932
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances of nanomaterial-based optical sensor for the detection of benzimidazole fungicides in food: a review

, , ORCID Icon, , & ORCID Icon

References

  • Adamo, C. B., R. J. Poppi, and D. P. de Jesus. 2021. Improving surface-enhanced Raman scattering performance of gold-modified magnetic nanoparticles by using nickel-phosphorus film on polydimethylsiloxane. Microchemical Journal 160:105704. doi:10.1016/j.microc.2020.105704.
  • Alak, A. M., and T. Vo-Dinh. 1987. Surface-enhanced Raman spectrometry of organophosphorus chemical agents. Analytical Chemistry 59 (17):2149–53. doi:10.1021/ac00144a030.
  • Alsammarraie, F. K., M. Lin, A. Mustapha, H. Lin, X. Chen, Y. Chen, H. Wang, and M. Huang. 2018. Rapid determination of thiabendazole in juice by SERS coupled with novel gold nanosubstrates. Food Chemistry 259:219–25. doi:10.1016/j.foodchem.2018.03.105.
  • Alyami, A.,. A. J. Quinn, and D. Iacopino. 2019. Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants. Talanta 201:58–64. doi:10.1016/j.talanta.2019.03.115.
  • Arcudi, F., L. Đorđević, and M. Prato. 2016. Synthesis, separation, and characterization of small and highly fluorescent nitrogen-doped carbon nanodots. Angewandte Chemie (International ed. in English) 55 (6):2107–12. doi:10.1002/anie.201510158.
  • Banin, U., Y. Ben-Shahar, and K. Vinokurov. 2014. Hybrid semiconductor–metal nanoparticles: from architecture to function. Chemistry of Materials 26 (1):97–110. doi:10.1021/cm402131n.
  • Blanco, E., J. I. Martinez, A. M. Parra-Alfambra, M. D. Petit-Dominguez, M. Del Pozo, J. A. Martin-Gago, E. Casero, and C. Quintana. 2019. Fluorescence enhancement of fungicide thiabendazole by van der Waals interaction with transition metal dichalcogenide nanosheets for highly specific sensors. Nanoscale 11 (48):23156–64. doi:10.1039/c9nr02794g.
  • Cai, J., Z. Wang, M. Wang, and D. Zhang. 2021. Au nanoparticle-grafted hierarchical pillars array replicated from diatom as reliable SERS substrates. Applied Surface Science 541:148374. doi:10.1016/j.apsusc.2020.148374.
  • Cai, Y., X. He, P. L. Cui, J. Liu, Z. B. Li, B. J. Jia, T. Zhang, J. P. Wang, and W. Z. Yuan. 2019. Preparation of a chemiluminescence sensor for multi-detection of benzimidazoles in meat based on molecularly imprinted polymer. Food Chemistry 280:103–9. doi:10.1016/j.foodchem.2018.12.052.
  • Cai, Y., Z. Qiu, X. Lin, W. Zeng, Y. Cao, W. Liu, and Y. Liu. 2020. Self-assembled nanomaterials based on aggregation-induced emission of AuNCs: Fluorescence and colorimetric dual-mode biosensing of organophosphorus pesticides. Sensors and Actuators B: Chemical 321:128481. doi:10.1016/j.snb.2020.128481.
  • Chen, J., M. Huang, L. Kong, and M. Lin. 2019. Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables. Carbohydrate Polymers 205:596–600. doi:10.1016/j.carbpol.2018.10.059.
  • Chen, Q., M. M. Hassan, J. Xu, M. Zareef, H. Li, Y. Xu, P. Wang, A. A. Agyekum, F. Y. H. Kutsanedzie, and A. Viswadevarayalu. 2019. Fast sensing of imidacloprid residue in tea using surface-enhanced Raman scattering by comparative multivariate calibration. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 211:86–93. doi:10.1016/j.saa.2018.11.041.
  • Chen, Q., R. Sheng, P. Wang, Q. Ouyang, A. Wang, S. Ali, M. Zareef, and M. M. Hassan. 2020. Ultra-sensitive detection of malathion residues using FRET-based upconversion fluorescence sensor in food. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 241:118654. doi:10.1016/j.saa.2020.118654.
  • Chen, T., F. Yang, X. Wu, Y. Chen, and G. Yang. 2020. A fluorescent and colorimetric probe of carbyne nanocrystals coated Au nanoparticles for selective and sensitive detection of ferrous ions. Carbon 167:196–201. doi:10.1016/j.carbon.2020.06.003.
