1,003
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Recent insights on tea metabolites, their biosynthesis and chemo-preventing effects: A review

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Ahmed, S., T. S. Griffin, D. Kraner, M. K. Schaffner, D. Sharma, M. Hazel, A. R. Leitch, C. M. Orians, W. Han, J. R. Stepp, et al. 2019. Environmental factors variably impact tea secondary metabolites in the context of climate change. Frontiers in Plant Science 10:939. doi: 10.3389/fpls.2019.00939.
  • Al-Maghrebi, M., A. S. Alnajem, and A. Esmaeil. 2020. Epigallocatechin-3-gallate modulates germ cell apoptosis through the SAFE/Nrf2 signaling pathway. Naunyn-Schmiedeberg’s Archives of Pharmacology 393 (4):663–71. doi: 10.1007/s00210-019-01776-2.
  • Almatroodi, S. A., A. Almatroudi, M. A. Alsahli, M. A. Aljasir, M. A. Syed, and A. H. Rahmani. 2020. Epigallocatechin-3-Gallate (EGCG), an active compound of green tea attenuates acute lung injury regulating macrophage polarization and Krüpple-like-factor 4 (KLF4) expression. Molecules 25 (12):2853. doi: 10.3390/molecules25122853.
  • Alshatwi, A. A., J. Athinarayanan, and P. V. Subbarayan. 2015. Green synthesis of platinum nanoparticles that induce cell death and G2/M-phase cell cycle arrest in human cervical cancer cells. Journal of Materials Science: Materials in Medicine 26 (1):1–9.
  • Ashokraj, S., E. E. Raj, K. N. Chandrashekara, R. Govindaraj, T. F. Blessia, and B. Radhakrishnan. 2020. Gene expression profiling of tea (Camellia sinensis L.) in response to biotic stress using microarrays. BioRxiv. doi: 10.1101/2020.03.17.994806.
  • Ayuda-Durán, B., S. González-Manzano, A. M. González-Paramás, and C. Santos-Buelga. 2020. Caenorhabditis elegans as a model organism to evaluate the antioxidant effects of phytochemicals. Molecules 25 (14):3194. doi: 10.3390/molecules25143194.
  • Balavandy, S. K., K. Shameli, and Z. Z. Abidin. 2015. Rapid and green synthesis of silver nanoparticles via sodium alginate media. International Journal of Electrochemical Science 10 (1):486–97.
  • Banerjee, A., and A. Roychoudhury. 2015. WRKY proteins: Signaling and regulation of expression during abiotic stress responses. The Scientific World Journal 2015:807560. doi: 10.1155/2015/807560.
  • Baranowska-Wójcik, E., D. Szwajgier, and A. Winiarska-Mieczan. 2020. Regardless of the brewing conditions, various types of tea are a source of acetylcholinesterase inhibitors. Nutrients 12 (3):709. https://www.mdpi.com/2072-6643/12/3/709.
  • Bhuyan, L. P., P. Borah, S. Sabhapondit, R. Gogoi, and P. Bhattacharyya. 2015. Spatial variability of theaflavins and thearubigins fractions and their impact on black tea quality. Journal of Food Science and Technology 52 (12):7984–93.
  • Cai, Z.-Y., X.-M. Li, J.-P. Liang, L.-P. Xiang, K.-R. Wang, Y.-L. Shi, R. Yang, M. Shi, J.-H. Ye, J.-L. Lu, et al. 2018. Bioavailability of tea catechins and its improvement. Molecules (Basel, Switzerland) 23 (9):2346. http://www.mdpi.com/1420-3049/23/9/2346.
  • Cao, S.-Y., C.-N. Zhao, R.-Y. Gan, X.-Y. Xu, X.-L. Wei, H. Corke, A. G. Atanasov, and H.-B. Li. 2019. Effects and mechanisms of tea and its bioactive compounds for the prevention and treatment of cardiovascular diseases: An updated review. Antioxidants 8 (6):166. doi: 10.3390/antiox8060166.
  • Carneiro, B. M., M. N. Batista, A. C. S. Braga, M. L. Nogueira, and P. Rahal. 2016. The green tea molecule EGCG inhibits Zika virus entry. Virology 496:215–8. doi: 10.1016/j.virol.2016.06.012.
  • Casanova, E., J. Salvadó, A. Crescenti, and A. Gibert-Ramos. 2019. Epigallocatechin gallate modulates muscle homeostasis in type 2 diabetes and obesity by targeting energetic and redox pathways: A narrative review. International Journal of Molecular Sciences 20 (3):532.
  • Chen, J.-D., C. Zheng, J.-Q. Ma, C.-K. Jiang, S. Ercisli, M.-Z. Yao, and L. Chen. 2020. The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant. Horticulture Research 7 (1):1–11. doi: 10.1038/s41438-020-0288-2.
  • Chen, M.-L., C.-J. Lai, Y.-N. Lin, C.-M. Huang, and Y.-H. Lin. 2020. Multifunctional nanoparticles for targeting the tumor microenvironment to improve synergistic drug combinations and cancer treatment effects. Journal of Materials Chemistry B 8 (45):10416–27. doi: 10.1039/d0tb01733g.
  • Chen, M., L. Zhai, and M. C. Arendrup. 2015. In vitro activity of 23 tea extractions and epigallocatechin gallate against Candida species. Medical Mycology 53 (2):194–8. https://academic.oup.com/mmy/article/53/2/194/1072631.
  • Chen, X., Z. Yi, G. Chen, X. Ma, W. Su, X. Cui, and X. Li. 2019. DOX-assisted functionalization of green tea polyphenol nanoparticles for effective chemo-photothermal cancer therapy. Journal of Materials Chemistry B 7 (25):4066–78. doi: 10.1039/C9TB00751B.
  • Chen, Y., X.-Q. Wang, Q. Zhang, J.-Y. Zhu, Y. Li, C.-F. Xie, X.-T. Li, J.-S. Wu, S.-S. Geng, C.-Y. Zhong, et al. 2017. (−)-Epigallocatechin-3-gallate inhibits colorectal cancer stem cells by suppressing Wnt/β-catenin pathway. Nutrients 9 (6):572. doi: 10.3390/nu9060572.
