutic option. Seminars in Immunopathology 41 (6):699–709. doi: 10.1007/s00281-019-00764-1.
  • Dow, C., F. Mancini, K. Rajaobelina, M.-C. Boutron-Ruault, B. Balkau, F. Bonnet, and G. Fagherazzi. 2018. Diet and risk of diabetic retinopathy: A systematic review. European Journal of Epidemiology 33 (2):141–56. doi: 10.1007/s10654-017-0338-8.
  • Dowarah, J., and V. P. Singh. 2020. Anti-diabetic drugs recent approaches and advancements. Bioorganic & Medicinal Chemistry 28 (5):115263. doi: 10.1016/j.bmc.2019.115263.
  • DuPont, M. S., A. J. Day, R. N. Bennett, F. A. Mellon, and P. A. Kroon. 2004. Absorption of kaempferol from endive, a source of kaempferol-3-glucuronide, in humans. European Journal of Clinical Nutrition 58 (6):947–54. doi: 10.1038/sj.ejcn.1601916.
  • Edvardsson, K., T. Nguyen-Vu, S. M. Kalasekar, F. Ponten, J. A. Gustafsson, and C. Williams. 2013. Estrogen receptor β expression induces changes in the microRNA pool in human colon cancer cells. Carcinogenesis 34 (7):1431–41. doi: 10.1093/carcin/bgt067.
  • Fernandez-Del-Rio, L., E. Soubeyrand, G. J. Basset, and C. F. Clarke. 2020. Metabolism of the flavonol kaempferol in kidney cells liberates the B-ring to enter coenzyme Q biosynthesis. Molecules 25: 2955. doi: 10.3390/molecules25132955.
  • Francis, A. R., T. K. Shetty, and R. K. Bhattacharya. 1989a. Modifying role of dietary factors on the mutagenicity of aflatoxin B1: In vitro effect of plant flavonoids. Mutation Research 222 (4):393–401. doi: 10.1016/0165-1218(89)90114-6.
  • Francis, A. R., T. K. Shetty, and R. K. Bhattacharya. 1989b. Modulating effect of plant flavonoids on the mutagenicity of N-methyl-N’-nitro-N-nitrosoguanidine. Carcinogenesis 10 (10):1953–5. doi: 10.1093/carcin/10.10.1953.
  • Fresno Vara, J. A., E. Casado, J. de Castro, P. Cejas, C. Belda-Iniesta, and M. Gonzalez-Baron. 2004. PI3K/Akt signalling pathway and cancer. Cancer Treatment Reviews 30 (2):193–204. doi: 10.1016/j.ctrv.2003.07.007.
  • Gan, C.-C., T.-W. Ni, Y. Yu, N. Qin, Y. Chen, M.-N. Jin, and H.-Q. Duan. 2017. Flavonoid derivative (Fla-CN) inhibited adipocyte differentiation via activating AMPK and up-regulating microRNA-27 in 3T3-L1 cells. European Journal of Pharmacology 797:45–52. doi: 10.1016/j.ejphar.2017.01.009.
  • Gao, W., W. Wang, Y. Peng, and Z. Deng. 2019. Antidepressive effects of kaempferol mediated by reduction of oxidative stress, proinflammatory cytokines and up-regulation of AKT/β-catenin cascade. Metabolic Brain Disease 34 (2):485–94. doi: 10.1007/s11011-019-0389-5.
  • Gates, M. A., S. S. Tworoger, J. L. Hecht, I. De Vivo, B. Rosner, and S. E. Hankinson. 2007. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. International Journal of Cancer 121 (10):2225–32. doi: 10.1002/ijc.22790.
  • Gong, J.-H., D. Shin, S.-Y. Han, S.-H. Park, M.-K. Kang, J.-L. Kim, and Y.-H. Kang. 2013. Blockade of airway inflammation by kaempferol via disturbing Tyk-STAT signaling in airway epithelial cells and in asthmatic mice. Evidence-Based Complementary and Alternative Medicine: eCAM 2013:250725. doi: 10.1155/2013/250725.
  • Guo, H., F. Ren, L. Zhang, X. Zhang, R. Yang, B. Xie, Z. Li, Z. Hu, Z. Duan, J. Zhang, et al. 2016. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway. Molecular Medicine Reports 13 (3):2791–800. doi: 10.3892/mmr.2016.4845.
  • Guo, P., and Y. Y. Feng. 2017. Anti-inflammatory effects of kaempferol, myricetin, fisetin and ibuprofen in neonatal rats. Tropical Journal of Pharmaceutical Research 16 (8):1819–26. doi: 10.4314/tjpr.v16i8.10.
  • Gupta, V. K., M. L. Yola, and N. Atar. 2014. A novel molecular imprinted nanosensor based quartz crystal microbalance for determination of kaempferol. Sensors and Actuators B: Chemical 194:79–85. doi: 10.1016/j.snb.2013.12.077.
  • Gutierrez-del-Rio, I., C. Villar, and F. Lombo. 2016. Therapeutic uses of kaempferol: Anticancer and anti-inflammatory activity. In Biosynthesis, food sources and therapeutic uses, Vol. 2071. Hauppauge, NY: Nova Science Publishers.
