1,582
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Exploration on bioactive properties of quinoa protein hydrolysate and peptides: a review

, , ORCID Icon, & ORCID Icon

References

  • Abugoch James, L. E. 2009. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Advances in Food and Nutrition Research 58:1–31. doi: 10.1016/S1043-4526(09)58001-1
  • Alandia, G., J. P. Rodriguez, S. E. Jacobsen, D. Bazile, and B. Condori. 2020. Global expansion of quinoa and challenges for the Andean region. Global Food Security 26:100429. doi: 10.1016/j.gfs.2020.100429.
  • Aluko, R. E., and E. Monu. 2003. Functional and bioactive properties of quinoa seed protein hydrolysates. Journal of Food Science 68 (4):1254–8. doi: 10.1111/j.1365-2621.2003.tb09635.x.
  • Angeli, V., P. Miguel Silva, D. Crispim Massuela, M. W. Khan, A. Hamar, F. Khajehei, S. Graeff-Hönninger, and C. Piatti. 2020. Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the “golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods 9:216. doi: 10.3390/foods9020216.
  • Bahmanyar, F., S. M. Hosseini, L. Mirmoghtadaie, and S. Shojaee-Aliabadi. 2021. Effects of replacing soy protein and bread crumb with quinoa and buckwheat flour in functional beef burger formulation. Meat Science 172:108305. doi: 10.1016/j.meatsci.2020.108305.
  • Ballester-Sánchez, J., J. V. Gil, M. T. Fernández-Espinar, and C. M. Haros. 2019. Quinoa wet-milling: Effect of steeping conditions on starch recovery and quality. Food Hydrocolloids 89:837–43. doi: 10.1016/j.foodhyd.2018.11.053.
  • Bergamo, P., F. Maurano, G. Mazzarella, G. Iaquinto, L. Vocca, A. R. Rivelli, E. De Falco, C. Gianfrani, and M. Rossi. 2011. Immunological evaluation of the alcohol-soluble protein fraction from gluten-free grains in relation to celiac disease. Molecular Nutrition & Food Research 55 (8):1266–70. doi: 10.1002/mnfr.201100132.
  • Bhargava, A., S. Shukla, S. Rajan, and D. Ohri. 2007. Genetic diversity for morphological and quality traits in quinoa (Chenopodium quinoa Willd.) germplasm. Genetic Resources and Crop Evolution 54 (1):167–73. doi: 10.1007/s10722-005-3011-0.
  • Brinegar, C., and S. Goundan. 1993. Isolation and characterization of chenopodin, the 11S seed storage protein of quinoa (Chenopodium quinoa). Journal of Agricultural and Food Chemistry 41 (2):182–5. doi: 10.1021/jf00026a006.
  • Burrieza, H. P., M. P. López-Fernández, and S. Maldonado. 2014. Analogous reserve distribution and tissue characteristics in quinoa and grass seeds suggest convergent evolution. Frontiers in Plant Science 5:546 doi: 10.3389/fpls.2014.00546.
  • Burrieza, H. P., A. J. Rizzo, and O. E. Pérez. 2020. Quinoa does not contain prolamins. Comments on “Quinoa protein: Composition, structure and functional properties”, Dakhili et al. (2019)). Food Chem 325:126934 doi: 10.1016/j.foodchem.2020.126934.
  • Capraro, J., S. D. Benedetti, M. D. Dio, E. Bona, A. Abate, P. A. Corsetto, and A. Scarafoni. 2020. Characterization of Chenopodin isoforms from quinoa seeds and assessment of their potential anti-inflammatory activity in Caco-2 cells. Biomolecules 10:795. doi: 10.3390/biom10050795.
  • Capraro, J., S. D. Benedetti, G. C. Heinzl, A. Scarafoni, and C. Magni. 2021. Bioactivities of pseudocereal fractionated seed proteins and derived peptides relevant for maintaining human well-being. International Journal of Molecular Sciences 22 (7):3543. doi: 10.3390/ijms22073543.
  • Craine, E. B., and K. M. Murphy. 2020. Corrigendum: Seed composition and amino acid profiles for quinoa grown in Washington state. Frontiers in Nutrition 7:605674 doi: 10.3389/fnut.2020.00126
  • Dakhili, S., L. Abdolalizadeh, S. M. Hosseini, S. Shojaee-Aliabadi, and L. Mirmoghtadaie. 2019. Quinoa protein: Composition, structure and functional properties. Food Chemistry 299:125161 doi: 10.1016/j.foodchem.2019.125161.
