1,704
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Effects and mechanisms of natural products on Alzheimer’s disease

, , , , ORCID Icon & ORCID Icon

References

  • Agnihotri, A., and O. I. Aruoma. 2020. Alzheimer’s disease and Parkinson’s disease: A nutritional toxicology perspective of the impact of oxidative stress, mitochondrial dysfunction, nutrigenomics and environmental chemicals. Journal of the American College of Nutrition 39 (1):16–27. doi: 10.1080/07315724.2019.1683379.
  • Agunloye, O. M., and G. Oboh. 2021. Effect of diet supplemented with P. ostreatus and L. subnudus on memory index and key enzymes linked with Alzheimer’s disease in streptozotocin-induced diabetes rats. Journal of Food Biochemistry 45 (3):e13355. doi: 10.1111/jfbc.13355.
  • Ano, Y., A. Dohata, Y. Taniguchi, A. Hoshi, K. Uchida, A. Takashima, and H. Nakayama. 2017. Iso-α-acids, bitter components of beer, prevent inflammation and cognitive decline induced in a mouse model of Alzheimer’s disease. Journal of Biological Chemistry 292 (9):3720–8. doi: 10.1074/jbc.M116.763813.
  • Bakota, L., and R. Brandt. 2016. Tau biology and tau-directed therapies for Alzheimer’s disease. Drugs 76 (3):301–13. doi: 10.1007/s40265-015-0529-0.
  • Bartus, R. T., R. L. Dean, B. Beer, and A. S. Lippa. 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science 217 (4558):408–14. doi: 10.1126/science.7046051.
  • Batarseh, Y. S., and A. Kaddoumi. 2018. Oleocanthal-rich extra-virgin olive oil enhances donepezil effect by reducing amyloid-β load and related toxicity in a mouse model of Alzheimer’s disease. Journal of Nutritional Biochemistry 55:113–23. doi: 10.1016/j.jnutbio.2017.12.006.
  • Behl, C. 2000. Apoptosis and Alzheimer’s disease. Journal of Neural Transmission 107 (11):1325–44. doi: 10.1007/s007020070021.
  • Berté, T. E., A. P. Dalmagro, P. L. Zimath, A. E. Gonçalves, C. Meyre-Silva, C. Bürger, C. J. Weber, D. A. Dos Santos, V. Cechinel-Filho, and M. M. de Souza. 2018. Taraxerol as a possible therapeutic agent on memory impairments and Alzheimer’s disease: Effects against scopolamine and streptozotocin-induced cognitive dysfunctions. Steroids 132:5–11. doi: 10.1016/j.steroids.2018.01.002.
  • Bhuvanendran, S., Y. Kumari, I. Othman, and M. F. Shaikh. 2018. Amelioration of cognitive deficit by embelin in a scopolamine-induced Alzheimer’s disease-like condition in a rat model. Frontiers in Pharmacology 9:665. doi: 10.3389/fphar.2018.00665.
  • Boozari, M., and H. Hosseinzadeh. 2021. Natural products for covid-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytotherapy Research 35 (2):864–76. doi: 10.1002/ptr.6873.
  • Braidy, N., S. Behzad, S. Habtemariam, T. Ahmed, M. Daglia, S. M. Nabavi, E. Sobarzo-Sanchez, and S. F. Nabavi. 2017. Neuroprotective effects of citrus fruit-derived flavonoids, nobiletin and tangeretin in Alzheimer’s and Parkinson’s disease. CNS & Neurological Disorders Drug Targets 16 (4):387–97. doi: 10.2174/1871527316666170328113309.
  • Brody, H. 2019. Tea. Nature 566 (7742):S1. doi: 10.1038/d41586-019-00394-5.
  • Cadonic, C., M. G. Sabbir, and B. C. Albensi. 2016. Mechanisms of mitochondrial dysfunction in Alzheimer’s disease. Molecular Neurobiology 53 (9):6078–90. doi: 10.1007/s12035-015-9515-5.
  • Cao, Z., F. Wang, C. Xiu, J. Zhang, and Y. Li. 2017. Hypericum perforatum extract attenuates behavioral, biochemical, and neurochemical abnormalities in aluminum chloride-induced Alzheimer’s disease rats. Biomedicine & Pharmacotherapy 91:931–7. doi: 10.1016/j.biopha.2017.05.022.
  • Cascella, M., S. Bimonte, M. R. Muzio, V. Schiavone, and A. Cuomo. 2017. The efficacy of epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer’s disease: An overview of pre-clinical studies and translational perspectives in clinical practice. Infectious Agents and Cancer 12:36. doi: 10.1186/s13027-017-0145-6.
  • Casey, D. A., D. Antimisiaris, and J. O’Brien. 2010. Drugs for Alzheimer’s disease: Are they effective? Pharmacy and Therapeutics 35 (4):208–11.