  • Chen, W., F. Long, G. Song, J. Chen, S. Peng, and P. Li. 2020. Rapid and sensitive detection of pesticide residues using dynamic surface‐enhanced Raman spectroscopy. Journal of Raman Spectroscopy 51 (4):611–8. doi:10.1002/jrs.5823.
  • Chen, X., M. Lin, L. Sun, T. Xu, K. Lai, M. Huang, and H. Lin. 2019. Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates. Food Chemistry 293:271–7. doi:10.1016/j.foodchem.2019.04.085.
  • Cheshari, E. C., X. Ren, and X. Li. 2020. Core–shell Ag-molecularly imprinted composite for SERS detection of carbendazim. International Journal of Environmental Analytical Chemistry 100 (11):1245–58. doi:10.1080/03067319.2019.1651301.
  • Chiu, W.-T., Y.-Y. Chuang, H.-C. Chen, H.-H. Huang, and R.-C. Wang. 2021. Significant increase in dipole moments of functional groups using cation bonding for excellent SERS sensing as a universal approach. Sensors and Actuators B: Chemical 340:129960. doi:10.1016/j.snb.2021.129960.
  • Commission, C. s. N. H. China: national food safety standard maximum residue limits for pesticides in foods; GB 2763-2019-2019. Accessed March 15, 2021. Retrieved from https://www.fas.usda.gov/data/china-national-food-safety-standard-maximum-residue-limits-pesticides-foods. United States Department of Agriculture.
  • Ding, Q., Z. Kang, X. He, M. Wang, M. Lin, H. Lin, and D. P. Yang. 2019. Eggshell membrane-templated gold nanoparticles as a flexible SERS substrate for detection of thiabendazole. Mikrochimica Acta 186 (7):453. doi:10.1007/s00604-019-3543-1.
  • Elsayed, M. Y., A. M. Gouda, Y. Ismail, and M. A. Swillam. 2017. Silicon-Based SERS Substrates Fabricated by Electroless Etching. Journal of Lightwave Technology 35 (14):3075–81. doi:10.1109/JLT.2017.2707476.
  • FAO Food and Agricultural Organization. Accessed March 15, 2021. Retrieved from http://www.fao.org/news/story/en/item/469269/icode/
  • Feng, J., Y. Hu, E. Grant, and X. Lu. 2018. Determination of thiabendazole in orange juice using an MISPE-SERS chemosensor. Food Chemistry 239:816–22. doi:10.1016/j.foodchem.2017.07.014.
  • Fu, G., D. W. Sun, H. Pu, and Q. Wei. 2019. Fabrication of gold nanorods for SERS detection of thiabendazole in apple. Talanta 195:841–9. doi:10.1016/j.talanta.2018.11.114.
  • Han, C-q, Y. Yao, W. Wang, L-q Tao, W-x Zhang, W. M. Ingram, K-z Tian, Y. Liu, A-x Lu, Y. Wu, et al. 2018. Highly sensitive silver nanorod arrays for rapid surface enhanced Raman scattering detection of acetamiprid pesticides. Chinese Journal of Chemical Physics 31 (2):152–8. doi:10.1063/1674-0068/31/cjcp1710184.
  • Han, Y., X. He, W. Yang, X. Luo, Y. Yu, W. Tang, T. Yue, and Z. Li. 2021. Ratiometric fluorescent sensing carbendazim in fruits and vegetables via its innate fluorescence coupling with UiO-67. Food Chemistry 345:128839. doi:10.1016/j.foodchem.2020.128839.
  • Han, Y., W. Yang, X. Luo, X. He, Y. Yu, C. Li, W. Tang, T. Yue, and Z. Li. 2019. Cu2+-triggered carbon dots with synchronous response of dual emission for ultrasensitive ratiometric fluorescence determination of thiophanate-methyl residues. Journal of Agricultural and Food Chemistry 67 (45):12576–83. doi:10.1021/acs.jafc.9b04720.
  • Hassan, M. M., W. Ahmad, M. Zareef, Y. Rong, Y. Xu, T. Jiao, P. He, H. Li, and Q. Chen. 2021. Rapid detection of mercury in food via rhodamine 6G signal using surface-enhanced Raman scattering coupled multivariate calibration. Food Chemistry 358:129844. doi:10.1016/j.foodchem.2021.129844.
  • Hassan, M. M., Q. Chen, F. Y. H. Kutsanedzie, H. Li, M. Zareef, Y. Xu, M. Yang, and A. A. Agyekum. 2019. rGO-NS SERS-based coupled chemometric prediction of acetamiprid residue in green tea. Journal of Food and Drug Analysis 27 (1):145–53. doi:10.1016/j.jfda.2018.06.004.