  • D’Amico, S., S. Jungkunz, G. Balasz, M. Foeste, M. Jekle, S. Tömösköszi, and R. Schoenlechner. 2019. Abrasive milling of quinoa: Study on the distribution of selected nutrients and proteins within the quinoa seed kernel. Journal of Cereal Science 86:132–8. doi: 10.1016/j.jcs.2019.01.007.
  • Duran, N. M., D. Spelzini, and V. Boeris. 2019. Characterization of acid-induced gels of quinoa proteins and carrageenan. Lwt - Lwt 108:39–47. doi: 10.1016/j.lwt.2019.03.052.
  • Elsohaimy, S. A., T. M. Refaay, and M. A. M. Zaytoun. 2015. Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Sciences 60 (2):297–305. doi: 10.1016/j.aoas.2015.10.007.
  • FAOSTAT. 2021. In Data: Production: Crops and livestock products: Quinoa. Accessed on September 15, 2021. http://www.fao.org/faostat/en/#data/QCL
  • Föste, M., D. Elgeti, A. K. Brunner, M. Jekle, and T. Becker. 2015. Isolation of quinoa protein by milling fractionation and solvent extraction. Food and Bioproducts Processing 96:20–6. doi: 10.1016/j.fbp.2015.06.003.
  • Gong, X., Q. An, L. Le, F. Geng, L. Jiang, J. Yan, D. Xiang, L. Peng, L. Zou, G. Zhao, et al. 2020. Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production. Critical Reviews in Food Science and Nutrition 16:1–17. doi: 10.1080/10408398.2020.1860897.
  • Gonzalez, J. A., Y. Konishi, M. Bruno, M. Valoy, and F. E. Prado. 2012. Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions. Journal of the Science of Food and Agriculture 92 (6):1222–9. doi: 10.1002/jsfa.4686.
  • Guerreo-Ochoa, M. R., R. Pedreschi, and R. Chirinos. 2015. Optimised methodology for the extraction of protein from quinoa (Chenopodium quinoa Willd.). International Journal of Food Science & Technology 50 (8):1815–22. doi: 10.1111/ijfs.12834.
  • Guha, S., and K. Majumder. 2019. Structural-features of food-derived bioactive peptides with anti-inflammatory activity: A brief review. Journal of Food Biochemistry 43 (1):e12531 doi: 10.1111/jfbc.12531.
  • Guo, H., Y. Hao, A. Richel, N. Everaert, Y. Chen, M. Liu, X. Yang, and G. Ren. 2020b. Antihypertensive effect of quinoa protein under simulated gastrointestinal digestion and peptide characterization. Journal of the Science of Food and Agriculture 100 (15):5569–76. doi: 10.1002/jsfa.10609.
  • Guo, H., A. Richel, Y. Hao, X. Fan, N. Everaert, X. Yang, and G. Ren. 2020a. Novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides released from quinoa protein by in silico proteolysis. Food Science and Nutrition 8 (3):1415–22. doi: 10.1002/fsn3.1423.
  • Harding, J. L., M. E. Pavkov, D. J. Magliano, J. E. Shaw, and E. W. Gregg. 2019. Global trends in diabetes complications: A review of current evidence. Diabetologia 62 (1):3–16. doi: 10.1007/s00125-018-4711-2.
  • Jeske, S., E. Zannini, M. F. Cronin, and E. K. Arendt. 2018. Impact of protease and amylase treatment on proteins and the product quality of a quinoa-based milk substitute. Food & Function 9 (6):3500–8. doi: 10.1039/c8fo00336j.
  • Juillerat-Jeanneret, L. 2014. Dipeptidyl peptidase IV and its inhibitors: Therapeutics for type 2 diabetes and what else? Journal of Medicinal Chemistry 57 (6):2197–212. doi: 10.1021/jm400658e.
  • Kehinde, B. A., and P. Sharma. 2020. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review. Critical Reviews in Food Science and Nutrition 60 (2):322–40. doi: 10.1080/10408398.2018.1528206.
  • Koziol, M. J. 1992. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis 5:35–68. doi: 10.1016/0889-1575(92)90006-6.
  • Li, X., S. Y. Da, C. Li, F. Xue, and T. L. Zang. 2018. Effects of high-intensity ultrasound pretreatment with different levels of power output on the antioxidant properties of alcalase hydrolyzates from Quinoa (Chenopodium quinoa Willd) protein isolate. Cereal Chemistry 95 (4):518–26. doi: 10.1002/cche.10055.
