3,560
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

The potential role of Piper guineense (black pepper) in managing geriatric brain aging: a review

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdul Manap, A. S. A., A. C. W. Tan, W. H. Leong, A. Y. Y. Chia, S. Vijayabalan, A. Arya, E. H. Wong, F. Rizwan, U. Bindal, S. Koshy, et al. 2019. Synergistic effects of curcumin and piperine as potent acetylcholine and amyloidogenic inhibitors with significant neuroprotective activity in sh-sy5y cells via computational molecular modeling and in vitro assay. Frontiers in Aging Neuroscience 11 (206):1–17. doi: 10.3389/fnagi.2019.00206.
  • Adewusi, E. A., and V. Steenkamp. 2011. In vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from southern Africa. Asian Pacific Journal of Tropical Medicine 4 (10):829–35. doi: 10.1016/S1995-7645(11)60203-4.
  • Alexopoulos, G. S. 2019. Mechanisms and treatment of late-life depression. Translational Psychiatry 9 (1):188. doi: 10.1038/s41398-019-0514-6.
  • Aluko, R. E. 2021. Food-derived acetylcholinesterase inhibitors as potential agents against Alzheimer’s Disease. EFood. doi: 10.2991/efood.k.210318.001.
  • Alzheimer’s Association. 2020. What is Alzheimer’s disease? Symptoms and causes | alz.org. Alzheimer’s Association. https://www.alz.org/alzheimers-dementia/what-is-alzheimers
  • Amadioha, A. C., and K. P. Chidi. 2019. Phytochemical Composition of aqueous and ethanolic leaf extracts of Piper guineense, Cassia alata, Tagetes erecta and Ocimum graticimum. Journal of Pharmaceutical Research International 26 (3):1–8. doi: 10.9734/jpri/2019/v26i330136.
  • Anyanwu, C. U., and G. C. Nwosu. 2014. Assessment of the antimicrobial activity of aqueous and ethanolic extracts of Piper guineense leaves. Journal of Medicinal Plants Research 8 (10):436–40. doi: 10.5897/JMPR12.976.
  • Ash, P. E., T. E. Vanderweyde, K. L. Youmans, D. J. Apicco, and B. Wolozin. 2014. Pathological stress granules in Alzheimer’s disease. Brain Research 1584:52–8. doi: 10.1016/j.brainres.2014.05.052.
  • Benazzouz, A., O. Mamad, P. Abedi, R. Bouali-Benazzouz, and J. Chetrit. 2014. Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease. Frontiers in Aging Neuroscience 6:87. doi: 10.3389/fnagi.2014.00087.
  • Buigues, C., C. Padilla-Sánchez, J. Fernández Garrido, R. Navarro-Martínez, V. Ruiz-Ros, and O. Cauli. 2015. The relationship between depression and frailty syndrome: A systematic review. Aging and Mental Health 19 (9):762–72. doi: 10.1080/13607863.2014.967174.
  • Butt, M. S., I. Pasha, M. T. Sultan, M. A. Randhawa, F. Saeed, and W. Ahmed. 2013. Black pepper and health claims: A comprehensive treatise. Critical Reviews in Food Science and Nutrition 53 (9):875–86. doi: 10.1080/10408398.2011.571799.
  • Butterfield, D. A., and D. Boyd-Kimball. 2018. Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer’s disease. Journal of Alzheimer’s Disease: JAD 62 (3):1345–67. doi: 10.3233/JAD-170543.
  • Cahyono, B., Hasanah, E. F. Judiono, Suzery, and M. Widayat. 2019. Analysis of piperine content in cabe jawa extracts (Piper retrofractum Vahl) using UV spectrophotometry and HPLC. IOP Conference Series: Materials Science and Engineering 509 (012025):1–5. doi: 10.1088/1757-899X/509/1/012025.
  • Cai, Z., B. Zhao, and A. Ratka. 2011. Oxidative stress and β-amyloid protein in Alzheimer’s disease. Neuromolecular Medicine 13 (4):223–50. doi: 10.1007/s12017-011-8155-9.