  • Che, H., M. Zhou, T. Zhang, L. Zhang, L. Ding, T. Yanagita, J. Xu, C. Xue, and Y. Wang. 2018. EPA enriched ethanolamine plasmalogens significantly improve cognition of Alzheimer’s disease mouse model by suppressing β-amyloid generation. Journal of Functional Foods 41:9–18. doi: 10.1016/j.jff.2017.12.016.
  • Chen, T., Y. Yang, S. Zhu, Y. Lu, L. Zhu, Y. Wang, and X. Wang. 2020. Inhibition of Aβ aggregates in Alzheimer’s disease by epigallocatechin and epicatechin-3-gallate from green tea. Bioorganic Chemistry 105:104382. doi: 10.1016/j.bioorg.2020.104382.
  • Chen, Y., A. K. Y. Fu, and N. Y. Ip. 2019. Synaptic dysfunction in Alzheimer’s disease: Mechanisms and therapeutic strategies. Pharmacology & Therapeutics 195:186–98. doi: 10.1016/j.pharmthera.2018.11.006.
  • Chen, Y., Z. Qi, B. Qiao, Z. Lv, Y. Hao, and H. Li. 2019. Oxymatrine can attenuate pathological deficits of Alzheimer’s disease mice through regulation of neuroinflammation. Journal of Neuroimmunology 334:576978. doi: 10.1016/j.jneuroim.2019.576978.
  • Chen, Z., and C. Zhong. 2014. Oxidative stress in Alzheimer’s disease. Neuroscience Bulletin 30 (2):271–81. doi: 10.1007/s12264-013-1423-y.
  • Cho, E., M. Cai, H. Kwon, J. Jeon, M. Moon, M. Jun, Y. C. Lee, J. H. Yi, J. H. Ryu, and D. H. Kim. 2019. Rubrofusarin inhibits Aβ aggregation and ameliorates memory loss in an Aβ-induced Alzheimer’s disease-like mouse model. Food and Chemical Toxicology 132:110698. doi: 10.1016/j.fct.2019.110698.
  • Choi, M., Y. Lee, and S. H. Cho. 2018. Angelica tenuissima Nakai ameliorates cognitive impairment and promotes neurogenesis in mouse model of Alzheimer’s disease. Chinese Journal of Integrative Medicine 24 (5):378–84. doi: 10.1007/s11655-017-2812-2.
  • Chun, Y. S., J. Kim, S. Chung, E. Khorombi, D. Naidoo, R. Nthambeleni, N. Harding, V. Maharaj, G. Fouche, and H. O. Yang. 2017. Protective roles of Monsonia angustifolia and its active compounds in experimental models of Alzheimer’s disease. Journal of Agricultural and Food Chemistry 65 (15):3133–40. doi: 10.1021/acs.jafc.6b04451.
  • Cioffi, F., R. H. I. Adam, and K. Broersen. 2019. Molecular mechanisms and genetics of oxidative stress in Alzheimer’s disease. Journal of Alzheimer’s Disease 72 (4):981–1017. doi: 10.3233/JAD-190863.
  • Colom-Cadena, M., T. Spires-Jones, H. Zetterberg, K. Blennow, A. Caggiano, S. T. DeKosky, H. Fillit, J. E. Harrison, L. S. Schneider, P. Scheltens, et al. 2020. The clinical promise of biomarkers of synapse damage or loss in Alzheimer’s disease. Alzheimer’s Research & Therapy 12 (1):21. doi: 10.1186/s13195-020-00588-4.
  • Cotman, C. W. 1998. Apoptosis decision cascades and neuronal degeneration in Alzheimer’s disease. Neurobiology of Aging 19 (1):S29–S32. doi: 10.1016/S0197-4580(98)00042-6.
  • Craig, L. A., N. S. Hong, and R. J. McDonald. 2011. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neuroscience and Biobehavioral Reviews 35 (6):1397–409. doi: 10.1016/j.neubiorev.2011.03.001.
  • Cui, S., N. Zhao, W. Lu, F. Zhao, S. Zheng, W. Wang, and W. Chen. 2019. Effect of different Lactobacillus species on volatile and nonvolatile flavor compounds in juices fermentation. Food Science & Nutrition 7 (7):2214–23. doi: 10.1002/fsn3.1010.
  • Dal-Pan, A., S. Dudonné, P. Bourassa, M. Bourdoulous, C. Tremblay, Y. Desjardins, F. Calon, and Neurophenols Consortium. 2017. Cognitive-enhancing effects of a polyphenols-rich extract from fruits without changes in neuropathology in an animal model of Alzheimer’s disease. Journal of Alzheimer’s Disease 55 (1):115–35. doi: 10.3233/JAD-160281.