  • López-Alarcón, C. A., M. A. Cerdán-Leal, C. I. Beristain, L. A. Pascual-Pineda, E. Azuara, and M. Jiménez-Fernández. 2019. The potential use of modified quinoa protein isolates in cupcakes: Physicochemical properties, structure and stability of cupcakes. Food & Function 10 (7):4432–9. doi: 10.1039/c9fo00852g.
  • López, D. N., M. Galante, G. Raimundo, D. Spelzini, and V. Boeris. 2019. Functional properties of amaranth, quinoa and chia proteins and the biological activities of their hydrolyzates. Food Research International (Ottawa, Ont.) 116:419–29. doi: 10.1016/j.foodres.2018.08.056.
  • López, D. N., M. Galante, M. Robson, V. Boeris, and D. Spelzini. 2018. Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties. International Journal of Biological Macromolecules 109:152–9. doi: 10.1016/j.ijbiomac.2017.12.080.
  • López-Marqués, R. L., A. F. Nørrevang, P. Ache, M. Moog, D. Visintainer, T. Wendt, J. T. Østerberg, C. Dockter, M. E. Jørgensen, A. T. Salvador, et al. 2020. Prospects for the accelerated improvement of the resilient crop quinoa. Journal of Experimental Botany 71 (18):5333–47.,. doi: 10.1093/jxb/eraa285.
  • Majumder, K., Y. Mine, and J. Wu. 2016. The potential of food protein-derived anti-inflammatory peptides against various chronic inflammatory diseases. Journal of the Science of Food and Agriculture 96 (7):2303–11. doi: 10.1002/jsfa.7600.
  • Morales, D., M. Miguel, and M. Garcés-Rimón. 2021. Pseudocereals: A novel source of biologically active peptides. Critical Reviews in Food Science and Nutrition 61 (9):1537–44. doi: 10.1080/10408398.2020.1761774.
  • Mudgil, P., B. P. Kilari, H. Kamal, O. A. Olalere, R. J. FitzGerald, C. H. Gan, and S. Maqsood. 2020. Multifunctional bioactive peptides derived from quinoa protein hydrolysates: Inhibition of α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes. Journal of Cereal Science 96:103130. doi: 10.1016/j.jcs.2020.103130.
  • Mudgil, P., L. S. Omar, H. Kamal, B. P. Kilari, and S. Maqsood. 2019. Multi-functional bioactive properties of intact and enzymatically hydrolysed quinoa and amaranth proteins. Lwt - Lwt 110:207–13. doi: 10.1016/j.lwt.2019.04.084.
  • Mufari, J. R., P. P. Miranda-Villa, and E. L. Calandri. 2018. Quinoa germ and starch separation by wet milling, performance and characterization of the fractions. Lwt - Lwt 96:527–34. doi: 10.1016/j.lwt.2018.06.010.
  • Nasir, M. A. I., Pasha, M. S. Butt, and H. Nawaz. 2015. Biochemical characterization of quinoa with special reference to its protein quality. Pakistan Journal of Agricultural Sciences 52 (3):731–7.
  • Navruz-Varli, S., and N. Sanlier. 2016. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science 69:371–6. doi: 10.1016/j.jcs.2016.05.004.
  • Neha, K., M. R. Haider, A. Pathak, and M. S. Yar. 2019. Medicinal prospects of antioxidants: A review. European Journal of Medicinal Chemistry 178:687–704. doi: 10.1016/j.ejmech.2019.06.010.
  • Ninfali, P., A. Panato, F. Bortolotti, L. Valentini, and P. Gobbi. 2020. Morphological analysis of the seeds of three pseudocereals by using light microscopy and ESEM-EDS. European Journal of Histochemistry 64:3075. doi: 10.4081/ejh.2020.3075.
  • Nongonierma, A. B., S. L. Maux, C. Dubrulle, C. Barre, and R. J. FitzGerald. 2015. Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. Journal of Cereal Science 65:112–8. doi: 10.1016/j.jcs.2015.07.004.
  • Olivera-Montenegro, L., I. Best, and A. Gil-Saldarriaga. 2021. Effect of pretreatment by supercritical fluids on antioxidant activity of protein hydrolyzate from quinoa (Chenopodium quinoa Willd.). Food Science & Nutrition 9 (1):574–82. doi: 10.1002/fsn3.2027.