  • Hakkinen, S. H., S. O. Karenlampi, I. M. Heinonen, H. M. Mykkanen, and A. R. Torronen. 1999. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. Journal of Agricultural and Food Chemistry 47 (6):2274–9. doi: 10.1021/jf9811065.
  • Haldosen, L. A., C. Zhao, and K. Dahlman-Wright. 2014. Estrogen receptor beta in breast cancer. Molecular and Cellular Endocrinology 382 (1):665–72. doi: 10.1016/j.mce.2013.08.005.
  • Ham, Y.-M., Y.-J. Ko, S.-M. Song, J. Kim, K.-N. Kim, J.-H. Yun, J.-H. Cho, G. Ahn, and W.-J. Yoon. 2015. Anti-inflammatory effect of litsenolide B2 isolated from Litsea japonica fruit via suppressing NF-κB and MAPK pathways in LPS-induced RAW264.7 cells. Journal of Functional Foods 13:80–8. doi: 10.1016/j.jff.2014.12.031.
  • Hardie, D. G. 2013. AMPK: A target for drugs and natural products with effects on both diabetes and cancer. Diabetes 62 (7):2164–72. doi: 10.2337/db13-0368.
  • Hardie, D. G. 2018. Keeping the home fires burning: AMP-activated protein kinase. Journal of the Royal Society, Interface. 15: 20170774. doi: 10.1098/rsif.2017.0774.
  • He, C., J. Yang, X. Jiang, X. Liang, L. Yin, Z. Yin, Y. Geng, Z. Zhong, X. Song, Y. Zou, et al. 2019. Kaempferol alleviates LPS-ATP mediated inflammatory injury in splenic lymphocytes via regulation of the pyroptosis pathway in mice. Immunopharmacology and Immunotoxicology 41 (5):538–48. doi: 10.1080/08923973.2019.1666405.
  • Hosseinpour-Niazi, S., P. Mirmiran, A. Fallah-Ghohroudi, and F. Azizi. 2015. Non-soya legume-based therapeutic lifestyle change diet reduces inflammatory status in diabetic patients: A randomised cross-over clinical trial. The British Journal of Nutrition 114 (2):213–9. doi: 10.1017/S0007114515001725.
  • Hu, Y., Z. Cheng, L. I. Heller, S. B. Krasnoff, R. P. Glahn, and R. M. Welch. 2006. Kaempferol in red and pinto bean seed (Phaseolus vulgaris L.) coats inhibits iron bioavailability using an in vitro digestion/human Caco-2 cell model. Journal of Agricultural and Food Chemistry 54 (24):9254–61. doi: 10.1021/jf0612981.
  • Hu, Z., B. Song, L. Xu, Y. Zhong, F. Peng, X. Ji, F. Zhu, C. Yang, J. Zhou, Y. Su, et al. 2016. Aqueous synthesized quantum dots interfere with the NF-κB pathway and confer anti-tumor, anti-viral and anti-inflammatory effects. Biomaterials 108:187–96. doi: 10.1016/j.biomaterials.2016.08.047.
  • Huang, C.-H., R.-L. Jan, C.-H. Kuo, Y.-T. Chu, W.-L. Wang, M.-S. Lee, H.-N. Chen, and C.-H. Hung. 2010a. Natural flavone kaempferol suppresses chemokines expression in human monocyte THP-1 cells through MAPK pathways. Journal of Food Science 75 (8):H254–259. doi: 10.1111/j.1750-3841.2010.01812.x.
  • Huang, W.-W., Y.-J. Chiu, M.-J. Fan, H.-F. Lu, H.-F. Yeh, K.-H. Li, P.-Y. Chen, J.-G. Chung, and J.-S. Yang. 2010b. Kaempferol induced apoptosis via endoplasmic reticulum stress and mitochondria-dependent pathway in human osteosarcoma U-2 OS cells. Molecular Nutrition & Food Research 54 (11):1585–95. doi: 10.1002/mnfr.201000005.
  • Jiang, H., L. Dong, F. Gong, Y. Gu, H. Zhang, D. Fan, and Z. Sun. 2018. Inflammatory genes are novel prognostic biomarkers for colorectal cancer. International Journal of Molecular Medicine 42 (1):368–80. doi: 10.3892/ijmm.2018.3631.
  • Joshi, C., J. Savai, A. Varghese, and N. Pandita. 2012. Development and validation of HPTLC method for simultaneous determination of quercetin and kaempferol in leaves of two chemotypes of Centella asiatica. Journal of Planar Chromatography – Modern TLC 25 (5):433–8. doi: 10.1556/JPC.25.2012.5.8.
  • Justesen, U., and P. Knuthsen. 2001. Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chemistry 73 (2):245–50. doi: 10.1016/S0308-8146(01)00114-5.
  • Kashafi, E., M. Moradzadeh, A. Mohamadkhani, and S. Erfanian. 2017. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 89:573–7. doi: 10.1016/j.biopha.2017.02.061.
  • Kayagaki, N., I. B. Stowe, B. L. Lee, K. O’Rourke, K. Anderson, S. Warming, T. Cuellar, B. Haley, M. Roose-Girma, Q. T. Phung, et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526 (7575):666–71. doi: 10.1038/nature15541.