  • Deshpande, P., N. Gogia, and A. Singh. 2019. Exploring the efficacy of natural products in alleviating Alzheimer’s disease. Neural Regeneration Research 14 (8):1321–9. doi: 10.4103/1673-5374.253509.
  • Dietz, C., and M. Dekker. 2017. Effect of green tea phytochemicals on mood and cognition. Current Pharmaceutical Design 23 (19):2876–905. doi: 10.2174/1381612823666170105151800.
  • Dong, K., W. M. B. Fernando, R. Durham, R. Stockmann, D. P. W. Jayatunga, and V. Jayasena. 2020. A role of sea buckthorn on Alzheimer’s disease. International Journal of Food Science & Technology 55 (9):3073–81. doi: 10.1111/ijfs.14571.
  • Dong, Y., T. Stewart, L. Bai, X. Li, T. Xu, J. Iliff, M. Shi, D. Zheng, L. Yuan, T. Wei, et al. 2020. Coniferaldehyde attenuates Alzheimer’s pathology via activation of Nrf2 and its targets. Theranostics 10 (1):179–200. doi: 10.7150/thno.36722.
  • Du, F., L. Zhou, Y. Jiao, S. Bai, L. Wang, J. Ma, and X. Fu. 2019. Ingredients in Zijuan pu’er tea extract alleviate β-amyloid peptide toxicity in a Caenorhabditis elegans model of Alzheimer’s disease likely through daf-16. Molecules 24 (4):729. doi: 10.3390/molecules24040729.
  • Du, Q., X. Zhu, and J. Si. 2020. Angelica polysaccharide ameliorates memory impairment in Alzheimer’s disease rat through activating BDNF/TrkB/CREB pathway. Experimental Biology and Medicine 245 (1):1–10. doi: 10.1177/1535370219894558.
  • Du, X., X. Wang, and M. Geng. 2018. Alzheimer’s disease hypothesis and related therapies. Translational Neurodegeneration 7:2. doi: 10.1186/s40035-018-0107-y.
  • Dupont, J., S. Dequin, T. Giraud, F. Le Tacon, S. Marsit, J. Ropars, F. Richard, and M.-A. Selosse. 2017. Fungi as a source of food. Microbiology Spectrum 5 (3):1063–85. doi: 10.1128/microbiolspec.FUNK-0030-2016.
  • Edwards, F. A. 2019. A unifying hypothesis for Alzheimer’s disease: From plaques to neurodegeneration. Trends in Neurosciences 42 (5):310–22. doi: 10.1016/j.tins.2019.03.003.
  • El-Shiekh, R. A., R. M. Ashour, E. A. Abd El-Haleim, K. A. Ahmed, and E. Abdel-Sattar. 2020. Hibiscus sabdariffa L.: A potent natural neuroprotective agent for the prevention of streptozotocin-induced Alzheimer’s disease in mice. Biomedicine & Pharmacotherapy  128:110303. doi: 10.1016/j.biopha.2020.110303.
  • Evin, G., and A. Weidemann. 2002. Biogenesis and metabolism of Alzheimer’s disease Abeta amyloid peptides. Peptides 23 (7):1285–97. doi: 10.1016/S0196-9781(02)00063-3.
  • Fakhoury, M. 2018. Microglia and astrocytes in Alzheimer’s disease: Implications for therapy. Current Neuropharmacology 16 (5):508–18. doi: 10.2174/1570159X15666170720095240.
  • Farmery, A. K., G. O’Kane, A. McManus, and B. S. Green. 2018. Consuming sustainable seafood: Guidelines, recommendations and realities. Public Health Nutrition 21 (8):1503–14. doi: 10.1017/S1368980017003895.
  • Ferreira-Vieira, T. H., I. M. Guimaraes, F. R. Silva, and F. M. Ribeiro. 2016. Alzheimer’s disease: Targeting the cholinergic system. Current Neuropharmacology 14 (1):101–15. doi: 10.2174/1570159x13666150716165726.
  • Fontana, I. C., A. R. Zimmer, A. S. Rocha, G. Gosmann, D. O. Souza, M. V. Lourenco, S. T. Ferreira, and E. R. Zimmer. 2020. Amyloid-β oligomers in cellular models of Alzheimer’s disease. Journal of Neurochemistry 155 (4):348–69. doi: 10.1111/jnc.15030.
  • Forloni, G., and C. Balducci. 2018. Alzheimer’s disease, oligomers, and inflammation. Journal of Alzheimer’s Disease 62 (3):1261–76. doi: 10.3233/JAD-170819.
  • Forner, S., D. Baglietto-Vargas, A. C. Martini, L. Trujillo-Estrada, and F. M. LaFerla. 2017. Synaptic impairment in Alzheimer’s disease: A dysregulated symphony. Trends in Neurosciences 40 (6):347–57. doi: 10.1016/j.tins.2017.04.002.