  • Chesser, A. S., V. Ganeshan, J. Yang, and G. V. W. Johnson. 2016. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutritional Neuroscience 19 (1):21–31. doi: 10.1179/1476830515Y.0000000038.
  • Chowdhury, P., M.-E. Sahuc, Y. Rouillé, C. Rivière, N. Bonneau, A. Vandeputte, P. Brodin, M. Goswami, T. Bandyopadhyay, J. Dubuisson, et al. 2018. Theaflavins, polyphenols of black tea, inhibit entry of hepatitis c virus in cell culture. PLoS One 13 (11):e0198226. doi: 10.1371/journal.pone.0198226.
  • Chung, S. S., and J. V. Vadgama. 2015. Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFkB signaling. Anticancer Research 35 (1):39–46.
  • Coşan, D. T., F. Saydam, C. Özbayer, F. Doğaner, A. Soyocak, H. V. Güneş, İ. Değirmenci, H. Kurt, M. C. Üstüner, and C. Bal. 2015. Impact of tannic acid on blood pressure, oxidative stress and urinary parameters in L-NNA-induced hypertensive rats. Cytotechnology 67 (1):97–105. doi: 10.1007/s10616-013-9661-4.
  • Dahiya, S., R. Rani, D. Dhingra, S. Kumar, and N. Dilbaghi. 2018. Conjugation of epigallocatechin gallate and piperine into a zein nanocarrier: Implication on antioxidant and anticancer potential. Advances in Natural Sciences: Nanoscience and Nanotechnology 9 (3):035011.
  • Dai, W., C. Ruan, Y. Sun, X. Gao, and J. Liang. 2020. Controlled release and antioxidant activity of chitosan and β-lactoglobulin complex nanoparticles loaded with epigallocatechin gallate. Colloids and Surface B: Biointerfaces 188:110802. doi: 10.1016/j.colsurfb.2020.110802.
  • Dandawate, P. R., D. Subramaniam, R. A. Jensen, and S. Anant. 2016. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Seminars in Cancer Biology 40–41:192–208. doi: 10.1016/j.semcancer.2016.09.001.
  • Deb, S., A. Dutta, B. C. Phukan, T. Manivasagam, A. Justin Thenmozhi, P. Bhattacharya, R. Paul, and A. Borah. 2019. Neuroprotective attributes of L-theanine, a bioactive amino acid of tea, and its potential role in Parkinson’s disease therapeutics. Neurochemistry International 129:104478.
  • Dos Santos, A. N., T. R. de L Nascimento, B. L. C. Gondim, M. M. A. C. Velo, R. I. d. A. Rêgo, J. R. d. C. Neto, J. R. Machado, M. V. da Silva, H. W. C. de Araújo, M. G. Fonseca, et al. 2020. Catechins as model bioactive compounds for biomedical applications. Current Pharmaceutical Design 26 (33):4032–47.
  • Du, L.-L., Q.-Y. Fu, L.-P. Xiang, X.-Q. Zheng, J.-L. Lu, J.-H. Ye, Q.-S. Li, C. Polito, and Y.-R. Liang. 2016. Tea polysaccharides and their bioactivities. Molecules (Basel, Switzerland) 21 (11):1449. http://www.mdpi.com/1420-3049/21/11/1449.
  • Elmassry, M. M., E. Chung, J. J. Cao, A. N. Hamood, and C. L. Shen. 2020. Osteoprotective effect of green tea polyphenols and annatto-extracted tocotrienol in obese mice is associated with enhanced microbiome vitamin K2 biosynthetic pathways. The Journal of Nutritional Biochemistry 86:108492. doi: 10.1016/j.jnutbio.2020.108492.
  • Fu, J. D., J. J. Yao, H. Wang, W. G. Cui, J. Leng, L. Y. Ding, and K. Y. Fan. 2019. Effects of EGCG on proliferation and apoptosis of gastric cancer SGC7901 cells via down-regulation of HIF-1α and VEGF under a hypoxic state. European Review for Medical and Pharmacological Sciences 23:155–61.
  • Furushima, D., K. Ide, and H. Yamada. 2018. Effect of tea catechins on influenza infection and the common cold with a focus on epidemiological/clinical studies. Molecules 23 (7):1795. doi: 10.3390/molecules23071795.
  • Gao, Y., and T. O. Tollefsbol. 2015. Impact of epigenetic dietary components on cancer through histone modifications. Current Medicinal Chemistry 22 (17):2051–64.
  • Ghabru, A., and R. Sud. 2017. Variations in phenolic constituents of green tea [Camellia sinensis (L) O Kuntze] due to changes in weather conditions. Journal of Pharmacognosy and Phytochemistry 6 (5):1553–7.
  • Ghosh, R., A. Chakraborty, A. Biswas, and S. Chowdhuri. 2021. Evaluation of Green Tea Polyphenols as Novel Corona Virus (SARS CoV-2) Main Protease (Mpro) Inhibitors - an in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics 39 (12):4362–74. doi: 10.1080/07391102.2020.1779818.
  • Granja, A., A. R. Neves, C. T. Sousa, M. Pinheiro, and S. Reis. 2019. EGCG intestinal absorption and oral bioavailability enhancement using folic acid-functionalized nanostructured lipid carriers. Heliyon 5 (7):e02020.
  • Granja, A., M. Pinheiro, and S. Reis. 2016. Epigallocatechin gallate nanodelivery systems for cancer therapy. Nutrients 8 (5):307.
  • Ha, T., M. K. Kim, K. Park, W. Jung, H. Choo, and Y. Chong. 2018. Structural modification of (-)-epigallocatechin gallate (EGCG) shows significant enhancement in mitochondrial biogenesis. Journal of Agricultural and Food Chemistry 66 (15):3850–9. doi: 10.1021/acs.jafc.8b00364.
  • Hajiboland, R. 2017. Environmental and nutritional requirements for tea cultivation. Folia Horticulturae 29 (2):199–220. http://www.foliahort.ogr.ur.krakow.pl. doi: 10.1515/fhort-2017-0019.