  • Chang, K. H., and C. M. Chen. 2020. The role of oxidative stress in Parkinson’s disease. In Antioxidants 9 (7). doi: 10.3390/antiox9070597.
  • Cheignon, C., M. Tomas, D. Bonnefont-Rousselot, P. Faller, C. Hureau, and F. Collin. 2018. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biology 14:450–64. doi: 10.1016/j.redox.2017.10.014.
  • Chen, X., and W. Pan. 2015. The treatment strategies for neurodegenerative diseases by integrative medicine. Integrative Medicine International 1 (4):223–5. doi: 10.1159/000381546.
  • Chinta, S. J., G. Woods, A. Rane, M. Demaria, J. Campisi, and J. K. Andersen. 2015. Cellular senescence and the aging brain. Experimental Gerontology 68:3–7. doi: 10.1016/j.exger.2014.09.018.
  • Choi, S.-H., R. Lee, S. M. Nam, D.-G. Kim, I.-H. Cho, H.-C. Kim, Y. Cho, H. Rhim, and S.-Y. Nah. 2021. Ginseng gintonin, aging societies, and geriatric brain diseases. Integrative Medicine Research 10 (1):100450. doi: 10.1016/j.imr.2020.100450.
  • Chonpathompikunlert, P., J. Wattanathorn, and S. Muchimapura. 2010. Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 48 (3):798–302. doi: 10.1016/j.fct.2009.12.009.
  • Correia, A., A. Cruz, A. Aquino, J. Diniz, K. Santana, P. Cidade, J. Peixoto, D. Lucetti, M. Nobre, G. Cruz, et al. 2015. Neuroprotective effects of piperine, an alkaloid from the Piper genus, on the Parkinson’s disease model in rats. Journal of Neurology and Therapeutics 1 (1):1–8. doi: 10.14312/2397-1304.2015-1.
  • Dams-O’Connor, K., G. Guetta, A. E. Hahn-Ketter, and A. Fedor. 2016. Traumatic brain injury as a risk factor for Alzheimer’s disease: Current knowledge and future directions. NNeurodegenerative disease management 6 (5):417–29. doi: 10.2217/nmt-2016-0017.
  • Dias, V., E. Junn, and M. M. Mouradian. 2013. The role of oxidative stress in Parkinson’s disease. Journal of Parkinson’s Disease 3 (4):461–91. doi: 10.3233/JPD-130230.
  • Doria, M., L. Maugest, T. Moreau, G. Lizard, and A. Vejux. 2016. Contribution of cholesterol and oxysterols to the pathophysiology of Parkinson’s disease. Free Radical Biology & Medicine 101:393–400. doi: 10.1016/j.freeradbiomed.2016.10.008.
  • dos Santos, É. R. Q., C. S. F. Maia, E. A. Fontes Junior, A. S. Melo, B. G. Pinheiro, and J. G. S. Maia. 2018. Linalool-rich essential oils from the Amazon display antidepressant-type effect in rodents. Journal of Ethnopharmacology 212:43–9. doi: 10.1016/j.jep.2017.10.013.
  • Esopenko, C., and B. Levine. 2015. Aging, neurodegenerative disease, and traumatic brain injury: The role of neuroimaging. Journal of Neurotrauma 32 (4):209–20. doi: 10.1089/neu.2014.3506.
  • Ezenobi, U. V., F. J. Amaku, and C. Agbidi. 2016. Phytochemical, proximate, minerals and vitamin composition of Monodora myristica Piper Guineese seeds. Research Journal of Science and Technology 8 (4):209. doi: 10.5958/2349-2988.2016.00031.0.
  • Farooqui, T., and A. A. Farooqui. 2011. Lipid-mediated oxidative stress and inflammation in the pathogenesis of Parkinson’s disease. Parkinson’s Disease 2011:247467. doi: 10.4061/2011/247467.
  • Fenga, C., S. Gangemi, A. Alibrandi, C. Costa, and E. Micali. 2016. Relationship between lead exposure and mild cognitive impairment. Journal of Preventive Medicine and Hygiene 57 (4):E205–E210. doi: 10.15167/2421-4248/jpmh2016.57.4.514.