  • Hassan, M. M., H. Li, W. Ahmad, M. Zareef, J. Wang, S. Xie, P. Wang, Q. Ouyang, S. Wang, and Q. Chen. 2019. Au@Ag nanostructure based SERS substrate for simultaneous determination of pesticides residue in tea via solid phase extraction coupled multivariate calibration. Lwt 105:290–7. doi:10.1016/j.lwt.2019.02.016.
  • Hassan, M. M., M. Zareef, Y. Xu, H. Li, and Q. Chen. 2021. SERS based sensor for mycotoxins detection: Challenges and improvements. Food Chemistry 344:128652. doi:10.1016/j.foodchem.2020.128652.
  • He, J., H. Li, L. Zhang, X. Zhi, X. Li, X. Wang, Z. Feng, G. Shen, and X. Ding. 2021. Silver microspheres aggregation-induced Raman enhanced scattering used for rapid detection of carbendazim in Chinese tea. Food Chemistry 339:128085. doi:10.1016/j.foodchem.2020.128085.
  • He, X., Q. Pei, T. Xu, and X. Zhang. 2020. Smartphone-based tape sensors for multiplexed rapid urinalysis. Sensors and Actuators B: Chemical 304:127415. doi:10.1016/j.snb.2019.127415.
  • He, X., S. Yang, T. Xu, Y. Song, and X. Zhang. 2020. Microdroplet-captured tapes for rapid sampling and SERS detection of food contaminants. Biosensors & Bioelectronics 152:112013. doi:10.1016/j.bios.2020.112013.
  • Hong, J., A. Kawashima, and N. Hamada. 2017. A simple fabrication of plasmonic surface-enhanced Raman scattering (SERS) substrate for pesticide analysis via the immobilization of gold nanoparticles on UF membrane. Applied Surface Science 407:440–6. doi:10.1016/j.apsusc.2017.02.232.
  • Hu, B., D. W. Sun, H. Pu, and Q. Wei. 2020. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Talanta 217:120998. doi:10.1016/j.talanta.2020.120998.
  • Hu, X., X. Bian, S. Yu, and K. Dan. 2020. Magnetic Fe3O4@SiO₂@Ag@COOH NPs/Au film with hybrid localized surface plasmon/surface plasmon polariton modes for surface-enhanced Raman scattering detection of thiabendazole. Journal of Nanoscience and Nanotechnology 20 (4):2079–86. doi:10.1166/jnn.2020.17323.
  • Huang, L., C. Wu, L. Xie, X. Yuan, X. Wei, Q. Huang, Y. Chen, and Y. Lu. 2019. Silver-Nanocellulose composite used as SERS substrate for detecting carbendazim. Nanomaterials (Basel, Switzerland) 9 (3):355. doi:10.3390/nano9030355.
  • Hussain, A., H. Pu, B. Hu, and D. W. Sun. 2021. Au@Ag-TGANPs based SERS for facile screening of thiabendazole and ferbam in liquid milk. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 245:118908. doi:10.1016/j.saa.2020.118908.
  • Jahanbakhshi, M., and B. Habibi. 2016. A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: Application to electroanalytical determination of H2O2 in fetal bovine serum. Biosensors & Bioelectronics 81:143–50. doi:10.1016/j.bios.2016.02.064.
  • Jiang, J.,. S. Zou, L. Ma, S. Wang, J. Liao, and Z. Zhang. 2018. Surface-enhanced Raman scattering detection of pesticide residues using transparent adhesive tapes and coated silver nanorods. ACS Applied Materials & Interfaces 10 (10):9129–35. doi:10.1021/acsami.7b18039.
  • Jiao, T., M. Mehedi Hassan, J. Zhu, S. Ali, W. Ahmad, J. Wang, C. Lv, Q. Chen, and H. Li. 2021. Quantification of deltamethrin residues in wheat by Ag@ZnO NFs-based surface-enhanced Raman spectroscopy coupling chemometric models. Food Chemistry. 337:127652. doi:10.1016/j.foodchem.2020.127652.
  • Kalkal, A., R. Pradhan, S. Kadian, G. Manik, and G. Packirisamy. 2020. Biofunctionalized graphene quantum dots based fluorescent biosensor toward efficient detection of small cell lung cancer. ACS Applied Bio Materials 3 (8):4922–32. doi:10.1021/acsabm.0c00427.
  • Kang, Y., L. Li, W. Chen, F. Zhang, Y. Du, and T. Wu. 2018. Rapid in situ SERS analysis of pesticide residues on plant surfaces based on micelle extraction of targets and stabilization of ag nanoparticle aggregates. Food Analytical Methods 11 (11):3161–9. doi:10.1007/s12161-018-1290-2.