  • Giacobini, E. 2003. Cholinergic function and Alzheimer’s disease. International Journal of Geriatric Psychiatry 18 (Suppl 1):S1–S5. doi: 10.1002/gps.935.
  • Go, J., T.-K.-Q. Ha, J. Y. Seo, T.-S. Park, Y.-K. Ryu, H.-Y. Park, J.-R. Noh, Y.-H. Kim, J. H. Hwang, D.-H. Choi, et al. 2018. Piperlongumine activates sirtuin1 and improves cognitive function in a murine model of Alzheimer’s disease. Journal of Functional Foods 43:103–11. doi: 10.1016/j.jff.2018.02.002.
  • Grodzicki, W., and K. Dziendzikowska. 2020. The role of selected bioactive compounds in the prevention of Alzheimer’s disease. Antioxidants 9 (3):229. doi: 10.3390/antiox9030229.
  • Guo, L., J. Tian, and H. Du. 2017. Mitochondrial dysfunction and synaptic transmission failure in Alzheimer’s disease. Journal of Alzheimer’s Disease 57 (4):1071–86. doi: 10.3233/JAD-160702.
  • Guo, T., W. Noble, and D. P. Hanger. 2017. Roles of tau protein in health and disease. Acta Neuropathologica 133 (5):665–704. doi: 10.1007/s00401-017-1707-9.
  • Guo, Y., Y. Zhao, Y. Nan, X. Wang, Y. Chen, and S. Wang. 2017. (-)-epigallocatechin-3-gallate ameliorates memory impairment and rescues the abnormal synaptic protein levels in the frontal cortex and hippocampus in a mouse model of Alzheimer’s disease. Neuroreport 28 (10):590–7. doi: 10.1097/WNR.0000000000000803.
  • Han, Y., S. Nan, J. Fan, Q. Chen, and Y. Zhang. 2019. Inonotus obliquus polysaccharides protect against Alzheimer’s disease by regulating Nrf2 signaling and exerting antioxidative and antiapoptotic effects. International Journal of Biological Macromolecules 131:769–78. doi: 10.1016/j.ijbiomac.2019.03.033.
  • Hardy, J. A., and G. A. Higgins. 1992. Alzheimer’s disease: The amyloid cascade hypothesis. Science 256 (5054):184–5. doi: 10.1126/science.1566067.
  • He, M. T., A. Y. Lee, J. H. Kim, C. H. Park, Y. S. Shin, and E. J. Cho. 2019. Protective role of Cordyceps militaris in Aβ1-42-induced Alzheimer’s disease in vivo. Food Science and Biotechnology 28 (3):865–72. doi: 10.1007/s10068-018-0521-z.
  • He, X. M., Z. X. Zhang, J. W. Zhang, Y. T. Zhou, M. N. Tang, C. B. Wu, and Z. Hong. 2006. The fas gene A-670G polymorphism is not associated with sporadic Alzheimer disease in a Chinese Han population. Brain Research 1082 (1):192–5. doi: 10.1016/j.brainres.2006.01.086.
  • Heiner, F., B. Feistel, and M. Wink. 2018. Sideritis scardica extracts inhibit aggregation and toxicity of amyloid-β in Caenorhabditis elegans used as a model for Alzheimer’s disease. PeerJ 6:e4683. doi: 10.7717/peerj.4683.
  • Heneka, M. T., M. J. Carson, J. El Khoury, G. E. Landreth, F. Brosseron, D. L. Feinstein, A. H. Jacobs, T. Wyss-Coray, J. Vitorica, R. M. Ransohoff, et al. 2015a. Neuroinflammation in Alzheimer’s disease. The Lancet Neurology 14 (4):388–405. doi: 10.1016/S1474-4422(15)70016-5.
  • Heneka, M. T., D. T. Golenbock, and E. Latz. 2015b. Innate immunity in Alzheimer’s disease. Nature Immunology 16 (3):229–36. doi: 10.1038/ni.3102.
  • Heppner, F. L., R. M. Ransohoff, and B. Becher. 2015. Immune attack: The role of inflammation in Alzheimer disease. Nature Reviews Neuroscience 16 (6):358–72. doi: 10.1038/nrn3880.
  • Hosomi, R., M. Yoshida, and K. Fukunaga. 2012. Seafood consumption and components for health. Global Journal of Health Science 4 (3):72–86. doi: 10.5539/gjhs.v4n3p72.
  • Hu, X., Y. Qu, Q. Chu, W. Li, and J. He. 2018. Investigation of the neuroprotective effects of Lycium barbarum water extract in apoptotic cells and Alzheimer’s disease mice. Molecular Medicine Reports 17 (3):3599–606. doi: 10.3892/mmr.2017.8310.