  • Grossman, E. 2014. Time after time: Environmental influences on the aging brain. Environmental Health Perspectives 122 (9):A238–A243. doi: 10.1289/ehp.122-A238.
  • Haq, I. U., M. Imran, M. Nadeem, T. Tufail, T. A. Gondal, and M. S. Mubarak. 2021. Piperine: A review of its biological effects. Phytotherapy Research: PTR 35 (2):680–700. doi: 10.1002/ptr.6855.
  • Harshita, J., J. Prateek, A. Bharti, and A. Dheeraj. 2015. Ameliorating effect of piperine on NO-cGMP pathway in stress induced depression. Science, Technology and Arts Research Journal 4 (1):109. doi: 10.4314/star.v4i1.18.
  • Hogan, D. B., P. Bailey, S. Black, A. Carswell, H. Chertkow, B. Clarke, C. Cohen, J. D. Fisk, D. Forbes, M. Man-Son-Hing, et al. 2008. Diagnosis and treatment of dementia: 5. Nonpharmacologic and pharmacologic therapy for mild to moderate dementia. CMAJ 179 (10):1019–1026. doi: 10.1503/cmaj.081103.
  • Hritcu, L., J. A. Noumedem, O. Cioanca, M. Hancianu, V. Kuete, and M. Mihasan. 2014. Methanolic extract of Piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid beta(1-42) rat model of Alzheimer’s disease . Cellular and Molecular Neurobiology 34 (3):437–49. doi: 10.1007/s10571-014-0028-y.
  • Hritcu, L., J. A. Noumedem, O. Cioanca, M. Hancianu, P. Postu, and M. Mihasan. 2015. Anxiolytic and antidepressant profile of the methanolic extract of Piper nigrum fruits in beta-amyloid (1-42) rat model of Alzheimer’s disease . Behavioral and Brain Functions: BBF 11 (1):13. doi: 10.1186/s12993-015-0059-7.
  • Hu, Y., H. B. Liao, P. Liu, D. H. Guo, and Y. Y. Wang. 2009. [Antidepressant effects of piperine and its neuroprotective mechanism in rats] . Zhong xi yi Jie he Xue Bao = Journal of Chinese Integrative Medicine 7 (7):667–70. doi: 10.3736/jcim20090712.
  • Huang, W., Z. Chen, Q. Wang, M. Lin, S. Wu, Q. Yan, F. Wu, X. Yu, X. Xie, G. Li, et al. 2013. Piperine potentiates the antidepressant-like effect of trans-resveratrol: Involvement of monoaminergic system. Metabolic Brain Disease 28 (4):585–95. doi: 10.1007/s11011-013-9426-y.
  • Imo, C., O. E. Yakubu, N. G. Imo, I. S. Udegbun, S. V. Tatah, and O. J. Onukwug. 2018. Proximate, mineral and phytochemical composition of Piper guineense seeds and leaves. Journal of Biological Sciences 18 (7):329–37. doi: 10.3923/jbs.2018.329.337.
  • Isikhuemen, E. M., B. O. Ogbomwan, and I. U. Efenudu. 2020. Evaluation of phytochemical and mineral constituents of Piper guineense Schum. and Thonn. and Piper umbellatum Linn: Implications for ethnomedicine. European Journal of Medicinal Plants 31 (1):84–97. doi: 10.9734/ejmp/2020/v31i130209.
  • Khom, S., B. Strommer, A. Schöffmann, J. Hintersteiner, I. Baburin, T. Erker, T. Schwarz, C. Schwarzer, J. Zaugg, M. Hamburger, et al. 2013. GABAA receptor modulation by piperine and a non-TRPV1 activating derivative. Biochemical Pharmacology 85 (12):1827–36. doi: 10.1016/j.bcp.2013.04.017.