  • Kazemifard, N., A. A. Ensafi, and B. Rezaei. 2020. Green synthesized carbon dots embedded in silica molecularly imprinted polymers, characterization and application as a rapid and selective fluorimetric sensor for determination of thiabendazole in juices. Food Chemistry 310:125812. doi:10.1016/j.foodchem.2019.125812.
  • Kowalski, B., and C. Bender. 1973. Pattern recognition. II. Linear and nonlinear methods for displaying chemical data. Journal of the American Chemical Society 95 (3):686–93. doi:10.1021/ja00784a007.
  • Kumar, R., and V. Sharma. 2018. Chemometrics in forensic science. TrAC Trends in Analytical Chemistry 105:191–201. doi:10.1016/j.trac.2018.05.010.
  • Kumari, N., N. Sood, and V. Krishnan. 2020. Beetle wing inspired fabrication of nanojunction based biomimetic SERS substrates for sensitive detection of analytes. Materials Technology :1–12. doi:10.1080/10667857.2020.1816382.
  • Leadbeater, A. J. 2014. Plant health management: fungicides and antibiotics. In Encyclopedia of agriculture and food systems, 408–24. Elsevier Inc.
  • Lee, H. S., M. M. Rahman, H. S. Chung, H. Kabir, K. S. Yoon, S. K. Cho, A. M. Abd El-Aty, and J. H. Shim. 2018. An effective methodology for simultaneous quantification of thiophanate-methyl, and its metabolite carbendazim in pear, using LC-MS/MS. Journal of Chromatography B 1095:1–7. doi:10.1016/j.jchromb.2018.07.010.
  • Li, H., W. Geng, M. M. Hassan, M. Zuo, W. Wei, X. Wu, Q. Ouyang, and Q. Chen. 2021. Rapid detection of chloramphenicol in food using SERS flexible sensor coupled artificial intelligent tools. Food Control. 128:108186. doi:10.1016/j.foodcont.2021.108186.
  • Li, H., M. Mehedi Hassan, J. Wang, W. Wei, M. Zou, Q. Ouyang, and Q. Chen. 2021. Investigation of nonlinear relationship of surface enhanced Raman scattering signal for robust prediction of thiabendazole in apple. Food Chemistry. 339:127843. doi:10.1016/j.foodchem.2020.127843.
  • Li, J., Q. Wang, J. Wang, M. Li, X. Zhang, L. Luan, P. Li, and W. Xu. 2021. Quantitative SERS sensor based on self-assembled Au@Ag heterogeneous nanocuboids monolayer with high enhancement factor for practical quantitative detection. Analytical and Bioanalytical Chemistry 413 (16):4207–15. doi:10.1007/s00216-021-03366-9.
  • Li, P., W. Chen, D. Liu, H. Huang, K. Dan, X. Hu, S. Yu, P. K. Chu, and X. F. Yu. 2019. Template growth of Au/Ag nanocomposites on phosphorene for sensitive SERS detection of pesticides. Nanotechnology 30 (27):275604. doi:10.1088/1361-6528/ab12fb.
  • Li, R., H. Lv, X. Zhang, P. Liu, L. Chen, J. Cheng, and B. Zhao. 2015. Vibrational spectroscopy and density functional theory study of 4-mercaptobenzoic acid. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 148:369–74. doi:10.1016/j.saa.2015.03.132.
  • Li, S., Q. Liang, S. A. H. Ahmed, and J. Zhang. 2020. Simultaneous determination of five benzimidazoles in agricultural foods by core-shell magnetic covalent organic framework nanoparticle–based solid-phase extraction coupled with high-performance liquid chromatography. Food Analytical Methods 13 (5):1111–8. doi:10.1007/s12161-020-01708-4.
  • Lin, L., T. Dong, P. Nie, F. Qu, Y. He, B. Chu, and S. Xiao. 2018. Rapid determination of thiabendazole pesticides in rape by surface enhanced Raman spectroscopy. Sensors (Basel, Switzerland) 18 (4):1082. doi:10.3390/s18041082.
  • Linh, V. T. N., J. Moon, C. Mun, V. Devaraj, J.-W. Oh, S.-G. Park, D.-H. Kim, J. Choo, Y.-I. Lee, and H. S. Jung. 2019. A facile low-cost paper-based SERS substrate for label-free molecular detection. Sensors and Actuators B: Chemical 291:369–77. doi:10.1016/j.snb.2019.04.077.
  • Liu, H., P. Zhao, Y. Wang, S. Li, L. Zhang, Y. Zhang, S. Ge, and J. Yu. 2020. Paper-based sandwich type SERS sensor based on silver nanoparticles and biomimetic recognizer. Sensors and Actuators B: Chemical 313:127989. doi:10.1016/j.snb.2020.127989.