  • Kim, B.-W., E.-R. Lee, H.-M. Min, H.-S. Jeong, J.-Y. Ahn, J.-H. Kim, H.-Y. Choi, H. Choi, E. Y. Kim, S. P. Park, et al. 2008. Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition. Cancer Biology & Therapy 7 (7):1080–9. doi: 10.4161/cbt.7.7.6164.
  • Kim, D. O., O. I. Padilla-Zakour, and P. D. Griffiths. 2006. Flavonoids and antioxidant capacity of various cabbage genotypes at juvenile stage. Journal of Food Science 69 (9):C685–C689. doi: 10.1111/j.1365-2621.2004.tb09916.x.
  • Kim, K.-N., S.-J. Heo, W.-J. Yoon, S.-M. Kang, G. Ahn, T.-H. Yi, and Y.-J. Jeon. 2010. Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-κB and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. European Journal of Pharmacology 649 (1–3):369–75. doi: 10.1016/j.ejphar.2010.09.032.
  • Kim, K.-N., Y.-J. Ko, H.-M. Yang, Y.-M. Ham, S. W. Roh, Y.-J. Jeon, G. Ahn, M.-C. Kang, W.-J. Yoon, D. Kim, et al. 2013. Anti-inflammatory effect of essential oil and its constituents from fingered citron (Citrus medica L. var. sarcodactylis) through blocking JNK, ERK and NF-κB signaling pathways in LPS-activated RAW 264.7 cells. Food and Chemical Toxicology 57:126–31. doi: 10.1016/j.fct.2013.03.017.
  • Kim, S. H., J. G. Park, G.-H. Sung, S. Yang, W. S. Yang, E. Kim, J. H. Kim, V. T. Ha, H. G. Kim, Y.-S. Yi, et al. 2015. Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain. Molecular Nutrition & Food Research 59 (7):1400–5. doi: 10.1002/mnfr.201400820.
  • Kim, S. H., K. A. Hwang, and K. C. Choi. 2016. Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. The Journal of Nutritional Biochemistry 28:70–82. doi: 10.1016/j.jnutbio.2015.09.027.
  • Kim, Y. A., Y. S. Tarahovsky, S. G. Gaidin, E. A. Yagolnik, and E. N. Muzafarov. 2017. Flavonoids determine the rate of fibrillogenesis and structure of collagen type I fibrils in vitro. International Journal of Biological Macromolecules 104 (Pt A):631–7. doi: 10.1016/j.ijbiomac.2017.06.070.
  • Kovalev, V., and L. Seraya. 1984. Flavonoids of Glycine nispida. Chemistry of Natural Compounds 20 (5):626–1246. doi: 10.1007/BF00580089.
  • Krauze-Baranowska, M., and W. Cisowski. 2001. Flavonoids from some species of the genus Cucumis. Biochemical Systematics and Ecology 29 (3):321–4. doi: 10.1016/S0305-1978(00)00053-3.
  • Kuo, W.-T., Y.-C. Tsai, H.-C. Wu, Y.-J. Ho, Y.-S. Chen, C.-H. Yao, and C.-H. Yao. 2015. Radiosensitization of non-small cell lung cancer by kaempferol. Oncology Reports 34 (5):2351–6. doi: 10.3892/or.2015.4204.
  • Leal, P. F., N. B. Maia, Q. A. C. Carmello, R. R. Catharino, M. N. Eberlin, and M. A. A. Meireles. 2008. Sweet basil (Ocimum basilicum) extracts obtained by supercritical fluid extraction (SFE): Global yields, chemical composition, antioxidant activity, and estimation of the cost of manufacturing. Food and Bioprocess Technology 1 (4):326–38. doi: 10.1007/s11947-007-0030-1.
  • Lee, H. S., and G. S. Jeong. 2021. Therapeutic effect of kaempferol on atopic dermatitis by attenuation of T cell activity via interaction with multidrug resistance-associated protein 1. British Journal of Pharmacology 178 (8):1772–88. doi: 10.1111/bph.15396.
  • Lee, I. H., and C. C. Chou. 2006. Distribution profiles of isoflavone isomers in black bean kojis prepared with various filamentous fungi. Journal of Agricultural and Food Chemistry 54 (4):1309–14. doi: 10.1021/jf058139m.
  • Lee, J., and J. H. Kim. 2016. Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS One 11 (5):e0155264. doi: 10.1371/journal.pone.0155264.
  • Lee, S., Y.-J. Kim, S. Kwon, Y. Lee, S. Y. Choi, J. Park, and H.-J. Kwon. 2009. Inhibitory effects of flavonoids on TNF-alpha-induced IL-8 gene expression in HEK 293 cells. BMB Reports 42 (5):265–70. doi: 10.5483/bmbrep.2009.42.5.265.
  • Lemos, C., G. J. Peters, G. Jansen, F. Martel, and C. Calhau. 2007. Modulation of folate uptake in cultured human colon adenocarcinoma Caco-2 cells by dietary compounds. European Journal of Nutrition 46 (6):329–36. doi: 10.1007/s00394-007-0670-y.