  • Kouli, A., K. M. Torsney, and W.-L. Kuan. 2018. Parkinson’s disease: Etiology, neuropathology, and pathogenesis. Parkinson’s Disease: Pathogenesis and Clinical Aspects. Brisbane (AU): Codon Publications. doi: 10.15586/codonpublications.parkinsonsdisease.2018.ch1.
  • Kouti, L., M. Noroozian, S. Akhondzadeh, M. Abdollahi, M. R. Javadi, M. A. Faramarzi, S. Mousavi, and P. Ghaeli. 2013. Nitric oxide and peroxynitrite serum levels in Parkinson’s disease: Correlastion of oxidative stress and the severity of the disease. European Review for Medical and Pharmacological Sciences 17 (7):964–70.
  • Kumar Thakur, A., P. Kamboj, K. Goswami, and K. Ahuja. 2018. Pathophysiology and management of Alzheimer’s disease: An overview. Journal of Analytical & Pharmaceutical Research 7 (2):226–35. doi: 10.15406/japlr.2018.07.00230.
  • Kwak, Y. T., Y. Yang, and M.-S. Koo. 2017. Anxiety in dementia. Dementia and Neurocognitive Disorders 16 (2):33–9. doi: 10.12779/dnd.2017.16.2.33.
  • Laks, J., and E. Engelhardt. 2010. Peculiarities of geriatric psychiatry: A focus on aging and depression. CNS Neuroscience and Therapeutics 16 (6):374–79. doi: 10.1111/j.1755-5949.2010.00196.x.
  • Lee, J. G., Y. Chae, Y. Shin, and Y. J. Kim. 2020. Chemical composition and antioxidant capacity of black pepper pericarp. Applied Biological Chemistry 63 (1):1–9. doi: 10.1186/s13765-020-00521-1.
  • Lee, J. J. 2019. Pharmacological treatment in Parkinson’s disease. Journal of the Korean Neurological Association 37 (4):335–44. doi: 10.17340/jkna.2019.4.1.
  • Li, G., L. Ruan, R. Chen, R. Wang, X. Xie, M. Zhang, L. Chen, Q. Yan, M. Reed, J. Chen, et al. 2015. Synergistic antidepressant-like effect of ferulic acid in combination with piperine: Involvement of monoaminergic system. Metabolic Brain Disease 30 (6):1505–14. doi: 10.1007/s11011-015-9704-y.
  • Li, S., C. Wang, M. Wang, W. Li, K. Matsumoto, and Y. Tang. 2007. Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms . Life Sciences 80 (15):1373–81. doi: 10.1016/j.lfs.2006.12.027.
  • Liu, J., M. Chen, X. Wang, Y. Wang, C. Duan, G. Gao, L. Lu, X. Wu, X. Wang, and H. Yang. 2016. Piperine induces autophagy by enhancing protein phosphotase 2A activity in a rotenone-induced Parkinson’s disease model. Oncotarget 7 (38):60823–43. doi: 10.18632/oncotarget.11661.
  • Luca, S. V., M. Minceva, J. Gertsch, and K. Skalicka-Woźniak. 2021. LC-HRMS/MS-based phytochemical profiling of Piper spices: Global association of piperamides with endocannabinoid system modulation. Food Research International (Ottawa, Ont.) 141:110123. doi: 10.1016/j.foodres.2021.110123.
  • Magi, S., P. Castaldo, M. L. MacRi, M. Maiolino, A. Matteucci, G. Bastioli, S. Gratteri, S. Amoroso, and V. Lariccia. 2016. Intracellular calcium dysregulation: Implications for Alzheimer’s disease. BioMed Research International 2016:6701324. doi: 10.1155/2016/6701324.
  • Mao, Q. Q., Z. Huang, X. M. Zhong, Y. F. Xian, and S. P. Ip. 2014a. Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice. Behavioural Brain Research 261:140–5. doi: 10.1016/j.bbr.2013.12.020.
  • Mao, Q. Q., Z. Huang, X. M. Zhong, Y. F. Xian, and S. P. Ip. 2014b. Piperine reverses the effects of corticosterone on behavior and hippocampal BDNF expression in mice. Neurochemistry International 74:36–41. doi: 10.1016/j.neuint.2014.04.017.