  • Liu, W., J. Li, Y. Wu, S. Xing, Y. Lai, and G. Zhang. 2018. Target-induced proximity ligation triggers recombinase polymerase amplification and transcription-mediated amplification to detect tumor-derived exosomes in nasopharyngeal carcinoma with high sensitivity . Biosensors & Bioelectronics 102:204–10. doi:10.1016/j.bios.2017.11.033.
  • Liu, Z., Y. Wang, R. Deng, L. Yang, S. Yu, S. Xu, and W. Xu. 2016. Fe3O4@Graphene Oxide@Ag particles for surface magnet solid-phase extraction surface-enhanced raman scattering (SMSPE-SERS): from sample pretreatment to detection all-in-one. ACS Applied Materials & Interfaces 8 (22):14160–8. doi:10.1021/acsami.6b02944.
  • Lopez Monzon, A., D. Vega Moreno, M. E. Torres Padron, Z. Sosa Ferrera, and J. J. Santana Rodriguez. 2007. Solid-phase microextraction of benzimidazole fungicides in environmental liquid samples and HPLC-fluorescence determination. Analytical and Bioanalytical Chemistry 387 (6):1957–63. doi:10.1007/s00216-006-1083-0.
  • Luo, H., Y. Huang, K. Lai, B. A. Rasco, and Y. Fan. 2016. Surface-enhanced Raman spectroscopy coupled with gold nanoparticles for rapid detection of phosmet and thiabendazole residues in apples. Food Control. 68:229–35. doi:10.1016/j.foodcont.2016.04.003.
  • Ma, P., J. Zhang, P. Liu, Q. Wang, Y. Zhang, K. Song, R. Li, and L. Shen. 2020. Computer-assisted design for stable and porous metal-organic framework (MOF) as a carrier for curcumin delivery. Lwt 120:108949. doi:10.1016/j.lwt.2019.108949.
  • Ma, Y., H. Jiang, C. Shen, C. Hou, D. Huo, H. Wu, and M. Yang. 2017. Detection of carbendazim residues with a colorimetric sensor based on gold nanoparticles. Journal of Applied Spectroscopy 84 (3):460–5. doi:10.1007/s10812-017-0492-5.
  • Ma, Y., Y. Wang, Y. Luo, H. Duan, D. Li, H. Xu, and E. K. Fodjo. 2018. Rapid and sensitive on-site detection of pesticide residues in fruits and vegetables using screen-printed paper-based SERS swabs. Analytical Methods 10 (38):4655–64. doi:10.1039/C8AY01698D.
  • Mahdavi, V., F. Ghorbani-Paji, M. K. Ramezani, A. Ghassempour, and H. Y. Aboul-Enein. 2019. Dissipation of carbendazim and its metabolites in cucumber using liquid chromatography tandem mass spectrometry. International Journal of Environmental Analytical Chemistry 99 (10):968–76. doi:10.1080/03067319.2019.1617281.
  • Mekonnen, M. L., C. H. Chen, M. Osada, W. N. Su, and B. J. Hwang. 2020. Dielectric nanosheet modified plasmonic-paper as highly sensitive and stable SERS substrate and its application for pesticides detection. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 225:117484. doi:10.1016/j.saa.2019.117484.
  • Nadar, S. S., L. Vaidya, S. Maurya, and V. K. Rathod. 2019. Polysaccharide based metal organic frameworks (polysaccharide–MOF): A review. Coordination Chemistry Reviews 396:1–21. doi:10.1016/j.ccr.2019.05.011.
  • Nguyen Thi Nhat, H., N. T. T. Le, N. T. Phuong Phong, D. H. Nguyen, and M. T. Nguyen-Le. 2020a. Potential application of gold nanospheres as a surface Plasmon resonance based sensor for in-situ detection of residual fungicides. Sensors (Basel, Switzerland) 20 (8):2229. doi:10.3390/s20082229.
  • Nguyen Thi Nhat, H., N. T. T. Le, N. Thi Phuong Phong, D. H. Nguyen, and M.-T. Nguyen-Le. 2020b. Hydroquinone-Based fabrication of gold nanorods with a high aspect ratio and LSPR Greater than 850 nm to be used as a surface plasmon resonance platform for rapid detection of thiophanate methyl. Applied Sciences 10 (10):3654. doi:10.3390/app10103654.
  • Ogundare, S. A., and W. E. van Zyl. 2019. A review of cellulose-based substrates for SERS: Fundamentals, design principles, applications. Cellulose 26 (11):6489–528. doi:10.1007/s10570-019-02580-0.