  • Hajipour, H., H. Hamishehkar, S. N. S. Ahmad, S. Barghi, N. F. Maroufi, and R. A. Taheri. 2018. Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers. Artificial Cells, Nanomedicine, and Biotechnology 46 (supp1):283–92. doi: 10.1080/21691401.2017.1423493.
  • Hayashi, D., L. Wang, S. Ueda, M. Yamanoue, H. Ashida, and Y. Shirai. 2020. The mechanisms of ameliorating effect of a green tea polyphenol on diabetic nephropathy based on diacylglycerol kinase α. Scientific Reports 10 (1):1–12. doi: 10.1038/s41598-020-68716-6.
  • He, X., X. Zhao, L. Gao, X. Shi, X. Dai, Y. Liu, T. Xia, and Y. Wang. 2018. Isolation and characterization of key genes that promote flavonoid accumulation in purple-leaf tea (Camellia sinensis L.). Scientific Reports 8 (1):130.
  • Holczer, M., B. Besze, V. Zámbó, M. Csala, G. Bánhegyi, and O. Kapuy. 2018. Epigallocatechin-3-gallate (EGCG) promotes autophagy-dependent survival via influencing the balance of MTOR-AMPK pathways upon endoplasmic reticulum stress. Oxidative Medicine and Cellular Longevity 2018:6721530. doi: 10.1155/2018/6721530.
  • Hong, S., S. H. Seo, S.-J. Woo, Y. Kwon, M. Song, and N.-C. Ha. 2021. Epigallocatechin gallate inhibits the uridylate-specific endoribonuclease Nsp15 and efficiently neutralizes the SARS-CoV-2 strain. Journal of Agricultural and Food Chemistry 69 (21):5948–54. doi: 10.1021/acs.jafc.1c02050.
  • Huang, Z., X. Jing, Y. Sheng, J. Zhang, Z. Hao, Z. Wang, and L. Ji. 2019. (-)-Epicatechin attenuates hepatic sinusoidal obstruction syndrome by inhibiting liver oxidative and inflammatory injury. Redox Biology 22:101117. doi: 10.1016/j.redox.2019.101117.
  • Huang, Z., Y. Pang, H. Hao, W. Du, X. Zhao, and H. Zhu. 2018. Effects of epigallocatechin-3-gallate on bovine oocytes matured in vitro. Asian-Australasian Journal of Animal Sciences 31 (9):1420–30. doi: 10.5713/ajas.17.0880.
  • Hu, B., Y. Wang, M. Xie, G. Hu, F. Ma, and X. Zeng. 2015. Polymer nanoparticles composed with gallic acid grafted chitosan and bioactive peptides combined antioxidant, anticancer activities and improved delivery property for labile polyphenols. Journal of Functional Foods 15:593–603. doi: 10.1016/j.jff.2015.04.009.
  • Hu, B., M. Xie, C. Zhang, and X. Zeng. 2014. Genipin-Structured peptide-polysaccharide nanoparticles with significantly improved resistance to harsh gastrointestinal environments and their potential for oral delivery of polyphenols. Journal of Agricultural and Food Chemistry 62 (51):12443–52. doi: 10.1021/jf5046766.
  • Jang, M., Y. I. Park, Y. E. Cha, R. Park, S. Namkoong, J. I. Lee, and J. Park. 2020. Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Evidence-Based Complementary and Alternative Medicine: ECAM 2020:5630838. doi: 10.1155/2020/5630838.
  • Jang, M., R. Park, Y. I. Park, Y. E. Cha, A. Yamamoto, J. I. Lee, and J. Park. 2021. EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro. Biochemical and Biophysical Research Communications 547:23–8. doi: 10.1016/j.bbrc.2021.02.016.
  • Kaihatsu, K., M. Yamabe, and Y. Ebara. 2018. Antiviral mechanism of action of epigallocatechin-3-O-gallate and its fatty acid esters. Molecules 23 (10):2475. doi: 10.3390/molecules23102475.
  • Karatas, A., A. F. Dagli, C. Orhan, H. Gencoglu, M. Ozgen, N. Sahin, K. Sahin, and S. S. Koca. 2020. Epigallocatechin 3-gallate attenuates arthritis by regulating Nrf2, HO-1, and cytokine levels in an experimental arthritis model. Biotechnology and Applied Biochemistry 67 (3):317–22. doi: 10.1002/bab.1860.
  • Karimi, A., M. T. Moradi, S. Alidadi, and L. Hashemi. 2016. Anti-adenovirus activity, antioxidant potential, and phenolic content of black tea (Camellia sinensis Kuntze) extract. Journal of Complementary & Integrative Medicine 13 (4):357–63.
  • Kawarai, T., N. Narisawa, S. Yoneda, Y. Tsutsumi, J. Ishikawa, Y. Hoshino, and H. Senpuku. 2016. Inhibition of Streptococcus mutans biofilm formation using extracts from Assam tea compared to green tea. Archives of Oral Biology 68:73–82. doi: 10.1016/j.archoralbio.2016.04.002.
  • Kazi, J., R. Sen, S. Ganguly, T. Jha, S. Ganguly, and M. C. Debnath. 2020. Folate decorated epigallocatechin-3-gallate (EGCG) loaded PLGA nanoparticles; in-vitro and in-vivo targeting efficacy against MDA-MB-231 tumor xenograft. International Journal of Pharmaceutics 585:119449. doi: 10.1016/j.ijpharm.2020.119449.
  • Khan, M. I., A. Ahhmed, J. H. Shin, J. S. Baek, M. Y. Kim, and J. D. Kim. 2018. Green tea seed isolated saponins exerts antibacterial effects against various strains of gram positive and gram negative bacteria, a comprehensive study in vitro and in vivo. Evidence-Based Complementary and Alternative Medicine: ECAM 2018:3486106. doi: 10.1155/2018/3486106.
  • Khan, N., and H. Mukhtar. 2015. Dietary agents for prevention and treatment of lung cancer. Cancer Letters 359 (2):155–64.
  • Kharisma, V. D., M. H. Widyananda, A. N. M. Ansori, A. S. Nege, S. W. Naw, and A. P. Nugraha. 2021. Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: A bioinformatics approach. Journal of Pharmacy & Pharmacognosy Research 9 (4):435–45.