  • Huang, M., X. Jiang, Y. Liang, Q. Liu, S. Chen, and Y. Guo. 2017. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer’s disease. Experimental Gerontology 91:25–33. doi: 10.1016/j.exger.2017.02.004.
  • Jang, H., P. Srichayet, W. J. Park, H. J. Heo, D. O. Kim, S. Tongchitpakdee, T. J. Kim, S. H. Jung, and C. Y. Lee. 2017. Phyllanthus emblica L. (Indian gooseberry) extracts protect against retinal degeneration in a mouse model of amyloid beta-induced Alzheimer’s disease. Journal of Functional Foods 37:330–8. doi: 10.1016/j.jff.2017.07.056.
  • Ji, Z. H., Z. Q. Xu, H. Zhao, and X. Y. Yu. 2017. Neuroprotective effect and mechanism of daucosterol palmitate in ameliorating learning and memory impairment in a rat model of Alzheimer’s disease. Steroids 119:31–5. doi: 10.1016/j.steroids.2017.01.003.
  • Jia, J. X., X. S. Yan, W. Song, X. Fang, Z. P. Cai, D. S. Huo, H. Wang, and Z. J. Yang. 2018. The protective mechanism underlying phenylethanoid glycosides (PHG) actions on synaptic plasticity in rat Alzheimer’s disease model induced by beta amyloid 1-42. Journal of Toxicology and Environmental Health. Part A 81 (21):1098–107. doi: 10.1080/15287394.2018.1501861.
  • Jović, M., N. Lončarević-Vasiljković, S. Ivković, J. Dinić, D. Milanović, B. Zlokovic, and S. Kanazir. 2019. Short-term fish oil supplementation applied in presymptomatic stage of Alzheimer’s disease enhances microglial/macrophage barrier and prevents neuritic dystrophy in parietal cortex of 5xfad mouse model. PLoS One 14 (5):e0216726. doi: 10.1371/journal.pone.0216726.
  • Ju, I. G., N. Kim, J. G. Choi, J. K. Lee, and M. S. Oh. 2019. Cuscutae japonicae semen ameliorates memory dysfunction by rescuing synaptic damage in Alzheimer’s disease models. Nutrients 11 (11):2591. doi: 10.3390/nu11112591.
  • Kashyap, P., V. Kalaiselvan, R. Kumar, and S. Kumar. 2020a. Ajmalicine and reserpine: Indole alkaloids as multi-target directed ligands towards factors implicated in Alzheimer’s disease. Molecules 25 (7):1609. doi: 10.3390/molecules25071609.
  • Kashyap, P., K. Muthusamy, M. Niranjan, S. Trikha, and S. Kumar. 2020b. Sarsasapogenin: A steroidal saponin from Asparagus racemosus as multi target directed ligand in Alzheimer’s disease. Steroids 153:108529. doi: 10.1016/j.steroids.2019.108529.
  • Khan, M. S., M. Ikram, J. S. Park, T. J. Park, and M. O. Kim. 2020. Gut microbiota, its role in induction of Alzheimer’s disease pathology, and possible therapeutic interventions: Special focus on anthocyanins. Cells 9 (4):853. doi: 10.3390/cells9040853.
  • Kim, H. J., S. W. Jung, S. Y. Kim, I. H. Cho, H. C. Kim, H. Rhim, M. Kim, and S. Y. Nah. 2018. Panax ginseng as an adjuvant treatment for Alzheimer’s disease. Journal of Ginseng Research 42 (4):401–11. doi: 10.1016/j.jgr.2017.12.008.
  • Kimura, J., K. Shimizu, K. Kajima, A. Yokosuka, Y. Mimaki, N. Oku, and Y. Ohizumi. 2018. Nobiletin reduces intracellular and extracellular β-amyloid in iPS cell-derived Alzheimer’s disease model neurons. Biological & Pharmaceutical Bulletin 41 (4):451–7. doi: 10.1248/bpb.b17-00364.
  • Kizhakke, P. A., S. Olakkaran, A. Antony, K. S. Tilagul, and P. G. Hunasanahally. 2019. Convolvulus pluricaulis (shankhapushpi) ameliorates human microtubule-associated protein tau (hMAPτ) induced neurotoxicity in Alzheimer’s disease Drosophila model. Journal of Chemical Neuroanatomy 95:115–22. doi: 10.1016/j.jchemneu.2017.10.002.
  • Kouémou, N. E., G. S. Taiwe, F. C. O. Moto, S. Pale, G. T. Ngoupaye, J. S. K. Njapdounke, G. C. N. Nkantchoua, D. B. Pahaye, and E. N. Bum. 2017. Nootropic and neuroprotective effects of Dichrocephala integrifolia on scopolamine mouse model of Alzheimer’s disease. Frontiers in Pharmacology 8:847. doi: 10.3389/fphar.2017.00847.