  • Oliveira, M. J. S., R. J. G. Rubira, L. N. Furini, A. Batagin-Neto, and C. J. L. Constantino. 2020. Detection of thiabendazole fungicide/parasiticide by SERS: Quantitative analysis and adsorption mechanism. Applied Surface Science 517:145786. doi:10.1016/j.apsusc.2020.145786.
  • Ouyang, Q., L. Wang, W. Ahmad, Y. Rong, H. Li, Y. Hu, and Q. Chen. 2021. A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Food Chemistry 349:129157. doi:10.1016/j.foodchem.2021.129157.
  • Peng, X. X., G. M. Bao, Y. F. Zhong, L. Zhang, K. B. Zeng, J. X. He, W. Xiao, Y. F. Xia, Q. Fan, and H. Q. Yuan. 2021. Highly sensitive and rapid detection of thiabendazole residues in oranges based on a luminescent Tb3+-functionalized MOF. Food Chemistry 343:128504. doi:10.1016/j.foodchem.2020.128504.
  • Phatangare, A. B., S. D. Dhole, S. S. Dahiwale, and V. N. Bhoraskar. 2018. Ultra-high sensitive substrates for surface enhanced Raman scattering, made of 3 nm gold nanoparticles embedded on SiO2 nanospheres. Applied Surface Science 441:744–53. doi:10.1016/j.apsusc.2018.02.057.
  • Pilot, R., R. Signorini, and L. Fabris. 2018. Surface-enhanced Raman spectroscopy: Principles, substrates, and applications. In Metal nanoparticles and clusters, 89–164. Springer, Cham. doi:10.1007/978-3-319-68053-8_4.
  • Piriya, V. S. A., P. Joseph, S. C. G. K. Daniel, S. Lakshmanan, T. Kinoshita, and S. Muthusamy. 2017. Colorimetric sensors for rapid detection of various analytes. Materials Science & Engineering. C, Materials for Biological Applications 78:1231–45. doi:10.1016/j.msec.2017.05.018.
  • Liou, P., F. X. Nayigiziki, F. Kong, A. Mustapha, and M. Lin. 2017. Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydrate Polymers 157:643–50. doi:10.1016/j.carbpol.2016.10.031.
  • Raveendran, J., and A. Docoslis. 2021. Detection and quantification of toxicants in food and water using Ag-Au core-shell fractal SERS nanostructures and multivariate analysis. Talanta 231:122383. doi:10.1016/j.talanta.2021.122383.
  • Ray, P. C., Z. Fan, R. A. Crouch, S. S. Sinha, and A. Pramanik. 2014. Nanoscopic optical rulers beyond the FRET distance limit: Fundamentals and applications. Chemical Society Reviews 43 (17):6370–404. doi:10.1039/c3cs60476d.
  • Ren, X., X. Feng, M. Jin, and X. Li. 2021. Dummy molecular imprinted polymers coated with silver microspheres via surface enhanced Raman scattering for sensitive detection of benzimidazole. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 249:119321. doi:10.1016/j.saa.2020.119321.
  • Ren, X., X. Feng, X. Li, and X. Li. 2021. Preparation of silver with an ultrathin molecular imprinted layer for detection of carbendazim by SERS. Chemical Papers, 1–9. doi:10.1007/s11696-021-01811-8.
  • Ruiyi, L., J. Yanhong, W. Qinsheng, Y. Yongqiang, L. Nana, S. Xiulan, and L. Zaijun. 2021. Serine and histidine-functionalized graphene quantum dot with unique double fluorescence emission as a fluorescent probe for highly sensitive detection of carbendazim. Sensors and Actuators B: Chemical 343:130099. doi:10.1016/j.snb.2021.130099.
  • Sabela, M., S. Balme, M. Bechelany, J. M. Janot, and K. Bisetty. 2017. A review of gold and silver nanoparticle‐based colorimetric sensing assays. Advanced Engineering Materials 19 (12):1700270. doi:10.1002/adem.201700270.
  • Sharma, V., and V. Krishnan. 2018. Fabrication of highly sensitive biomimetic SERS substrates for detection of herbicides in trace concentration. Sensors and Actuators B: Chemical 262:710–9. doi:10.1016/j.snb.2018.01.230.
  • Shen, Z., Q. Fan, Q. Yu, R. Wang, H. Wang, and X. Kong. 2021. Facile detection of carbendazim in food using TLC-SERS on diatomite thin layer chromatography. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 247:119037. doi:10.1016/j.saa.2020.119037.