  • Martorell, P., E. Bataller, S. Llopis, N. Gonzalez, B. Álvarez, F. Montón, P. Ortiz, D. Ramón, and S. Genovés. 2013. A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity. PLoS ONE 8 (5):e63283. doi: 10.1371/journal.pone.0063283.
  • Mattson, M. P., and T. V. Arumugam. 2018. Hallmarks of brain aging: Adaptive and pathological modification by metabolic states. Cell Metabolism 27 (6):1176–99. doi: 10.1016/j.cmet.2018.05.011.
  • Mirmosayyeb, O., A. Tanhaei, H. R. Sohrabi, R. N. Martins, M. Tanhaei, M. A. Najafi, A. Safaei, and R. Meamar. 2017. Possible role of common spices as a preventive and therapeutic agent for Alzheimer’s disease. International Journal of Preventive Medicine 8:5. doi: 10.4103/2008-7802.199640.
  • Montiel, T., R. Quiroz-Baez, L. Massieu, and C. Arias. 2006. Role of oxidative stress on beta-amyloid neurotoxicity elicited during impairment of energy metabolism in the hippocampus: Protection by antioxidants . Experimental Neurology 200 (2):496–508. doi: 10.1016/j.expneurol.2006.02.126.
  • Nazifi, M., S. Oryan, D. E. Esfahani, and M. Ashrafpoor. 2021. The functional effects of piperine and piperine plus donepezil on hippocampal synaptic plasticity impairment in rat model of Alzheimer’s disease. Life Sciences 265:118802. doi: 10.1016/j.lfs.2020.118802.
  • Nikhra, V. 2017. The aging brain: Recent research and concepts. Gerontology & Geriatrics Studies 1 (3):1–11. doi: 10.31031/GGS.2017.01.000511.
  • Ogbunugafor, H. A., C. G. Ugochukwu, and A. E. Kyrian-Ogbonna. 2017. The role of spices in nutrition and health: A review of three popular spices used in Southern Nigeria. Food Quality and Safety 1 (3):171–85. doi: 10.1093/fqsafe/fyx020.
  • Oyemitan, I. A., F. Kolawole, and A. O. Oyedeji. 2014. Acute toxicity, antinociceptive and anti-inflammatory activity of the essential oil of fresh fruits of Piper guineense Schum Thonn (Piperaceae) in rodents. Journal of Medicinal Plants Research 8 (40):1191–7. doi: 10.5897/JMPR2014.5639.
  • Oyemitan, I. A., O. A. Olayera, A. Alabi, L. A. Abass, C. A. Elusiyan, A. O. Oyedeji, and M. A. Akanmu. 2015. Psychoneuropharmacological activities and chemical composition of essential oil of fresh fruits of Piper guineense (Piperaceae) in mice. Journal of Ethnopharmacology 166:240–9. doi: 10.1016/j.jep.2015.03.004.
  • Penninx, B. W. J. H. 2017. Depression and cardiovascular disease: Epidemiological evidence on their linking mechanisms. Neuroscience and Biobehavioral Reviews (74 part B):277–86. doi: 10.1016/j.neubiorev.2016.07.003.
  • Peters, R. 2006. Ageing and the brain. Postgraduate Medical Journal 82 (964):84–8. doi: 10.1136/pgmj.2005.036665.
  • Postuma, R. B., D. Aarsland, P. Barone, D. J. Burn, C. H. Hawkes, W. Oertel, and T. Ziemssen. 2012. Identifying prodromal Parkinson’s disease: Pre-motor disorders in Parkinson’s disease . Movement Disorders: Official Journal of the Movement Disorder Society 27 (5):617–26. doi: 10.1002/mds.24996.
  • Rahman Khan, Z., F. Moni, S. Sharmin, M. A. Al-Mansur, A. Gafur, O. Rahman, and F. Afroz. 2017. Isolation of bulk amount of piperine as active pharmaceutical ingredient (API) from black pepper and white pepper (Piper nigrumand L.). Pharmacology & Pharmacy 08 (07):253–62. doi: 10.4236/pp.2017.87018.