  • Li, B., Y. Xu, Y. X. Jin, Y. Y. Wu, and Y. Y. Tu. 2010. Response surface optimization of supercritical fluid extraction of kaempferol glycosides from tea seed cake. Industrial Crops and Products 32 (2):123–8. doi: 10.1016/j.indcrop.2010.04.002.
  • Li, C., J. Lyu, and Q. H. Meng. 2017. MiR-93 promotes tumorigenesis and metastasis of non-small cell lung cancer cells by activating the PI3K/Akt pathway via inhibition of LKB1/PTEN/CDKN1A. Journal of Cancer 8 (5):870–9. doi: 10.7150/jca.17958.
  • Li, C., X. Li, and J. S. Choi. 2009. Enhanced bioavailability of etoposide after oral or intravenous administration of etoposide with kaempferol in rats. Archives of Pharmacal Research 32 (1):133–8. doi: 10.1007/s12272-009-1127-z.
  • Li, H., H.-S. Ji, J.-H. Kang, D.-H. Shin, H.-Y. Park, M.-S. Choi, C.-H. Lee, I.-K. Lee, B.-S. Yun, T.-S. Jeong, et al. 2015. Soy leaf extract containing kaempferol glycosides and pheophorbides improves glucose homeostasis by enhancing pancreatic β-cell function and suppressing hepatic lipid accumulation in db/db mice. Journal of Agricultural and Food Chemistry 63 (32):7198–210. doi: 10.1021/acs.jafc.5b01639.
  • Lim, H., D. S. Min, H. Park, and H. P. Kim. 2018. Flavonoids interfere with NLRP3 inflammasome activation. Toxicology and Applied Pharmacology 355:93–102. doi: 10.1016/j.taap.2018.06.022.
  • Lin, F., X. Luo, A. Tsun, Z. Li, D. Li, and B. Li. 2015. Kaempferol enhances the suppressive function of Treg cells by inhibiting FOXP3 phosphorylation. International Immunopharmacology 28 (2):859–65. doi: 10.1016/j.intimp.2015.03.044.
  • Ling, Y. Y., P. S. Fun, A. Yeop, M. M. Yusoff, and J. Gimbun. 2019. Assessment of maceration, ultrasonic and microwave assisted extraction for total phenolic content, total flavonoid content and kaempferol yield from cassia alata via microstructures analysis. Materials Today: Proceedings 19:1273–9. doi: 10.1016/j.matpr.2019.11.133.
  • Liu, K., X. Wu, X. Zang, Z. Huang, Z. Lin, W. Tan, X. Wu, W. Hu, B. Li, L. Zhang, et al. 2017. TRAF4 regulates migration, invasion, and epithelial-mesenchymal transition via PI3K/AKT signaling in hepatocellular carcinoma. Oncology Research 25 (8):1329–40. doi: 10.3727/096504017X14876227286564.
  • Liu, Z. K., H. B. Xiao, and J. Fang. 2014. Anti-inflammatory properties of kaempferol via its inhibition of aldosterone signaling and aldosterone-induced gene expression. Canadian Journal of Physiology and Pharmacology 92 (2):117–23. doi: 10.1139/cjpp-2013-0298.
  • Liu, Z., X. Yao, B. Sun, W. Jiang, C. Liao, X. Dai, Y. Chen, J. Chen, and R. Ding. 2021. Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. Free Radical Biology & Medicine 168:142–54. doi: 10.1016/j.freeradbiomed.2021.03.037.
  • Liza, M. S., R. Abdul Rahman, B. Mandana, S. Jinap, A. Rahmat, I. S. M. Zaidul, and A. Hamid. 2010. Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca). Food and Bioproducts Processing 88 (2–3):319–26. doi: 10.1016/j.fbp.2009.02.001.
  • Lorenz, G., M. Lech, and H. J. Anders. 2017. Toll-like receptor activation in the pathogenesis of lupus nephritis. Clinical Immunology (Orlando, FL) 185:86–94. doi: 10.1016/j.clim.2016.07.015.
  • Luo, W., X. Chen, L. Ye, X. Chen, W. Jia, Y. Zhao, A. V. Samorodov, Y. Zhang, X. Hu, F. Zhuang, et al. 2021. Kaempferol attenuates streptozotocin-induced diabetic nephropathy by downregulating TRAF6 expression: The role of TRAF6 in diabetic nephropathy. Journal of Ethnopharmacology 268:113553. doi: 10.1016/j.jep.2020.113553.
  • MacGregor, J. T., and L. Jurd. 1978. Mutagenicity of plant flavonoids: Structural requirements for mutagenic activity in Salmonella typhimurium. Mutation Research 54 (3):297–309. doi: 10.1016/0165-1161(78)90020-1.
  • Mahat, M. Y. A., N. M. Kulkarni, S. L. Vishwakarma, F. R. Khan, B. S. Thippeswamy, V. Hebballi, A. A. Adhyapak, V. S. Benade, S. M. Ashfaque, S. Tubachi, et al. 2010. Modulation of the cyclooxygenase pathway via inhibition of nitric oxide production contributes to the anti-inflammatory activity of kaempferol. European Journal of Pharmacology 642 (1–3):169–76. doi: 10.1016/j.ejphar.2010.05.062.