  • Opazo-Navarrete, M., M. A. I. Schutyser, R. M. Boom, and A. E. M. Janssen. 2018a. Effect of pre-treatment on in vitro gastric digestion of quinoa protein (Chenopodium quinoa Willd.) obtained by wet and dry fractionation. International Journal of Food Sciences and Nutrition 69 (1):1–11. doi: 10.1080/09637486.2017.1332171.
  • Opazo-Navarrete, M., D. Tagle Freire, R. M. Boom, A. E. M. Janssen, and M. A. I. Schutyser. 2018b. Dry fractionation of quinoa sweet varieties Atlas and Riobamba for sustainable production of protein and starch fractions. Journal of Food Composition and Analysis 74:95–101. doi: 10.1016/j.jfca.2018.09.009.
  • Pelgrom, P. J. M., A. M. Vissers, R. M. Boom, and M. A. I. Schutyser. 2013. Dry fractionation for production of functional pea protein concentrates. Food Research International 53 (1):232–9. doi: 10.1016/j.foodres.2013.05.004.
  • Peñas, E., F. Uberti, C. D. Lorenzo, C. Ballabio, A. Brandolini, and P. Restani. 2014. Biochemical and immunochemical evidences supporting the inclusion of quinoa (Chenopodium quinoa Willd.) as a gluten-free ingredient. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 69 (4):297–303. doi: 10.1007/s11130-014-0449-2.
  • Piñuel, L., P. Boeri, F. Zubillaga, D. A. Barrio, J. Torreta, A. Cruz, G. Vásquez, A. Pinto, and W. Carrillo. 2019. Production of white, red and black quinoa (Chenopodium quinoa Willd Var. Real) protein isolates and its hydrolysates in germinated and non-germinated quinoa samples and antioxidant activity evaluation. Plants 8:257. doi: 10.3390/plants8080257.
  • Prakash, D., and M. Pal. 1998. Chenopodium: Seed protein, fractionation and amino acid composition. International Journal of Food Sciences and Nutrition 49 (4):271–5. doi: 10.3109/09637489809089398.
  • Prego, I., S. Maldonado, and M. Otegui. 1998. Seed structure and localization of reserves in Chenopodium quinoa. Annals of Botany 82 (4):481–8. doi: 10.1006/anbo.1998.0704.
  • Rangaswamy, A. N., A. Ashok, P. Hanumanthappa, A. S. Chandrashekaramurthy, M. Kumbaiah, P. Hiregouda, V. Sharma, and A. H. Sosalegowda. 2021. Identification of potential peptide inhibitors of ACE-2 target of SARS-CoV-2 from buckwheat & Quinoa. International Journal of Peptide Research and Therapeutics 27:1–1813. doi: 10.1007/s10989-021-10211-1.
  • Ravisankar, S., D. C. Gutierrez, R. Chirinos, and G. Noratto. 2015. Quinoa (Chenopodium Quinoa) peptides protect Human Umbilical Vein Endothelial Cells (HUVEC) against risk markers for cardiovascular disease (CVD). FASEB Journal 29:923–33. doi: 10.1096/fasebj.29.1_supplement.923.10.
  • Ren, G., Y. Zhu, Z. Shi, and J. Li. 2017. Detection of lunasin in quinoa (Chenopodium quinoa Willd.) and the in vitro evaluation of its antioxidant and anti-infammatory activities. Journal of the Science of Food and Agriculture 97 (12):4110–6. doi: 10.1002/jsfa.8278.
  • Rizzello, C. G., A. Lorusso, V. Russo, D. Pinto, B. Marzani, and M. Gobbetti. 2017. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria. International Journal of Food Microbiology 241:252–61. doi: 10.1016/j.ijfoodmicro.2016.10.035.
  • Roa-Acosta, D. F., J. E. Bravo-Gómez, M. A. García-Parra, R. Rodríguez-Herrera, and J. F. Solanilla-Duque. 2020. Hyper-protein quinoa flour (Chenopodium Quinoa Wild): Monitoring and study of structural and rheological properties. Lwt - Lwt 121:108952. doi: 10.1016/j.lwt.2019.108952.
  • Ruiz, G. A., A. Arts, M. Minor, and M. Schutyser. 2016c. A hybrid dry and aqueous fractionation method to obtain protein-rich fractions from quinoa (Chenopodium quinoa Willd). Food and Bioprocess Technology 9 (9):1502–10. doi: 10.1007/s11947-016-1731-0.
  • Ruiz, K. B., S. Biondi, R. Oses, I. S. Acuña-Rodríguez, F. Antognoni, E. A. Martinez-Mosqueira, A. Coulibaly, A. Canahua-Murillo, M. Pinto, A. Zurita-Silva, et al. 2014. Quinoa biodiversity and sustainability for food security under climate change: A review. Agronomy for Sustainable Development 34 (2):349–59. doi: 10.1007/s13593-013-0195-0.