  • Kuboyama, T., K. Hirotsu, T. Arai, H. Yamasaki, and C. Tohda. 2017. Polygalae radix extract prevents axonal degeneration and memory deficits in a transgenic mouse model of Alzheimer’s disease. Frontiers in Pharmacology 8:805. doi: 10.3389/fphar.2017.00805.
  • Kumar, A., and V. Jaitak. 2019. Natural products as multidrug resistance modulators in cancer. European Journal of Medicinal Chemistry 176:268–91. doi: 10.1016/j.ejmech.2019.05.027.
  • Kumaran, A., C. C. Ho, and L. S. Hwang. 2018. Protective effect of Nelumbo nucifera extracts on beta amyloid protein induced apoptosis in PC12 cells, in vitro model of Alzheimer’s disease. Journal of Food and Drug Analysis 26 (1):172–81. doi: 10.1016/j.jfda.2017.01.007.
  • Kwon, O. Y., and S. H. Lee. 2020. Ameliorating activity of Ishige okamurae on the amyloid beta-induced cognitive deficits and neurotoxicity through regulating ERK, p38 MAPK, and JNK signaling in Alzheimer’s disease-like mice model. Molecular Nutrition & Food Research 64 (12):e1901220. doi: 10.1002/mnfr.201901220.
  • Laurent, C., L. Buée, and D. Blum. 2018. Tau and neuroinflammation: What impact for Alzheimer’s disease and tauopathies? Biomedical Journal 41 (1):21–33. doi: 10.1016/j.bj.2018.01.003.
  • Lee, J., E. Cho, H. Kwon, J. Jeon, C. J. Jung, M. Moon, M. Jun, Y. C. Lee, D. H. Kim, and J. W. Jung. 2019. The fruit of crataegus pinnatifida ameliorates memory deficits in β-amyloid protein-induced Alzheimer’s disease mouse model. Journal of Ethnopharmacology 243:112107. doi: 10.1016/j.jep.2019.112107.
  • Leng, F., and P. Edison. 2021. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nature Reviews Neurology 17 (3):157–72. doi: 10.1038/s41582-020-00435-y.
  • Li, J., Y. Liu, W. Li, Z. Wang, P. Guo, L. Li, and N. Li. 2018. Metabolic profiling of the effects of ginsenoside re in an Alzheimer’s disease mouse model. Behavioural Brain Research 337:160–72. doi: 10.1016/j.bbr.2017.09.027.
  • Li, Q., H. X. Che, C. C. Wang, L. Y. Zhang, L. Ding, C. H. Xue, T. T. Zhang, and Y. M. Wang. 2019. Cerebrosides from sea cucumber improved Aβ1-42-induced cognitive deficiency in a rat model of Alzheimer’s disease . Molecular Nutrition & Food Research 63 (5):e1800707. doi: 10.1002/mnfr.201800707.
  • Li, Y., S. Guan, C. Liu, X. Chen, Y. Zhu, Y. Xie, J. Wang, X. Ji, L. Li, Z. Li, et al. 2018. Neuroprotective effects of Coptis chinensis franch polysaccharide on amyloid-beta (Aβ)-induced toxicity in a transgenic Caenorhabditis elegans model of Alzheimer’s disease (AD). International Journal of Biological Macromolecules 113:991–5. doi: 10.1016/j.ijbiomac.2018.03.035.
  • Li, Z., X. Chen, W. Lu, S. Zhang, X. Guan, Z. Li, and D. Wang. 2017. Anti-oxidative stress activity is essential for Amanita caesarea mediated neuroprotection on glutamate-induced apoptotic HT22 cells and an Alzheimer’s disease mouse model. International Journal of Molecular Sciences 18 (8):1623. doi: 10.3390/ijms18081623.
  • Li, Z., X. Chen, Y. Zhang, X. Liu, C. Wang, L. Teng, and D. Wang. 2019. Protective roles of Amanita caesarea polysaccharides against Alzheimer’s disease via Nrf2 pathway. International Journal of Biological Macromolecules 121:29–37. doi: 10.1016/j.ijbiomac.2018.09.216.
  • Liao, X., Y. Huang, Z. Zhang, S. Zhong, G. Xie, L. Wang, and H. Xiao. 2020. Factors associated with health-related quality of life among family caregivers of people with Alzheimer’s disease. Psychogeriatrics 20 (4):398–405. doi: 10.1111/psyg.12528.
  • Lim, H. S., Y. J. Kim, E. Sohn, J. Yoon, B. Y. Kim, and S. J. Jeong. 2019. Annona atemoya leaf extract ameliorates cognitive impairment in amyloid-β injected Alzheimer’s disease-like mouse model. Experimental Biology and Medicine 244 (18):1665–79. doi: 10.1177/1535370219886269.