  • Mamouni, K., S. Zhang, X. Li, Y. Chen, Y. Yang, J. Kim, M. G. Bartlett, I. M. Coleman, P. S. Nelson, O. Kucuk, et al. 2018. A novel flavonoid composition targets androgen receptor signaling and inhibits prostate cancer growth in preclinical models. Neoplasia (New York, NY) 20 (8):789–99. doi: 10.1016/j.neo.2018.06.003.
  • Martins, S., J. A. Teixeira, and S. I. Mussatto. 2013. Solid-state fermentation as a strategy to improve the bioactive compounds recovery from Larrea tridentata leaves. Applied Biochemistry and Biotechnology 171 (5):1227–39. doi: 10.1007/s12010-013-0222-2.
  • Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454 (7203):428–35. doi: 10.1038/nature07201.
  • Miean, K. H., and S. Mohamed. 2001. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. Journal of Agricultural and Food Chemistry 49 (6):3106–12. doi: 10.1021/jf000892m.
  • Mullen, W., C. A. Edwards, and A. Crozier. 2006. Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. The British Journal of Nutrition 96 (1):107–16. doi: 10.1079/bjn20061809.
  • Neurath, M. F., and M. Leppkes. 2019. Resolution of ulcerative colitis. Seminars in Immunopathology 41 (6):747–56. doi: 10.1007/s00281-019-00751-6.
  • Nielsen, S. E., M. Kall, U. Justesen, A. Schou, and L. O. Dragsted. 1997. Human absorption and excretion of flavonoids after broccoli consumption. Cancer Letters 114 (1–2):173–4. doi: 10.1016/S0304-3835(97)04654-5.
  • Oh, S. M., Y. P. Kim, and K. H. Chung. 2006. Biphasic effects of kaempferol on the estrogenicity in human breast cancer cells. Archives of Pharmacal Research 29 (5):354–62. doi: 10.1007/BF02968584.
  • Oliveira, E. J., D. G. Watson, and M. H. Grant. 2002. Metabolism of quercetin and kaempferol by rat hepatocytes and the identification of flavonoid glycosides in human plasma. Xenobiotica; The Fate of Foreign Compounds in Biological Systems 32 (4):279–87. doi: 10.1080/00498250110107886.
  • O’Neill, P. A., M. P. A. Davies, A. M. Shaaban, H. Innes, A. Torevell, D. R. Sibson, and C. S. Foster. 2004. Wild-type oestrogen receptor beta (ERbeta1) mRNA and protein expression in Tamoxifen-treated post-menopausal breast cancers. British Journal of Cancer 91 (9):1694–702. doi: 10.1038/sj.bjc.6602183.
  • Opipari, A., and L. Franchi. 2015. Role of inflammasomes in intestinal inflammation and Crohn’s disease. Inflammatory Bowel Diseases 21 (1):173–81. doi: 10.1097/MIB.0000000000000230.
  • Ozcan, C., and M. Yaman. 2013. Determination of kaempferol in rosa canina, urtica dioica, terebinthina chica and portulaca oleracea by HPLC-MS. Asian Journal of Chemistry 25 (17):9758–62. doi: 10.14233/ajchem.2013.15311.
  • Pahl, H. L. 1999. Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiological Reviews 79 (3):683–701. doi: 10.1152/physrev.1999.79.3.683.
  • Pang, J. L., D. A. Ricupero, S. Huang, N. Fatma, D. P. Singh, J. R. Romero, and N. Chattopadhyay. 2006. Differential activity of kaempferol and quercetin in attenuating tumor necrosis factor receptor family signaling in bone cells. Biochemical Pharmacology 71 (6):818–26. doi: 10.1016/j.bcp.2005.12.023.
  • Park, M. Y., G. E. Ji, and M. K. Sung. 2012. Dietary kaempferol suppresses inflammation of dextran sulfate sodium-induced colitis in mice. Digestive Diseases and Sciences 57 (2):355–63. doi: 10.1007/s10620-011-1883-8.
  • Poma, P. 2020. NF-kappaB and disease. International Journal of Molecular Sciences. 21: 9181.
  • Powell, W. S., and J. Rokach. 2015. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochimica et Biophysica Acta 1851 (4):340–55. doi: 10.1016/j.bbalip.2014.10.008.
  • Qin, N., Y. Chen, M.-N. Jin, C. Zhang, W. Qiao, X.-L. Yue, H.-Q. Duan, and W.-Y. Niu. 2016a. Anti-obesity and anti-diabetic effects of flavonoid derivative (Fla-CN) via microRNA in high fat diet induced obesity mice. European Journal of Pharmaceutical Sciences 82:52–63. doi: 10.1016/j.ejps.2015.11.013.
  • Qin, Y., W. Cui, X. Yang, and B. Tong. 2016b. Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo. Acta Biochimica et Biophysica Sinica 48 (3):238–45. doi: 10.1093/abbs/gmv133.
  • Qiu, W., J. Lin, Y. Zhu, J. Zhang, L. Zeng, M. Su, and Y. Tian. 2017. Kaempferol modulates DNA methylation and downregulates DNMT3B in bladder cancer. Cellular Physiology and Biochemistry 41 (4):1325–35. doi: 10.1159/000464435.