  • Ruiz, G. A., M. Opazo-Navarrete, M. Meurs, M. Minor, G. Sala, M. van Boekel, M. Stieger, and A. E. M. Janssen. 2016b. Denaturation and in vitro gastric digestion of heat-treated quinoa protein isolates obtained at various extraction pH. Food Biophysics 11:184–97. doi: 10.1007/s11483-016-9429-4.
  • Ruiz, G. A., W. Xiao, M. van Boekel, M. Minor, and M. Stieger. 2016a. Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd). Food Chemistry 209:203–10. doi: 10.1016/j.foodchem.2016.04.052.
  • Scrivo, R., M. Vasile, I. Bartosiewicz, and G. Valesini. 2011. Inflammation as “common soil” of the multifactorial diseases. Autoimmunity Reviews 10 (7):369–74. doi: 10.1016/j.autrev.2010.12.006.
  • Shen, Y., X. Tang, and Y. Li. 2021. Drying methods affect physicochemical and functional properties of quinoa protein isolate. Food Chemistry 339:127823 doi: 10.1016/j.foodchem.2020.127823.
  • Shi, D., M. Fidelis, Y. Ren, A. K. Stone, Y. Ai, and M. T. Nickerson. 2020. The functional attributes of Peruvian (Kankolla and Blanca juli blend) and Northern quinoa (NQ94PT) flours and protein isolates, and their protein quality. Food Research International 128:108799 doi: 10.1016/j.foodres.2019.108799.
  • Shi, Z., Y. Hao, C. Teng, Y. Yao, and G. Ren. 2019. Functional properties and adipogenesis inhibitory activity of protein hydrolysates from quinoa (Chenopodium quinoa Willd.). Food Science and Nutrition 7 (6):2103–12. doi: 10.1002/fsn3.1052.
  • Solaesa, A. G., M. Villanueva, A. J. Vela, and F. Ronda. 2020. Protein and lipid enrichment of quinoa (cv. Titicaca) by dry fractionation. Techno-functional, thermal and rheological properties of milling fractions. Food Hydrocolloids 105:105770. doi: 10.1016/j.foodhyd.2020.105770.
  • Sorriento, D., and G. Iaccarino. 2019. Inflammation and cardiovascular diseases: The most recent findings. International Journal of Molecular Sciences 20:3879. doi: 10.3390/ijms20163879.
  • Steffolani, M. E., P. Villacorta, E. R. Morales-Soriano, R. Repo-Carrasco, A. E. Leon, and G. T. Perez. 2016. Physicochemical and functional characterization of protein isolated from different quinoa varieties (Chenopodium quinoa Willd.). Cereal Chemistry Journal 93 (3):275–81. doi: 10.1094/CCHEM-04-15-0083-R.
  • Suárez-Estrella, D., L. Torri, M. A. Pagani, and A. Marti. 2018. Quinoa bitterness: Causes and solutions for improving product acceptability. Journal of the Science of Food and Agriculture 98 (11):4033–41. doi: 10.1002/jsfa.8980.
  • Takao, T.,. N. Watanabe, K. Yuhara, S. Itoh, S. Suda, Y. Tsuruoka, K. Nakatsugawa, and Y. Konishi. 2005. Hypocholesterolemic effect of protein isolated from quinoa (Chenopodium quinoa Willd.) seeds. Food Science and Technology Research 11 (2):161–7. doi: 10.3136/fstr.11.161.
  • Tu, G. L., T. H. N. Bui, T. H. T. Tran, N. M. N. Ton, and V. V. M. Le. 2015. Comparison of enzymatic and ultrasonic extraction of albumin from defatted pumpkin (Cucurbita pepo)Seed Powder. Food Technology and Biotechnology 53 (4):479–87. doi: 10.17113/ftb.53.04.15.4159.
  • Tu, M. L., S. Z. Cheng, W. H. Lu, and M. Du. 2018. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. Trac Trends in Analytical Chemistry 105:7–17. doi: 10.1016/j.trac.2018.04.005.
  • Udenigwe, C. C., and A. Mohan. 2014. Mechanisms of food protein-derived antihypertensive peptides other than ACE inhibition. Journal of Functional Foods 8:45–52. doi: 10.1016/j.jff.2014.03.002.