  • Shi, B., Y. Su, L. Zhang, M. Huang, R. Liu, and S. Zhao. 2016. Nitrogen and phosphorus co-doped carbon nanodots as a novel fluorescent probe for highly sensitive detection of Fe(3+) in human serum and living cells. ACS Applied Materials & Interfaces 8 (17):10717–25. doi:10.1021/acsami.6b01325.
  • Su, L., S. Wang, L. Wang, Z. Yan, H. Yi, D. Zhang, G. Shen, and Y. Ma. 2020. Fluorescent aptasensor for carbendazim detection in aqueous samples based on gold nanoparticles quenching Rhodamine B. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 225:117511. doi:10.1016/j.saa.2019.117511.
  • Sun, X., and Y. Lei. 2017. Fluorescent carbon dots and their sensing applications. TrAC Trends in Analytical Chemistry 89:163–80. doi:10.1016/j.trac.2017.02.001.
  • Teixeira, C. A., and R. J. Poppi. 2020. Paper-based SERS substrate and one-class classifier to monitor thiabendazole residual levels in extracts of mango peels. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 229:117913. doi:10.1016/j.saa.2019.117913.
  • Thien, N. D., N. Q. Hoa, N. N. Tu, S. C. Doanh, N. N. Long, and L. V. Vu. 2019. Detection of carbendazim by SERS technique using silver nanoparticles decorated SiO2 opal crystal substrates. Journal of Electronic Materials 48 (12):8149–55. doi:10.1007/s11664-019-07662-0.
  • Venkatesan, M., L. Veeramuthu, F.-C. Liang, W.-C. Chen, C.-J. Cho, C.-W. Chen, J.-Y. Chen, Y. Yan, S.-H. Chang, and C.-C. Kuo. 2020. Evolution of electrospun nanofibers fluorescent and colorimetric sensors for environmental toxicants, pH, temperature, and cancer cells – A review with insights on applications. Chemical Engineering Journal 397:125431. doi:10.1016/j.cej.2020.125431.
  • Wang, C. M., P. K. Roy, B. K. Juluri, and S. Chattopadhyay. 2018. A SERS tattoo for in situ, ex situ, and multiplexed detection of toxic food additives. Sensors and Actuators B: Chemical 261:218–25. doi:10.1016/j.snb.2018.01.146.
  • Wang, K., D. W. Sun, H. Pu, and Q. Wei. 2020a. A rapid dual-channel readout approach for sensing carbendazim with 4-aminobenzenethiol-functionalized core-shell Au@Ag nanoparticles. The Analyst 145 (5):1801–9. doi:10.1039/c9an02185j.
  • Wang, K., D. W. Sun, H. Pu, and Q. Wei. 2020b. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Food Chemistry 310:125923. doi:10.1016/j.foodchem.2019.125923.
  • Wang, K., D. W. Sun, H. Pu, Q. Wei, and L. Huang. 2019. Stable, flexible, and high-performance SERS chip enabled by a ternary film-packaged plasmonic nanoparticle array. ACS Applied Materials & Interfaces 11 (32):29177–86. doi:10.1021/acsami.9b09746.
  • Wang, S., L. Su, L. Wang, D. Zhang, G. Shen, and Y. Ma. 2020. Colorimetric determination of carbendazim based on the specific recognition of aptamer and the poly-diallyldimethylammonium chloride aggregation of gold nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 228:117809. doi:10.1016/j.saa.2019.117809.
  • Wang, X., Q. Xu, X. Hu, F. Han, and C. Zhu. 2020. Silver-nanoparticles/graphene hybrids for effective enrichment and sensitive SERS detection of polycyclic aromatic hydrocarbons. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 228:117783. doi:10.1016/j.saa.2019.117783.
  • Wen, Y., J. Li, F. Yang, W. Zhang, W. Li, C. Liao, and L. Chen. 2013. Salting-out assisted liquid-liquid extraction with the aid of experimental design for determination of benzimidazole fungicides in high salinity samples by high-performance liquid chromatography. Talanta 106:119–26. doi:10.1016/j.talanta.2012.12.011.
  • WHO. 2021. World health Organization. Accessed March 15, 2021. Retrieved from https://www.who.int/news-room/fact-sheets/detail/food-safety.
  • Xie, X., F. Tan, A. Xu, K. Deng, Y. Zeng, and H. Huang. 2019. UV-induced peroxidase-like activity of gold nanoclusters for differentiating pathogenic bacteria and detection of enterotoxin with colorimetric readout. Sensors and Actuators B: Chemical 279:289–97. doi:10.1016/j.snb.2018.10.019.