  • Lin, Y., X. Liang, Y. Yao, H. Xiao, Y. Shi, and J. Yang. 2019. Osthole attenuates APP-induced Alzheimer’s disease through up-regulating miRNA-101a-3p. Life Sciences 225:117–31. doi: 10.1016/j.lfs.2019.04.004.
  • Lista, S., and H. Hampel. 2017. Synaptic degeneration and neurogranin in the pathophysiology of Alzheimer’s disease. Expert Review of Neurotherapeutics 17 (1):47–57. doi: 10.1080/14737175.2016.1204234.
  • Liu, D., and D. Du. 2020. Mulberry fruit extract alleviates cognitive impairment by promoting the clearance of amyloid-β and inhibiting neuroinflammation in Alzheimer’s disease mice. Neurochemical Research 45 (9):2009–19. doi: 10.1007/s11064-020-03062-7.
  • Liu, Y., Z. Liu, M. Wei, M. Hu, K. Yue, R. Bi, S. Zhai, Z. Pi, F. Song, and Z. Liu. 2019. Pharmacodynamic and urinary metabolomics studies on the mechanism of schisandra polysaccharide in the treatment of Alzheimer’s disease. Food & Function 10 (1):432–47. doi: 10.1039/c8fo02067a.
  • Long, J. M., and D. M. Holtzman. 2019. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 179 (2):312–39. doi: 10.1016/j.cell.2019.09.001.
  • Lu, X., L. Sun, Y. Zhang, and W. Li. 2019. New barrigenol-type triterpenoids with anti-alzheimer’s disease activity from Koelreuteria paniculata Laxm. Journal of Functional Foods 61:103459. doi: 10.1016/j.jff.2019.103459.
  • Lund, E. K. 2013. Health benefits of seafood; is it just the fatty acids? Food Chemistry 140 (3):413–20. doi: 10.1016/j.foodchem.2013.01.034.
  • Maccioni, R. B., G. Farías, I. Morales, and L. Navarrete. 2010. The revitalized tau hypothesis on Alzheimer’s disease. Archives of Medical Research 41 (3):226–31. doi: 10.1016/j.arcmed.2010.03.007.
  • Madhavadas, S., and S. Subramanian. 2017. Cognition enhancing effect of the aqueous extract of Cinnamomum zeylanicum on non-transgenic Alzheimer’s disease rat model: Biochemical, histological, and behavioural studies. Nutritional Neuroscience 20 (9):526–37. doi: 10.1080/1028415X.2016.1194593.
  • Maione, F., M. Piccolo, S. De Vita, M. G. Chini, C. Cristiano, C. De Caro, P. Lippiello, M. C. Miniaci, R. Santamaria, C. Irace, et al. 2018. Down regulation of pro-inflammatory pathways by tanshinone IIA and cryptotanshinone in a non-genetic mouse model of Alzheimer’s disease. Pharmacological Research 129:482–90. doi: 10.1016/j.phrs.2017.11.018.
  • Mangialasche, F., A. Solomon, B. Winblad, P. Mecocci, and M. Kivipelto. 2010. Alzheimer’s disease: Clinical trials and drug development. The Lancet. Neurology 9 (7):702–16. doi: 10.1016/S1474-4422(10)70119-8.
  • Mattioli, R., A. Francioso, M. d’Erme, M. Trovato, P. Mancini, L. Piacentini, A. M. Casale, L. Wessjohann, R. Gazzino, and P. Costantino. 2019. Anti-inflammatory activity of a polyphenolic extract from Arabidopsis thaliana in in vitro and in vivo models of Alzheimer’s disease. International Journal of Molecular Sciences 20 (3):708. doi: 10.3390/ijms20030708.
  • Mazumder, M. K., and S. Choudhury. 2019. Tea polyphenols as multi-target therapeutics for Alzheimer’s disease: An in silico study. Medical Hypotheses 125:94–9. doi: 10.1016/j.mehy.2019.02.035.
  • McGurran, H., J. Glenn, E. Madero, and N. Bott. 2020. Risk reduction and prevention of Alzheimer’s disease: Biological mechanisms of diet. Current Alzheimer Research 17 (5):407–27. doi: 10.2174/1567205017666200624200651.
  • Meng, J., M. Zhou, C. Wang, C. Xue, T. Zhang, and Y. Wang. 2019. Comparative analyses of DHA-phosphatidylcholine forage and liposomes on Alzheimer’s disease in SAMP8 mice. European Journal of Lipid Science and Technology 121 (5):1800524. doi: 10.1002/ejlt.201800524.
  • Mohebali, N., S. A. Shahzadeh Fazeli, H. Ghafoori, Z. Farahmand, E. MohammadKhani, F. Vakhshiteh, A. Ghamarian, M. Farhangniya, and M. H. Sanati. 2018. Effect of flavonoids rich extract of Capparis spinosa on inflammatory involved genes in amyloid-beta peptide injected rat model of Alzheimer’s disease. Nutritional Neuroscience 21 (2):143–50. doi: 10.1080/1028415X.2016.1238026.