  • Kong, K., M. S. Islam, M. Nassar, N. Hiraishi, M. Otsuki, C. K. Y. Yiu, and J. Tagami. 2015. Effect of phytic acid etchant on the structural stability of demineralized dentine and dentine bonding. Journal of the Mechanical Behavior of Biomedical Materials 48:145–52. doi: 10.1016/j.jmbbm.2015.03.027.
  • Kudelaiti, M., W. J. Tang, W. N. He, J. L. Wang, H. L. Song, and X. H. Shen. 2018. Effect of epigallocatechin-3-gallate on oxidative stress and inflammation in 3T3-L1 adipocytes. Journal of Shanghai Jiaotong University (Medical Science) 38 (11):1289–93.
  • Kumar, D., N. Sharma, M. Aarthy, S. K. Singh, and R. Giri. 2020. Mechanistic insights into Zika virus NS3 helicase inhibition by epigallocatechin-3-gallate. ACS Omega 5 (19):11217–26. doi: 10.1021/acsomega.0c01353.
  • Kumar, S., R. Meena, and P. Rajamani. 2016. Fabrication of BSA-green tea polyphenols-chitosan nanoparticles and their role in radioprotection: A molecular and biochemical approach. Journal of Agricultural and Food Chemistry 64 (30):6024–34. doi: 10.1021/acs.jafc.6b02068.
  • Lee, S.-B., E.-H. Choi, K.-H. Jeong, K.-S. Kim, S.-M. Shim, and G.-H. Kim. 2020. Effect of catechins and high-temperature-processed green tea extract on scavenging reactive oxygen species and preventing Aβ1–42 fibrils’ formation in brain microvascular endothelium. Nutritional Neuroscience 23 (5):363–73. doi: 10.1080/1028415X.2018.1507618.
  • Lee, Y. H., Y. H. Jang, Y.-S. Kim, J. Kim, and B. L. Seong. 2018. Evaluation of green tea extract as a safe personal hygiene against viral infections. Journal of Biological Engineering 12 (1):1–10. doi: 10.1186/s13036-017-0092-1.
  • Liang, K., K. H. Bae, A. Nambu, B. Dutta, J. E. Chung, M. Osato, and M. Kurisawa. 2020. A two-pronged anti-leukemic agent based on a hyaluronic acid-green tea catechin conjugate for inducing targeted cell death and terminal differentiation. Biomaterials Science 8 (1):497–505. doi: 10.1039/c9bm01146c.
  • Liang, K., J. E. Chung, S. J. Gao, N. Yongvongsoontorn, and M. Kurisawa. 2018. Highly augmented drug loading and stability of micellar nanocomplexes composed of doxorubicin and poly(ethylene glycol)-green tea catechin conjugate for cancer therapy. Advanced Materials (Deerfield Beach, FL) 30 (14):e1706963. doi: 10.1002/adma.201706963.
  • Liang, K., S. Ng, F. Lee, J. Lim, J. E. Chung, S. S. Lee, and M. Kurisawa. 2016. Targeted intracellular protein delivery based on hyaluronic acid-green tea catechin nanogels. Acta Biomaterialia 33:142–52. doi: 10.1016/j.actbio.2016.01.011.
  • Li, F., Y. Wang, D. Li, Y. Chen, X. Qiao, R. Fardous, A. Lewandowski, J. Liu, T. H. Chan, and Q. P. Dou. 2018. Perspectives on the recent developments with green tea polyphenols in drug discovery. Expert Opinion on Drug Discovery 13 (7):643–60.
  • Li, X., L. Zhang, G. J. Ahammed, Z. X. Li, J. P. Wei, C. Shen, P. Yan, L. P. Zhang, and W. Y. Han. 2017. Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L. Scientific Reports 7 (1):7937.
  • Li, Y.-J., S.-L. Wu, S.-M. Lu, F. Chen, Y. Guo, S.-M. Gan, Y.-L. Shi, S. Liu, and S.-L. Li. 2015. (-)-Epigallocatechin-3-gallate inhibits nasopharyngeal cancer stem cell self-renewal and migration and reverses the epithelial-mesenchymal transition via NF-κB p65 inactivation. Tumour Biology 36 (4):2747–61. doi: 10.1007/s13277-014-2899-4.
  • Li, Z., and L. Gu. 2014. Fabrication of Self-Assembled (-)-epigallocatechin gallate (EGCG) ovalbumin-dextran conjugate nanoparticles and their transport across monolayers of human intestinal epithelial Caco-2 cells. Journal of Agricultural and Food Chemistry 62 (6):1301–9. doi: 10.1021/jf404621f.
  • Lin, F. J., X. L. Wei, H. Y. Liu, H. Li, Y. Xia, D. T. Wu, P. Z. Zhang, G. R. Gandhi, H.-B. Li, and R. Y. Gan. 2021. State-of-the-art review of dark tea: From chemistry to health benefits. Trends in Food Science and Technology 109:126–38. doi: 10.1016/j.tifs.2021.01.030.
  • Liu, C., Z. Zhang, Q. Kong, R. Zhang, and X. Yang. 2019. Enhancing the antitumor activity of tea polyphenols encapsulated in biodegradable nanogels by macromolecular self-assembly. RSC Advances 9 (18):10004–16. doi: 10.1039/C8RA07783E.
  • Liu, M., H. L. Tian, J. H. Wu, R. R. Cang, R. X. Wang, X. H. Qi, Q. Xu, and X. H. Chen. 2015. Relationship between gene expression and the accumulation of catechin during spring and autumn in tea plants (Camellia sinensis L.). Horticulture Research 2 (1):1–8.
  • Liu, Z., M. E. Bruins, W. J. C. de Bruijn, and J. P. Vincken. 2020. A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation. Journal of Food Composition and Analysis 86:103385. doi: 10.1016/j.jfca.2019.103385.
  • Lovato, A., A. Pignatti, N. Vitulo, E. Vandelle, and A. Polverari. 2019. Inhibition of virulence-related traits in Pseudomonas syringae pv. actinidiae by Gunpowder green tea extracts. Frontiers in Microbiology 10:2362. doi: 10.3389/fmicb.2019.02362.