  • Rajendran, P., T. Rengarajan, N. Nandakumar, R. Palaniswami, Y. Nishigaki, and I. Nishigaki. 2014. Kaempferol, a potential cytostatic and cure for inflammatory disorders. European Journal of Medicinal Chemistry 86:103–12. doi: 10.1016/j.ejmech.2014.08.011.
  • Ravishankar, D., A. K. Rajora, F. Greco, and H. M. Osborn. 2013. Flavonoids as prospective compounds for anti-cancer therapy. The International Journal of Biochemistry & Cell Biology 45 (12):2821–31. doi: 10.1016/j.biocel.2013.10.004.
  • Riahi-Chebbi, I., S. Souid, H. Othman, M. Haoues, H. Karoui, A. Morel, N. Srairi-Abid, M. Essafi, and K. Essafi-Benkhadir. 2019. The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Scientific Reports 9 (1):195. doi: 10.1038/s41598-018-36808-z.
  • Schett, G. 2019. Resolution of inflammation in arthritis. Seminars in Immunopathology 41 (6):675–9. doi: 10.1007/s00281-019-00768-x.
  • Schmitt, H., C. Neufert, M. F. Neurath, and R. Atreya. 2019. Resolution of Crohn’s disease. Seminars in Immunopathology 41 (6):737–46. doi: 10.1007/s00281-019-00756-1.
  • Schneider, H., and M. Blaut. 2000. Anaerobic degradation of flavonoids by Eubacterium ramulus. Archives of Microbiology 173 (1):71–5. doi: 10.1007/s002030050010.
  • Shakya, G., S. Manjini, M. Hoda, and R. Rajagopalan. 2014. Hepatoprotective role of kaempferol during alcohol- and ΔPUFA-induced oxidative stress. Journal of Basic and Clinical Physiology and Pharmacology 25 (1):73–9. doi: 10.1515/jbcpp-2013-0051.
  • Sharma, A. R., and J. S. Nam. 2019. Kaempferol stimulates WNT/β-catenin signaling pathway to induce differentiation of osteoblasts. The Journal of Nutritional Biochemistry 74:108228. doi: 10.1016/j.jnutbio.2019.108228.
  • Sharma, D., P. Gondaliya, V. Tiwari, and K. Kalia. 2019. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory signalling. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 109:1610–9. doi: 10.1016/j.biopha.2018.10.195.
  • Sharma, D., R. Kumar Tekade, and K. Kalia. 2020. Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: An in vitro and in vivo study in diabetic nephropathy mice model. Phytomedicine 76:153235. doi: 10.1016/j.phymed.2020.153235.
  • Somsak, V., A. Damkaew, and P. Onrak. 2018. Antimalarial activity of kaempferol and its combination with chloroquine in Plasmodium berghei infection in mice. Journal of Pathogens 2018:1–7. doi: 10.1155/2018/3912090.
  • Song, H., J. Bao, Y. Wei, Y. Chen, X. Mao, J. Li, Z. Yang, and Y. Xue. 2015. Kaempferol inhibits gastric cancer tumor growth: An in vitro and in vivo study. Oncology Reports 33 (2):868–74. doi: 10.3892/or.2014.3662.
  • Song, W., Q. Dang, D. Xu, Y. Chen, G. Zhu, K. Wu, J. Zeng, Q. Long, X. Wang, D. He, et al. 2014. Kaempferol induces cell cycle arrest and apoptosis in renal cell carcinoma through EGFR/p38 signaling. Oncology Reports 31 (3):1350–6. doi: 10.3892/or.2014.2965.
  • Sonoki, H., A. Tanimae, S. Endo, T. Matsunaga, T. Furuta, K. Ichihara, and A. Ikari. 2017. Kaempherol and luteolin decrease claudin-2 expression mediated by inhibition of STAT3 in lung adenocarcinoma A549 cells. Nutrients 9 (6):597. doi: 10.3390/nu9060597.
  • Suchal, K., S. Malik, S. I. Khan, R. K. Malhotra, S. N. Goyal, J. Bhatia, et al. 2017. Molecular pathways involved in the amelioration of myocardial injury in diabetic rats by kaempferol. International Journal of Molecular Sciences 18: 1001.
  • Takanashi, H., S. Aiso, I. Hirono, T. Matsushima, and T. Sugimura. 1983. Carcinogenicity test of quercetin and kaempferol in rats by oral-administration. Journal of Food Safety 5 (2):55–60. doi: 10.1111/j.1745-4565.1983.tb00455.x.
  • Tameire, F., I. I. Verginadis, and C. Koumenis. 2015. Cell intrinsic and extrinsic activators of the unfolded protein response in cancer: Mechanisms and targets for therapy. Seminars in Cancer Biology 33:3–15. doi: 10.1016/j.semcancer.2015.04.002.
  • Tang, X.-L., J.-X. Liu, W. Dong, P. Li, L. Li, J.-C. Hou, Y.-Q. Zheng, C.-R. Lin, and J.-G. Ren. 2015. Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts. Inflammation 38 (1):94–101. doi: 10.1007/s10753-014-0011-2.
  • Thangavel, P., B. Viswanath, and S. Kim. 2018. Synthesis and characterization of kaempferol-based ruthenium (II) complex: A facile approach for superior anticancer application. Materials Science & Engineering C 89:87–94. doi: 10.1016/j.msec.2018.03.020.