  • Rajashri, K., S. Mudhol, M. Serva Peddha, and B. B. Borse. 2020. Neuroprotective effect of spice oleoresins on memory and cognitive impairment associated with scopolamine-induced Alzheimer’s disease in rats. ACS Omega. 5 (48):30898–905. doi: 10.1021/acsomega.0c03689.
  • Raman, G., and V. G. Gaikar. 2002. Extraction of Piperine from Piper nigrum (Black Pepper) by Hydrotropic Solubilization. Industrial & Engineering Chemistry Research. 41 (12):2966–76. doi: 10.1021/ie0107845.
  • Rakofsky, J. J., K. J. Ressler, and B. W. Dunlop. 2012. BDNF function as a potential mediator of bipolar disorder and post-traumatic stress disorder comorbidity. Molecular Psychiatry 17 (1):22–35. doi: 10.1038/mp.2011.121.
  • Rudy, C. C., H. C. Hunsberger, D. S. Weitzner, and M. N. Reed. 2015. The role of the tripartite glutamatergic synapse in the pathophysiology of Alzheimer’s disease. Aging and Disease 6 (2):131–48. doi: 10.14336/AD.2014.0423.
  • Safaiyan, S., N. Kannaiyan, N. Snaidero, S. Brioschi, K. Biber, S. Yona, A. L. Edinger, S. Jung, M. J. Rossner, and M. Simons. 2016. Age-related myelin degradation burdens the clearance function of microglia during aging. Nature Neuroscience 19 (8):995–8. doi: 10.1038/nn.4325.
  • Salehi, B., Z. A. Zakaria, R. Gyawali, S. A. Ibrahim, J. Rajkovic, Z. K. Shinwari, T. Khan, J. Sharifi-Rad, A. Ozleyen, E. Turkdonmez, et al. 2019. Piper species: A comprehensive review on their phytochemistry, biological activities and applications. Molecules 24 (7):1364. doi: 10.3390/molecules24071364.
  • Sharma, S.,. K. Raj, and S. Singh. 2020. Neuroprotective effect of quercetin in combination with piperine against rotenone- and iron supplement-induced Parkinson’s disease in experimental rats. Neurotoxicity Research 37 (1):198–209. doi: 10.1007/s12640-019-00120-z.
  • Shrivastava, P., K. Vaibhav, R. Tabassum, A. Khan, T. Ishrat, M. M. Khan, A. Ahmad, F. Islam, M. M. Safhi, and F. Islam. 2013. Anti-apoptotic and anti-inflammatory effect of piperine on 6-OHDA induced Parkinson’s rat model. Journal of Nutritional Biochemistry 24 (4):680–87. doi: 10.1016/j.jnutbio.2012.03.018.
  • Sibille, E. 2013. Molecular aging of the brain, neuroplasticity, and vulnerability to depression and other brain-related disorders. Dialogues in Clinical Neuroscience 15 (1). doi: 10.31887/dcns.2013.15.1/esibille.
  • Sulaimon, L. A., E. O. Anise, E. M. Obuotor, T. A. Samuel, A. I. Moshood, M. Olajide, and T. Fatoke. 2020. In vitro antidiabetic potentials, antioxidant activities and phytochemical profile of african black pepper (Piper guineense). Clinical Phytoscience 6 (1):1–13. doi: 10.1186/s40816-020-00236-2.
  • Tankam, J. M., and M. Ito. 2013. Inhalation of the essential oil of Piper guineense from Cameroon shows sedative and anxiolytic-like effects in mice. Biological & Pharmaceutical Bulletin 36 (10):1608–14. doi: 10.1248/bpb.b13-00491.
  • Taylor, W. D., H. J. Aizenstein, and G. S. Alexopoulos. 2013. The vascular depression hypothesis: Mechanisms linking vascular disease with depression. Molecular Psychiatry 18 (9):963–74. doi: 10.1038/mp.2013.20.