  • Lung, J., Y.-S. Lin, Y.-H. Yang, Y.-L. Chou, L.-H. Shu, Y.-C. Cheng, H. T. Liu, and C.-Y. Wu. 2020. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. Journal of Medical Virology 92 (6):693–7. doi: 10.1002/jmv.25761.
  • Ma, L., X. Yang, Y. Shi, X. Yi, L. Ji, Y. Cheng, K. Ni, and J. Ruan. 2021. Response of tea yield, quality and soil bacterial characteristics to long-term nitrogen fertilization in an eleven-year field experiment. Applied Soil Ecology 166:103976. doi: 10.1016/j.apsoil.2021.103976.
  • Mahmood, M. S., J. L. Mártinez, A. Aslam, A. Rafique, R. Vinet, C. Laurido, I. Hussain, R. Z. Abbas, A. Khan, and S. Ali. 2016. Antiviral effects of green tea (Camellia sinensis) against pathogenic viruses in human and animals (a mini-review). African Journal of Traditional, Complementary and Alternative Medicines 13 (2):176–84. doi: 10.4314/ajtcam.v13i2.21.
  • Maiti, S., and A. Banerjee. 2021. Epigallocatechin gallate and theaflavin gallate interaction in SARS-CoV-2 spike-protein central channel with reference to the hydroxychloroquine interaction: Bioinformatics and molecular docking study. Drug Development Research 82 (1):86–96. doi: 10.1002/ddr.21730.
  • Marx, W., R. Haunschild, and L. Bornmann. 2017. Global warming and tea production—The bibliometric view on a newly emerging research topic. Climate 5 (3):46. doi: 10.3390/cli5030046.
  • Matsuo, T., Y. Miyata, A. Asai, Y. Sagara, B. Furusato, J. Fukuoka, and H. Sakai. 2017. Green tea polyphenol induces changes in cancer-related factors in an animal model of bladder cancer. Ed. Chih-Pin Chuu. PLoS one 12 (1):e0171091. doi: 10.1371/journal.pone.0171091.
  • Mekky, R. Y., N. M. El-Ekiaby, M. T. Hamza, N. M. Elemam, M. EL-Sayed, G. Esmat, and A. I. Abdelaziz. 2015. Mir-194 is a hepatocyte gate keeper hindering HCV entry through targeting CD81 receptor. The Journal of Infection 70 (1):78–87.
  • Mendonca, P., and K. F. A. Soliman. 2020. Flavonoids activation of the transcription factor Nrf2 as a hypothesis approach for the prevention and modulation of SARS-CoV-2 infection severity. Antioxidants 9 (8):659. doi: 10.3390/antiox9080659.
  • Menegazzi, M., R. Campagnari, M. Bertoldi, R. Crupi, R. D. Paola, and S. Cuzzocrea. 2020. Protective effect of epigallocatechin-3-gallate (EGCG) in diseases with uncontrolled immune activation: Could such a scenario be helpful to counteract COVID-19? International Journal of Molecular Sciences 21 (14):5171. doi: 10.3390/ijms21145171.
  • Meng, X. H., N. Li, H. T. Zhu, D. Wang, C. R. Yang, and Y. J. Zhang. 2019. Plant resources, chemical constituents, and bioactivities of tea plants from the genus Camellia section Thea. Journal of Agricultural and Food Chemistry 67 (19):5318–49.
  • Mirzaaghaei, S., A. M. Foroughmand, G. Saki, and M. Shafiei. 2019. Combination of epigallocatechin-3-gallate and silibinin: A novel approach for targeting both tumor and endothelial cells. ACS Omega 4 (5):8421–30. doi: 10.1021/acsomega.9b00224.
  • Mitra, S., and R. Dash. 2018. Natural products for the management and prevention of breast cancer. Evidence-Based Complementary and Alternative Medicine: eCAM 2018:8324696. doi: 10.1155/2018/8324696.
  • Miyata, Y., T. ScienMatsuoces, K. Araki, Y. Nakamura, Y. Sagara, K. Ohba, and H. Sakai. 2018. Anticancer effects of green tea and the underlying molecular mechanisms in bladder cancer. Medicines 5 (3):87. doi: 10.3390/medicines5030087.
  • Miyoshi, N., H. Tanabe, T. Suzuki, K. Saeki, and Y. Hara. 2020. Applications of a standardized green tea catechin preparation for viral warts and human papilloma virus-related and unrelated cancers. Molecules (Basel, Switzerland) 25 (11):2588. https://www.mdpi.com/1420-3049/25/11/2588.
  • Mukherjee, S., S. Ghosh, D. K. Das, P. Chakraborty, S. Choudhury, P. Gupta, A. Adhikary, S. Dey, and S. Chattopadhyay. 2015. Gold-conjugated green tea nanoparticles for enhanced anti-tumor activities and hepatoprotection—synthesis, characterization and in vitro evaluation. The Journal of Nutritional Biochemistry 26 (11):1283–97. doi: 10.1016/j.jnutbio.2015.06.003.
  • Musial, C., A. Kuban-Jankowska, and M. Gorska-Ponikowska. 2020. Beneficial properties of green tea catechins. International Journal of Molecular Sciences 21 (5):1744. doi: 10.3390/ijms21051744.
  • Nan, W., X. Zhonghang, C. Keyan, L. Tongtong, G. Wanshu, and X. Zhongxin. 2018. Epigallocatechin-3-gallate reduces neuronal apoptosis in rats after middle cerebral artery occlusion injury via PI3K/AKT/ENOS signaling pathway. BioMed Research International 2018:6473580. doi: 10.1155/2018/6473580.
  • Naponelli, V., I. Ramazzina, C. Lenzi, S. Bettuzzi, and F. Rizzi. 2017. Green tea catechins for prostate cancer prevention: Present achievements and future challenges. Antioxidants 6 (2):26. doi: 10.3390/antiox6020026.
  • Narayanan, S., U. Mony, D. K. Vijaykumar, M. Koyakutty, B. Paul-Prasanth, and D. Menon. 2015. Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine 11 (6):1399–406. doi: 10.1016/j.nano.2015.03.015.