  • Tohge, T., L. P. de Souza, and A. R. Fernie. 2017. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. Journal of Experimental Botany 68 (15):4013–28. doi: 10.1093/jxb/erx177.
  • Tolonen, M., M. Taipale, B. Viander, J. M. Pihlava, H. Korhonen, and E. L. Ryhanen. 2002. Plant-derived biomolecules in fermented cabbage. Journal of Agricultural and Food Chemistry 50 (23):6798–803. doi: 10.1021/jf0109017.
  • Tsai, M.-S., Y.-H. Wang, Y.-Y. Lai, H.-K. Tsou, G.-G. Liou, J.-L. Ko, and S.-H. Wang. 2018. Kaempferol protects against propacetamol-induced acute liver injury through CYP2E1 inactivation, UGT1A1 activation, and attenuation of oxidative stress, inflammation and apoptosis in mice. Toxicology Letters 290:97–109. doi: 10.1016/j.toxlet.2018.03.024.
  • Tu, L. Y., J. Pi, H. Jin, J. Y. Cai, and S. P. Deng. 2016. Synthesis, characterization and anticancer activity of kaempferol-zinc(II) complex. Bioorganic & Medicinal Chemistry Letters 26 (11):2730–4. doi: 10.1016/j.bmcl.2016.03.091.
  • Varshney, R., S. Gupta, and P. Roy. 2017. Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic β-cell death through modulation of autophagy via AMPK/mTOR signaling pathway. Molecular and Cellular Endocrinology 448:1–20. doi: 10.1016/j.mce.2017.02.033.
  • Velasco, P., M. Francisco, D. A. Moreno, F. Ferreres, C. Garcia-Viguera, and M. E. Cartea. 2011. Phytochemical fingerprinting of vegetable Brassica oleracea and Brassica napus by simultaneous identification of glucosinolates and phenolics. Phytochemical Analysis: PCA 22 (2):144–52. doi: 10.1002/pca.1259.
  • Walton, T. J., G. Li, R. Seth, S. E. McArdle, M. C. Bishop, and R. C. Rees. 2008. DNA demethylation and histone deacetylation inhibition co-operate to re-express estrogen receptor beta and induce apoptosis in prostate cancer cell-lines. The Prostate 68 (2):210–22. doi: 10.1002/pros.20673.
  • Wang, C. C., S. C. Chang, B. S. Inbaraj, and B. H. Chen. 2010. Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chemistry 120 (1):184–92. doi: 10.1016/j.foodchem.2009.10.005.
  • Wang, H., M. Gao, and J. Wang. 2013. Kaempferol inhibits cancer cell growth by antagonizing estrogen-related receptor α and γ activities. Cell Biology International 37 (11):1190–6. doi: 10.1002/cbin.10152.
  • Wang, L., Q. Mei, and D. Wan. 2014a. Simultaneous determination by HPLC of quercetin and kaempferol in three Sedum medicinal plants harvested in different seasons. Journal of Chromatographic Science 52 (4):334–8. doi: 10.1093/chromsci/bmt035.
  • Wang, M., J. Sun, Z. Jiang, W. Xie, and X. Zhang. 2015. Hepatoprotective effect of kaempferol against alcoholic liver injury in mice. The American Journal of Chinese Medicine 43 (2):241–54. doi: 10.1142/S0192415X15500160.
  • Wang, T. K., Y. D. Yang, B. Du, S. Yu, and W. L. Hou. 2014b. Simultaneous determination of gallic acid, protocatechuic acid, catechin, epicatechin, quercetin and kaempferol in Chinese chestnut (Castanea mollissima blume) kernel by high-performance liquid chromatography with diode array detection. Acta Chromatographica 26 (3):539–50. doi: 10.1556/AChrom.26.2014.3.11.
  • Westra, J., P. C. Limburg, P. de Boer, and M. H. van Rijswijk. 2004. Effects of RWJ 67657, a p38 mitogen activated protein kinase (MAPK) inhibitor, on the production of inflammatory mediators by rheumatoid synovial fibroblasts. Annals of the Rheumatic Diseases 63 (11):1453–9. doi: 10.1136/ard.2003.013011.
  • Wildner, G., and M. Diedrichs-Mohring. 2019. Resolution of uveitis. Seminars in Immunopathology 41 (6):727–36. doi: 10.1007/s00281-019-00758-z.
  • Winkel-Shirley, B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126 (2):485–93. doi: 10.1104/pp.126.2.485.
  • Winkel-Shirley, B. 2002. Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology 5 (3):218–23. doi: 10.1016/S1369-5266(02)00256-X.
  • Wong, S. K., K. Y. Chin, and S. Ima-Nirwana. 2019. The osteoprotective effects of kaempferol: The evidence from in vivo and in vitro studies. Drug Design, Development and Therapy 13:3497–514. doi: 10.2147/DDDT.S227738.
  • Wu, L.-Y., H.-F. Lu, Y.-C. Chou, Y.-L. Shih, D.-T. Bau, J.-C. Chen, S.-C. Hsu, and J.-G. Chung. 2015. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells. The American Journal of Chinese Medicine 43 (2):365–82. doi: 10.1142/S0192415X1550024X.