  • Tifratene, K., V. Manera, R. Fabre, A. Gros, S. Thummler, C. Pradier, P. Robert, and R. David. 2017. Antipsychotic prescribing for Alzheimer’s disease and related disorders in specialized settings from 2010 to 2014 in France: A repeated cross-sectional study. Alzheimer’s Research and Therapy 9 (1):1–10. doi: 10.1186/s13195-017-0256-8.
  • Tobore, T. O. 2019. On the etiopathogenesis and pathophysiology of Alzheimer’s disease: A Comprehensive theoretical review. Journal of Alzheimer’s Disease: JAD 68 (2):417–37. doi: 10.3233/JAD-181052.
  • Tu, Y., Y. Zhong, H. Du, W. Luo, Y. Wen, Q. Li, C. Zhu, and Y. Li. 2016. Anticholinesterases and antioxidant alkamides from Piper nigrum fruits. Natural Product Research 30 (17):1945–9. doi: 10.1080/14786419.2015.1089243.
  • Vaibhav, K., P. Shrivastava, H. Javed, A. Khan, M. E. Ahmed, R. Tabassum, M. M. Khan, G. Khuwaja, F. Islam, M. Saeed Siddiqui, et al. 2012. Piperine suppresses cerebral ischemia-reperfusion-induced inflammation through the repression of COX-2, NOS-2, and NF-κB in middle cerebral artery occlusion rat model. Molecular and Cellular Biochemistry 367 (1-2):73–84. doi: 10.1007/s11010-012-1321-z.
  • Wahl, D., S. M. Solon-Biet, V. C. Cogger, L. Fontana, S. J. Simpson, D. G. Le Couteur, and R. V. Ribeiro. 2019. Aging, lifestyle and dementia. Neurobiology of Disease 130:104481. doi: 10.1016/j.nbd.2019.104481.
  • Wang, B., and Y. Du. 2013. Cadmium and its neurotoxic effects. Oxidative Medicine and Cellular longevity 2013:898034. doi: 10.1155/2013/898034.
  • Wang, C., Z. Cai, W. Wang, M. Wei, D. Kou, T. Li, Z. Yang, H. Guo, W. Le, and S. Li. 2019. Piperine attenuates cognitive impairment in an experimental mouse model of sporadic Alzheimer’s disease. Journal of Nutritional Biochemistry 70:147–155. doi: 10.1016/j.jnutbio.2019.05.009.
  • Wang, H. L. S., R. Yu, Y. T. Wu, W. Y. Lee, M. F. Lin, C. Y. Chen, and E. Y. Shen. 2013. The Changes of cerebral morphology related to aging in Taiwanese population. PLoS ONE 8 (1):e55241. doi: 10.1371/journal.pone.0055241.
  • World Health Organization. 2018. WHO | Ageing and health. Website: WHO; Media centre.
  • Wuwongse, S., R. C. C. Chang, and A. C. K. Law. 2010. The putative neurodegenerative links between depression and Alzheimer’s disease. Progress in Neurobiology 91 (4):362–75. doi: 10.1016/j.pneurobio.2010.04.005.
  • Wyss-Coray, T. 2016. Ageing, neurodegeneration and brain rejuvenation. Nature 539 (7628):180–6. doi: 10.1038/nature20411.
  • Yang, W., Y. H. Chen, H. Liu, and H. D. Qu. 2015. Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease mouse model. International Journal of Molecular Medicine 36 (5):1369–76. doi: 10.3892/ijmm.2015.2356.
  • Yusuf, M., M. Khan, R. A. Khan, and B. Ahmed. 2013. Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. Journal of Drug Targeting 21 (3):300–11. doi: 10.3109/1061186X.2012.747529.
  • Zhao, Y., and B. Zhao. 2013. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxidative Medicine and Cellular Longevity 2013:316523. doi: 10.1155/2013/316523.
  • Ztaou, S., and M. Amalric. 2019. Contribution of cholinergic interneurons to striatal pathophysiology in Parkinson’s disease. Neurochemistry International 126:1–10. doi: 10.1016/j.neuint.2019.02.019. https://give.ucdavis.edu/MNAL/324080.