  • Ohgitani, E., M. Shin-Ya, M. Ichitani, M. Kobayashi, T. Takihara, M. Kawamoto, H. Kinugasa, and O. Mazda. 2021. Rapid inactivation in vitro of SARS-CoV-2 in saliva by black tea and green tea. Pathogens (Basel, Switzerland) 10 (6):721. doi: 10.3390/pathogens10060721.
  • Okello, E. J., and J. Mather. 2020. Comparative kinetics of acetyl- and butyryl-cholinesterase inhibition by green tea catechins|relevance to the symptomatic treatment of alzheimer’s disease. Nutrients 12 (4):1090. doi: 10.3390/nu12041090.
  • Parvez, M. A. K., K. Saha, J. Rahman, R. A. Munmun, M. A. Rahman, S. K. Dey, M. S. Rahman, S. Islam, and M. H. Shariare. 2019. Antibacterial activities of green tea crude extracts and synergistic effects of epigallocatechingallate (EGCG) with gentamicin against MDR pathogens. Heliyon 5 (7):e02126.
  • Pastoriza, S., M. Mesías, C. Cabrera, and J. A. Rufián-Henares. 2017. Healthy properties of green and white teas: An update. Food & Function 8 (8):2650–62.
  • Peralta-Videa, J. R., Y. Huang, J. G. Parsons, L. Zhao, L. Lopez-Moreno, J. A. Hernandez-Viezcas, and J. L. Gardea-Torresdey. 2016. Plant-based green synthesis of metallic nanoparticles: Scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnology for Environmental Engineering 1 (1):1–29. doi: 10.1007/s41204-016-0004-5.
  • Ponist, S., C. Gardi, L. Paskova, K. Svik, L. Slovak, F. Bilka, I. Tedesco, K. Bauerova, and G. L. Russo. 2020. Modulation of methotrexate efficacy by green tea polyphenols in rat adjuvant arthritis. PharmaNutrition 14:100228. doi: 10.1016/j.phanu.2020.100228.
  • Potenza, M. A., D. Iacobazzi, L. Sgarra, and M. Montagnani. 2020. The intrinsic virtues of EGCG, an extremely good cell guardian, on prevention and treatment of diabesity complications. Molecules (Basel, Switzerland) 25 (13):3061. https://www.mdpi.com/1420-3049/25/13/3061.
  • Radhakrishnan, R., H. Kulhari, D. Pooja, S. Gudem, S. Bhargava, R. Shukla, and R. Sistla. 2016. Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chemistry and Physics of Lipids 198:51–60. doi: 10.1016/j.chemphyslip.2016.05.006.
  • Rashidi, B., M. Malekzadeh, M. Goodarzi, A. Masoudifar, and H. Mirzaei. 2017. Green tea and its anti-angiogenesis effects. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 89:949–56. doi: 10.1016/j.biopha.2017.01.161.
  • Rasmussen, S. A., D. J. Jamieson, M. A. Honein, and L. R. Petersen. 2016. Zika virus and birth defects-reviewing the evidence for causality. The New England Journal of Medicine 374 (20):1981–7. doi: 10.1056/NEJMsr1604338.
  • Rawangkan, A., K. Kengkla, S. Kanchanasurakit, A. Duangjai, and S. Saokaew. 2021. Anti-influenza with green tea catechins: A systematic review and meta-analysis. Molecules (Basel, Switzerland) 26 (13):4014. https://www.mdpi.com/1420-3049/26/13/4014.
  • Reygaert, W. 2017. An update on the health benefits of green tea. Beverages 3 (4):6. doi: 10.3390/beverages3010006.
  • Reygaert, W. C. 2018. Green tea catechins: Their use in treating and preventing infectious diseases. BioMed Research International 2018:9105261. doi: 10.1155/2018/9105261.
  • Saeki, K., S. Hayakawa, S. Nakano, S. Ito, Y. Oishi, Y. Suzuki, and M. Isemura. 2018. In vitro and in silico studies of the molecular interactions of epigallocatechin-3-O-gallate (EGCG) with proteins that explain the health benefits of green tea. Molecules 23 (6):1295. doi: 10.3390/molecules23061295.
  • Saito, K., T. Shiino, H. Kurihara, Y. Harita, S. Hattori, and Y. Ohta. 2015. Afadin regulates RhoA/Rho-associated protein kinase signaling to control formation of actin stress fibers in kidney podocytes. Cytoskeleton (Hoboken, NJ) 72 (3):146–56. doi: 10.1002/cm.21211.
  • Samynathan, R., C. P. Palanisamy, S. Gandhi, M. Mandal, A. A. Padmanabhan, G. V. Kumar Perisamy, and S. Kanniappan. 2015. Isolation and characterization of polyphenol oxidase from UPASI selected clone of Camellia sinensis (L.) O. Kuntze. Indo American Journal of Pharmaceutical Research 5:241–52.
  • Samynathan, R., K. Shanmugam, C. Nagarajan, H. Murugasamy, R. V. J. Ilango, A. Shanmugam, B. Venkidasamy, and M. Thiruvengadam. 2021. The effect of abiotic and biotic stresses on the production of bioactive compounds in tea (Camellia sinensis (L.) O. Kuntze). Plant Gene 27:100316. doi: 10.1016/j.plgene.2021.100316.
  • Shan, L., G. Gao, W. Wang, W. Tang, Z. Wang, Z. Yang, W. Fan, G. Zhu, K. Zhai, O. Jacobson, et al. 2019. Self-assembled green tea polyphenol-based coordination nanomaterials to improve chemotherapy efficacy by inhibition of carbonyl reductase 1. Biomaterials 210:62–9. doi: 10.1016/j.biomaterials.2019.04.032.
  • Sharma, T. S. K., K. Selvakumar, K. Y. Hwa, P. Sami, and M. Kumaresan. 2019. Biogenic fabrication of gold nanoparticles using Camellia japonica L. leaf extract and its biological evaluation. Journal of Materials Research and Technology 8 (1):1412–8. doi: 10.1016/j.jmrt.2018.10.006.
  • Shetta, A., J. Kegere, and W. Mamdouh. 2019. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. International Journal of Biological Macromolecules 126:731–42.