  • Ujiroghene, O. J., L. Liu, S. W. Zhang, J. Lu, X. Y. Pang, and J. P. Lv. 2019. α-Glucosidase and ACE dual inhibitory protein hydrolysates and peptide fractions of sprouted quinoa yoghurt beverages inoculated with Lactobacillus casei. Food Chemistry 299:124985 doi: 10.1016/j.foodchem.2019.124985.
  • Valenzuela Zamudio, F., and M. R. Segura Campos. 2020. Amaranth, quinoa and chia bioactive peptides: A comprehensive review on three ancient grains and their potential role in management and prevention of Type 2 diabetes. Critical Reviews in Food Science and Nutrition 11:1–15. doi: 10.1080/10408398.2020.1857683.
  • Valenzuela, C., L. Abugoch, C. Tapia, and A. Gamboa. 2013. Effect of alkaline extraction on the structure of the protein of quinoa (Chenopodium quinoa Willd.) and its influence on film formation. International Journal of Food Science & Technology 48 (4):843–9. doi: 10.1111/ijfs.12035.
  • Van de Vondel, J., M. A. Lambrecht, and J. A. Delcour. 2020. Osborne extractability and chromatographic separation of protein from quinoa (Chenopodium quinoa Willd.) wholemeal. Lwt - Lwt 126:109321. doi: 10.1016/j.lwt.2020.109321.
  • Vera, A., M. A. Valenzuela, M. Yazdani-Pedram, C. Tapia, and L. Abugoch. 2019. Conformational and physicochemical properties of quinoa proteins affected by different conditions of high-intensity ultrasound treatments. Ultrasonics Sonochemistry 51:186–96. doi: 10.1016/j.ultsonch.2018.10.026.
  • Vilcacundo, R., D. Barrio, C. Carpio, A. García-Ruiz, J. Rúales, B. Hernández-Ledesma, and W. Carrillo. 2017. Digestibility of quinoa (Chenopodium quinoa Willd.) protein concentrate and its potential to inhibit lipid peroxidation in the Zebrafish Larvae Model. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 72 (3):294–300. doi: 10.1007/s11130-017-0626-1.
  • Vilcacundo, R., C. Martínez-Villaluenga, and B. Hernández-Ledesma. 2017. Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. Journal of Functional Foods 35:531–9. doi: 10.1016/j.jff.2017.06.024.
  • Vilcacundo, R., B. Miralles, W. Carrillo, and B. Hernández-Ledesma. 2018. In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Research International 105:403–11. doi: 10.1016/j.foodres.2017.11.036.
  • Villareal, R. M., and B. O. Juliano. 1981. Properties of albumins of milled rice. Phytochemistry 20 (8):1785–9. doi: 10.1016/0031-9422(81)84004-6.
  • Watanabe, K., A. Ibuki, Y. C. Chen, Y. Kawamura, and T. Mitsunaga. 2003. Composition of quinoa protein fractions. Nippon Shokuhin Kagaku Kogaku KAISHI 50 (11):546–9. doi: 10.3136/nskkk.50.546.
  • Wen, C., J. Zhang, H. Zhang, Y. Duan, and H. Ma. 2020. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends in Food Science & Technology 105:308–22. doi: 10.1016/j.tifs.2020.09.019.
  • Wong, F. C., J. H. Ong, D. T. Kumar, and T. T. Chai. 2021. In silico identification of multi-target anti-SARS-CoV-2 peptides from quinoa seed proteins. International Journal of Peptide Research and Therapeutics 27:1–1847. doi: 10.1007/s10989-021.10214-y
  • Zevallos, V. F., H. J. Ellis, T. Suligoj, L. I. Herencia, and P. J. Ciclitira. 2012. Variable activation of immune response by quinoa (Chenopodium quinoa Willd.) prolamins in celiac disease. The American Journal of Clinical Nutrition 96 (2):337–44. doi: 10.3945/ajcn.111.030684.
  • Zheng, Y., J. Tian, W. Yang, S. Chen, D. Liu, H. Fang, H. Zhang, and X. Ye. 2020. Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Food Chemistry 317:126346 doi: 10.1016/j.foodchem.2020.126346.
  • Zheng, Y. J., X. Wang, Y. L. Zhuang, Y. Li, H. L. Tian, P. Q. Shi, and G. F. Li. 2019. Isolation of novel ACE-inhibitory and antioxidant peptides from quinoa bran albumin assisted with an in silico approach: Characterization, in vivo antihypertension, and molecular docking. Molecules 24:4562. doi: 10.3390/molecules24244562.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.