  • Xu, Y., M. M. Hassan, S. Ali, H. Li, Q. Ouyang, and Q. Chen. 2021. Self-Cleaning-Mediated SERS chip coupled chemometric algorithms for detection and photocatalytic degradation of pesticides in food. Journal of Agricultural and Food Chemistry 69 (5):1667–74. doi:10.1021/acs.jafc.0c06513.
  • Xu, Y., M. M. Hassan, A. S. Sharma, H. Li, and Q. Chen. 2021. Recent advancement in nano-optical strategies for detection of pathogenic bacteria and their metabolites in food safety. Critical Reviews in Food Science and Nutrition :1–19. doi:10.1080/10408398.2021.1950117.
  • Xuan, T., Y. Gao, Y. Cai, X. Guo, Y. Wen, and H. Yang. 2019. Fabrication and characterization of the stable Ag-Au-metal-organic-frameworks: An application for sensitive detection of thiabendazole. Sensors and Actuators B: Chemical 293:289–95. doi:10.1016/j.snb.2019.05.017.
  • Yang, Y., D. Huo, H. Wu, X. Wang, J. Yang, M. Bian, Y. Ma, and C. Hou. 2018. N, P-doped carbon quantum dots as a fluorescent sensing platform for carbendazim detection based on fluorescence resonance energy transfer. Sensors and Actuators B: Chemical 274:296–303. doi:10.1016/j.snb.2018.07.130.
  • Yang, Y.,. X. Xing, T. Zou, Z. Wang, R. Zhao, P. Hong, S. Peng, X. Zhang, and Y. Wang. 2020. A novel and sensitive ratiometric fluorescence assay for carbendazim based on N-doped carbon quantum dots and gold nanocluster nanohybrid. Journal of Hazardous Materials 386:121958. doi:10.1016/j.jhazmat.2019.121958.
  • Zhai, C., Y. Peng, Y. Li, and K. Chao. 2017. Extraction and identification of mixed pesticides’ Raman signal and establishment of their prediction models. Journal of Raman Spectroscopy 48 (3):494–500. doi:10.1002/jrs.5049.
  • Zhai, Y., T. Xuan, Y. Wu, X. Guo, Y. Ying, Y. Wen, and H. Yang. 2021. Metal-organic-frameworks-enforced surface enhanced Raman scattering chip for elevating detection sensitivity of carbendazim in seawater. Sensors and Actuators B: Chemical 326:128852. doi:10.1016/j.snb.2020.128852.
  • Zhang, X., G. Li, D. Wu, X. Li, N. Hu, J. Chen, G. Chen, and Y. Wu. 2019. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosensors & Bioelectronics 137:178–98. doi:10.1016/j.bios.2019.04.061.
  • Zhang, X., B. Wang, A. Alsalme, S. Xiang, Z. Zhang, and B. Chen. 2020. Design and applications of water-stable metal-organic frameworks: Status and challenges. Coordination Chemistry Reviews 423:213507. doi:10.1016/j.ccr.2020.213507.
  • Zheng, M., Y. Wang, C. Wang, W. Wei, S. Ma, X. Sun, and J. He. 2018. Silver nanoparticles-based colorimetric array for the detection of Thiophanate-methyl. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 198:315–21. doi:10.1016/j.saa.2018.03.038.
  • Zhu, C., Q. Zhao, X. Wang, Z. Li, and X. Hu. 2021. Ag-nanocubes/graphene-oxide/Au-nanoparticles composite film with highly dense plasmonic hotspots for surface-enhanced Raman scattering detection of pesticide. Microchemical Journal 165:106090. doi:10.1016/j.microc.2021.106090.
  • Zhu, W., L. Li, Z. Zhou, X. Yang, N. Hao, Y. Guo, and K. Wang. 2020. A colorimetric biosensor for simultaneous ochratoxin A and aflatoxins B1 detection in agricultural products. Food Chemistry 319:126544. doi:10.1016/j.foodchem.2020.126544.
  • Zhu, X., P. Liu, T. Xue, Y. Ge, S. Ai, Y. Sheng, R. Wu, L. Xu, K. Tang, and Y. Wen. 2021. A novel graphene-like titanium carbide MXene/Au–Ag nanoshuttles bifunctional nanosensor for electrochemical and SERS intelligent analysis of ultra-trace carbendazim coupled with machine learning. Ceramics International 47 (1):173–84. doi:10.1016/j.ceramint.2020.08.121.
  • Zou, S., C. Hou, H. Fa, L. Zhang, Y. Ma, L. Dong, D. Li, D. Huo, and M. Yang. 2017. An efficient fluorescent probe for fluazinam using N, S co-doped carbon dots from l -cysteine. Sensors and Actuators B: Chemical 239:1033–41. doi:10.1016/j.snb.2016.07.169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.