  • Shi, A., H. Shi, Y. Wang, X. Liu, Y. Cheng, H. Li, H. Zhao, S. Wang, and L. Dong. 2018. Activation of Nrf2 pathway and inhibition of NLRP3 inflammasome activation contribute to the protective effect of chlorogenic acid on acute liver injury. International Immunopharmacology 54:125–30. doi: 10.1016/j.intimp.2017.11.007.
  • Singh, K., S. Kumar, A. Rani, A. Gulati, and P. S. Ahuja. 2009. Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-Ols) accumulation in tea. Functional & Integrative Genomics 9 (1):125–34.
  • Singh, N. A., A. K. A. Mandal, and Z. A. Khan. 2018. Inhibition of Al(III)-induced Aβ 42 fibrillation and reduction of neurotoxicity by epigallocatechin-3-gallate nanoparticles. Journal of Biomedical Nanotechnology 14 (6):1147–58. doi: 10.1166/jbn.2018.2552.
  • Singh, A. K., and S. K. Pathak. 2018. Potassium in tea (Camellia sinensis (L) O. Kuntze) cultivation from soil to cup quality - A review. Agricultural Reviews 39 (1):40–7.
  • Sun, L., Y. Liu, L. Wu, and H. Liao. 2019. Comprehensive analysis revealed the close relationship between N/P/K status and secondary metabolites in tea leaves. ACS Omega 4 (1):176–84. doi: 10.1021/acsomega.8b02611.
  • Sun, X., J. Song, E. Li, H. Geng, Y. Li, D. Yu, and C. Zhong. 2019. (‑)‑Epigallocatechin‑3‑gallate inhibits bladder cancer stem cells via suppression of sonic hedgehog pathway. Oncology Reports 42 (1):425–35. doi: 10.3892/or.2019.7170.
  • Talebi, M., M. Talebi, T. Farkhondeh, G. Mishra, S. İlgün, and S. Samarghandian. 2021. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications. Phytotherapy Research: PTR 35 (6):3078–112. doi: 10.1002/ptr.7033.
  • Ushiroda, C., Y. Naito, T. Takagi, K. Uchiyama, K. Mizushima, Y. Higashimura, Z. Yasukawa, T. Okubo, R. Inoue, A. Honda, et al. 2019. Green tea polyphenol (epigallocatechin-3-gallate) improves gut dysbiosis and serum bile acids dysregulation in high-fat diet-fed mice. Journal of Clinical Biochemistry and Nutrition 65 (1):34–46. doi: 10.3164/jcbn.188116.
  • Velavan, B., T. Divya, A. Sureshkumar, and G. Sudhandiran. 2018. Nano-chemotherapeutic efficacy of (−)-epigallocatechin 3-gallate mediating apoptosis in A549 cells: Involvement of reactive oxygen species mediated Nrf2/Keap1signaling. Biochemical and Biophysical Research Communications 503 (3):1723–31.
  • Wang, D., M. Cai, T. Wang, T. Liu, J. Huang, Y. Wang, and D. Granato. 2020. Ameliorative effects of L-theanine on dextran sulfate sodium induced colitis in C57BL/6J mice are associated with the inhibition of inflammatory responses and attenuation of intestinal barrier disruption. Food Research International (Ottawa, ON) 137:109409. doi: 10.1016/j.foodres.2020.109409.
  • Wang, J., G. C. W. Man, T. H. Chan, J. Kwong, and C. C. Wang. 2018. A prodrug of green tea polyphenol (-)-epigallocatechin-3-gallate (Pro-EGCG) serves as a novel angiogenesis inhibitor in endometrial cancer. Cancer Letters 412:10–20. doi: 10.1016/j.canlet.2017.09.054.
  • Wang, N., J. He, A. K. Chang, Y. Wang, L. Xu, X. Chong, X. Lu, Y. Sun, X. Xia, H. Li, et al. 2015. (-)-Epigallocatechin-3-gallate inhibits fibrillogenesis of chicken cystatin. Journal of Agricultural and Food Chemistry 63 (5):1347–51.
  • Wang, Y., J. Li, X. Wang, J. C. Penã, K. Li, T. Zhang, and W. Ho. 2016. (-)-Epigallocatechin-3-gallate enhances hepatitis C virus double-stranded RNA intermediates-triggered innate immune responses in hepatocytes. Scientific Reports 6 (1):21595.
  • Wang, Y.-Q., Q.-S. Li, X.-Q. Zheng, J.-L. Lu, and Y.-R. Liang. 2021. Antiviral effects of green tea EGCG and its potential application against COVID-19. Molecules (Basel, Switzerland) 26 (13):3962. https://www.mdpi.com/1420-3049/26/13/3962.
  • Weber, C., K. Sliva, C. Von Rhein, B. M. Kümmerer, and B. S. Schnierle. 2015. The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection. Antiviral Research 113:1–3.
  • Wei, C., H. Yang, S. Wang, J. Zhao, C. Liu, L. Gao, E. Xia, Y. Lu, Y. Tai, G. She, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences 115 (18):E4151–E4158. doi: 10.1073/pnas.1719622115.
  • Wei, R., N. E. C. Penso, R. M. Hackman, Y. Wang, and G. G. Mackenzie. 2019. Epigallocatechin-3-gallate (EGCG) suppresses pancreatic cancer cell growth, invasion, and migration partly through the inhibition of Akt pathway and epithelial–mesenchymal transition: Enhanced efficacy when combined with gemcitabine. Nutrients 11, (8):1856. doi: 10.3390/nu11081856.
  • Wei, Y., P. Chen, T. Ling, Y. Wang, R. Dong, C. Zhang, L. Zhang, M. Han, D. Wang, X. Wan, et al. 2016. Certain (-)-epigallocatechin-3-gallate (EGCG) auto-oxidation products (EAOPs) retain the cytotoxic activities of EGCG. Food Chemistry 204:218–26. doi: 10.1016/j.foodchem.2016.02.134.
  • WHO. 2021a. Cardiovascular diseases. https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1.
  • WHO. 2021b. Diabetes. https://www.who.int/news-room/fact-sheets/detail/diabetes.
  • Wobst, H. J., A. Sharma, M. I. Diamond, E. E. Wanker, and J. Bieschke. 2015. The green tea polyphenol (−)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios. FEBS Letters 589 (1):77–83.