  • Wu, P., X. Meng, H. Zheng, Q. Zeng, T. Chen, W. Wang, X. Zhang, and J. Su. 2018. Kaempferol attenuates ROS-induced hemolysis and the molecular mechanism of its induction of Apoptosis on bladder cancer. Molecules (Basel, Switzerland) 23 (10):2592. doi: 10.3390/molecules23102592.
  • Xu, X. H., C. Zhao, Q. Peng, P. Xie, and Q. H. Liu. 2017. Kaempferol inhibited VEGF and PGF expression and in vitro angiogenesis of HRECs under diabetic-like environment. Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas 50 (3):e5396. doi: 10.1590/1414-431X20165396.
  • Yang, C., W. Yang, Z. He, J. Guo, X. Yang, R. Wang, and H. Li. 2021. Kaempferol alleviates oxidative stress and apoptosis through mitochondria-dependent pathway during lung ischemia-reperfusion injury. Frontiers in Pharmacology 12:624402. doi: 10.3389/fphar.2021.624402.
  • Yao, S., X. Wang, C. Li, T. Zhao, H. Jin, and W. Fang. 2016. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway. Tumour Biology 37 (8):10247–56. doi: 10.1007/s13277-016-4912-6.
  • Yedidia, I., K. Schultz, A. Golan, H. E. Gottlieb, and Z. Kerem. 2019. Structural elucidation of three novel kaempferol O-tri-glycosides that are involved in the defense response of hybrid ornithogalum to pectobacterium carotovorum. Molecules (Basel, Switzerland) 24 (16):2910. doi: 10.3390/molecules24162910.
  • Yoon, H.-Y., E.-G. Lee, H. Lee, I. J. Cho, Y. J. Choi, M.-S. Sung, H.-G. Yoo, and W.-H. Yoo. 2013. Kaempferol inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of COX-2, PGE2 and MMPs. International Journal of Molecular Medicine 32 (4):971–7. doi: 10.3892/ijmm.2013.1468.
  • Yoshida, T., G. Zhang, and E. B. Haura. 2010. Targeting epidermal growth factor receptor: Central signaling kinase in lung cancer. Biochemical Pharmacology 80 (5):613–23. doi: 10.1016/j.bcp.2010.05.014.
  • Yu, L., C. Chen, L.-F. Wang, X. Kuang, K. Liu, H. Zhang, and J.-R. Du. 2013. Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation by inhibiting the activation of NF-κB and STAT3 in transient focal stroke. PLoS One 8 (2):e55839. doi: 10.1371/journal.pone.0055839.
  • Yuan, P., X. Sun, X. Liu, G. Hutterer, K. Pummer, B. Hager, Z. Ye, and Z. Chen. 2021. Kaempferol alleviates calcium oxalate crystal-induced renal injury and crystal deposition via regulation of the AR/NOX2 signaling pathway. Phytomedicine 86:153555. doi: 10.1016/j.phymed.2021.153555.
  • Zang, Y. Q., L. P. Zhang, K. Igarashi, and C. Q. Yu. 2015. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food & Function 6 (3):834–41. doi: 10.1039/c4fo00844h.
  • Zhao, C., X. Ren, C. Li, H. Jiang, J. Guan, W. Su, Y. Li, Y. Tian, T. Wang, S. Li, et al. 2019. Coupling ultrasound with heat-reflux to improve the extraction of quercetin, kaempferol, ginkgetin and sciadopitysin from Mairei Yew Leaves. Applied Sciences-Basel 9 (4):795. doi: 10.3390/app9040.
  • Zhou, B., Z. Jiang, X. Li, and X. Zhang. 2018. Kaempferol’s protective effect on ethanol-induced mouse primary hepatocytes injury involved in the synchronous inhibition of SP1, Hsp70 and CYP2E1. The American Journal of Chinese Medicine 46 (5):1093–110. doi: 10.1142/S0192415X1850057X.
  • Zhu, G., X. Liu, H. Li, Y. Yan, X. Hong, and Z. Lin. 2018. Kaempferol inhibits proliferation, migration, and invasion of liver cancer HepG2 cells by down-regulation of microRNA-21. International Journal of Immunopathology and Pharmacology 32:205873841881434. doi: 10.1177/2058738418814341.
  • Zhu, X. Y., H. M. Lin, X. Chen, J. Xie, and P. Wang. 2011. Mechanochemical-assisted extraction and antioxidant activities of kaempferol glycosides from Camellia oleifera Abel. meal. Journal of Agricultural and Food Chemistry 59 (8):3986–93. doi: 10.1021/jf1042689.
  • Zhuang, Z., G. Ye, and B. Huang. 2017. Kaempferol alleviates the interleukin-1β-induced inflammation in rat osteoarthritis chondrocytes via suppression of NF-κB. Medical Science Monitor 23:3925–31. doi: 10.12659/msm.902491.
  • Zia-Ul-Haq, M., M. Riaz, V. De Feo, H. Z. Jaafar, and M. Moga. 2014. Rubus fruticosus L.: Constituents, biological activities and health related uses. Molecules 19 (8):10998–1029. doi: 10.3390/molecules190810998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.