  • Wu, M., J. Jin, P. Jin, Y. Xu, J. Yin, D. Qin, K. Wang, and Q. Du. 2017. Epigallocatechin gallate-β-lactoglobulin nanoparticles improve the antitumor activity of EGCG for inducing cancer cell apoptosis. Journal of Functional Foods 39:257–63. doi: 10.1016/j.jff.2017.10.038.
  • Xia, E. H., W. Tong, Q. Wu, S. Wei, J. Zhao, Z. Z. Zhang, C. L. Wei, and X. C. Wan. 2020. Tea plant genomics: Achievements, challenges and perspectives. Horticulture Research 7:7. doi: 10.1038/s41438-019-0225-4.
  • Xing, L., H. Zhang, R. Qi, R. Tsao, and Y. Mine. 2019. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. Journal of Agricultural and Food Chemistry 67 (4):1029–43.
  • Xu, J., M. Wang, J. Zhao, Y. H. Wang, Q. Tang, and I. A. Khan. 2018. Yellow tea (Camellia sinensis L.), a promising Chinese tea: Processing, chemical constituents and health benefits. Food Research International (Ottawa, ON) 107:567–77.
  • Xu, J., Z. Xu, and W. Zheng. 2017. A review of the antiviral role of green tea catechins. Molecules (Basel, Switzerland) 22 (8):1337. http://www.mdpi.com/1420-3049/22/8/1337.
  • Xu, Y., Y. Zhang, Z. Quan, W. Wong, J. Guo, R. Zhang, Q. Yang, R. Dai, P. L. McGeer, and H. Qing. 2016. Epigallocatechin gallate (EGCG) inhibits alpha-synuclein aggregation: A potential agent for Parkinson’s disease. Neurochemical Research 41 (10):2788–96. doi: 10.1007/s11064-016-1995-9.
  • Yan, Z., Y. Zhong, Y. Duan, Q. Chen, and F. Li. 2020. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutrition (Zhongguo xu mu Shou yi Xue Hui) 6 (2):115–23.
  • Yang, R., Y. Liu, Y. Gao, Z. Yang, S. Zhao, Y. Wang, C. Blanchard, and Z. Zhou. 2018. Nano-encapsulation of epigallocatechin gallate in the ferritin-chitosan double shells: Simulated digestion and absorption evaluation. Food Research International (Ottawa, ON) 108 (June 1): 1–7. doi: 10.1016/j.foodres.2018.02.074.
  • Yazıcı, D. T., and S. Filiz. 2019. Drug diffusion behaviours of biomaterials derived from tea fibre and chitosan. Materials Technology 34 (12):737–42. doi: 10.1080/10667857.2019.1623530.
  • Yu, J., P. Song, R. Perry, C. Penfold, and A. R. Cooper. 2017. The effectiveness of green tea or green tea extract on insulin resistance and glycemic control in type 2 diabetes mellitus: A meta-analysis. Diabetes & Metabolism Journal 41 (4):251–62. doi: 10.4093/dmj.2017.41.4.251.
  • Zeng, L., J. Yan, L. Luo, M. Ma, and H. Zhu. 2017. Preparation and characterization of (-)-epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells. Scientific Reports 7 (1):45521–15. doi: 10.1038/srep45521.
  • Zhang, H., R. Qi, and Y. Mine. 2019. The impact of oolong and black tea polyphenols on human health. Food Bioscience 29:55–61. doi: 10.1016/j.fbio.2019.03.009.
  • Zhang, J., S. Nie, R. Martinez-Zaguilan, S. R. Sennoune, and S. Wang. 2016. Formulation, characteristics and antiatherogenic bioactivities of CD36-targeted epigallocatechin gallate (EGCG)-loaded nanoparticles. The Journal of Nutritional Biochemistry 30 (April 1): 14–23. doi: 10.1016/j.jnutbio.2015.11.001.
  • Zhang, L., W. Chen, G. Tu, X. Chen, Y. Lu, L. Wu, and D. Zheng. 2020. Enhanced chemotherapeutic efficacy of PLGA-encapsulated epigallocatechin gallate (EGCG) against human lung cancer. International Journal of Nanomedicine 15:4417–29.
  • Zhang, L., C. T. Ho, J. Zhou, J. S. Santos, L. Armstrong, and D. Granato. 2019. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 18 (5):1474–95.
  • Zhang, S., Q. Zhu, J. Y. Chen, D. OuYang, and J. H. Lu. 2020. The pharmacological activity of epigallocatechin-3-gallate (EGCG) on Alzheimer’s disease animal model: A systematic review. Phytomedicine 79:153316. doi: 10.1016/j.phymed.2020.153316.
  • Zhang, Z., X. Zhang, K. Bi, Y. He, W. Yan, C. S. Yang, and J. Zhang. 2021. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends in Food Science & Technology 114:11–24. doi: 10.1016/j.tifs.2021.05.023.
  • Zhou, X., L. Liang, Y. Zhao, and H. Zhang. 2017. Epigallocatechin-3-gallate ameliorates angiotensin II-induced oxidative stress and apoptosis in human umbilical vein endothelial cells through the ­activation of Nrf2/caspase-3 signaling. Journal of Vascular Research 54 (5):299–308. doi: 10.1159/000479873.
  • Zhao, Y., X. Chen, J. Jiang, X. Wan, Y. Wang, and P. Xu. 2020. Epigallocatechin gallate reverses gastric cancer by regulating the long noncoding RNA LINC00511/MiR-29b/KDM2A axis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1866 (10):165856. doi: 10.1016/j.bbadis.2020.165856.
  • Zhou, L., M. Zhang, J. Wang, and J. Gao. 2020. Sars-Cov-2: Underestimated damage to nervous system. Travel Medicine and Infectious Disease 36:101642. doi: 10.1016/j.tmaid.2020.101642.
  • Zhu, Y., and D.-Y. Xie. 2020. Docking characterization and in vitro inhibitory activity of flavan-3-Ols and dimeric proanthocyanidins against the main protease activity of SARS-Cov-2. Frontiers in Plant Science 11:601316. doi: 10.3389/fpls.2020.601316.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.