  • Muszyńska, B., A. Grzywacz-Kisielewska, K. Kała, and J. Gdula-Argasińska. 2018. Anti-inflammatory properties of edible mushrooms: A review. Food Chemistry 243:373–81. doi: 10.1016/j.foodchem.2017.09.149.
  • Nakhate, K. T., A. P. Bharne, V. S. Verma, D. N. Aru, and D. M. Kokare. 2018. Plumbagin ameliorates memory dysfunction in streptozotocin induced Alzheimer’s disease via activation of Nrf2/ARE pathway and inhibition of β-secretase. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 101:379–90. doi: 10.1016/j.biopha.2018.02.052.
  • Nan, S., P. Wang, Y. Zhang, and J. Fan. 2021. Epigallocatechin-3-gallate provides protection against Alzheimer’s disease-induced learning and memory impairments in rats. Drug Design, Development and Therapy 15:2013–24. doi: 10.2147/DDDT.S289473.
  • Newcombe, E. A., J. Camats-Perna, M. L. Silva, N. Valmas, T. J. Huat, and R. Medeiros. 2018. Inflammation: The link between comorbidities, genetics, and Alzheimer’s disease. Journal of Neuroinflammation 15 (1):276. doi: 10.1186/s12974-018-1313-3.
  • Ngabirano, L., C. Samieri, C. Feart, A. Gabelle, S. Artero, C. Duflos, C. Berr, and T. Mura. 2019. Intake of meat, fish, fruits, and vegetables and long-term risk of dementia and Alzheimer’s disease. Journal of Alzheimer’s Disease 68 (2):711–22. doi: 10.3233/JAD-180919.
  • Obulesu, M., and M. J. Lakshmi. 2014. Apoptosis in Alzheimer’s disease: An understanding of the physiology, pathology and therapeutic avenues. Neurochemical Research 39 (12):2301–12. doi: 10.1007/s11064-014-1454-4.
  • Oliver, D. M. A., and P. H. Reddy. 2019. Small molecules as therapeutic drugs for Alzheimer’s disease. Molecular and Cellular Neurosciences 96:47–62. doi: 10.1016/j.mcn.2019.03.001.
  • Oyeleye, S. I., O. B. Ogunsuyi, V. Adedeji, D. Olatunde, and G. Oboh. 2021. Citrus spp. essential oils improve behavioral pattern, repressed cholinesterases and monoamine oxidase activities, and production of reactive species in fruit fly (Drosophila melanogaster) model of Alzheimer’s disease. Journal of Food Biochemistry 45 (3):e13558. doi: 10.1111/jfbc.13558.
  • Paarmann, K., S. R. Prakash, M. Krohn, L. Möhle, M. Brackhan, T. Brüning, I. Eiriz, and J. Pahnke. 2019. French maritime pine bark treatment decelerates plaque development and improves spatial memory in Alzheimer’s disease mice. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 57:39–48. doi: 10.1016/j.phymed.2018.11.033.
  • Pan, H., J. Zhang, Y. Wang, K. Cui, Y. Cao, L. Wang, and Y. Wu. 2019. Linarin improves the dyskinesia recovery in Alzheimer’s disease zebrafish by inhibiting the acetylcholinesterase activity. Life Sciences 222:112–6. doi: 10.1016/j.lfs.2019.02.046.
  • Pandareesh, M. D., V. Chauhan, and A. Chauhan. 2018. Walnut supplementation in the diet reduces oxidative damage and improves antioxidant status in transgenic mouse model of Alzheimer’s disease. Journal of Alzheimer’s Disease 64 (4):1295–305. doi: 10.3233/JAD-180361.
  • Park, H. J., I. H. Jung, H. Kwon, J. Yu, E. Jo, H. Kim, S. J. Park, Y. C. Lee, D. H. Kim, and J. H. Ryu. 2019. The ethanol extract of Zizyphus jujuba var. spinosa seeds ameliorates the memory deficits in Alzheimer’s disease model mice. Journal of Ethnopharmacology 233:73–9. doi: 10.1016/j.jep.2018.12.043.
  • Pham, H. M., A. Xu, S. E. Schriner, E. A. Sevrioukov, and M. Jafari. 2018. Cinnamaldehyde improves lifespan and healthspan in Drosophila melanogaster models for Alzheimer’s disease. BioMed Research International 2018:3570830. doi: 10.1155/2018/3570830.
  • Pistollato, F., R. C. Iglesias, R. Ruiz, S. Aparicio, J. Crespo, L. D. Lopez, P. P. Manna, F. Giampieri, and M. Battino. 2018. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: A focus on human studies. Pharmacological Research 131:32–43. doi: 10.1016/j.phrs.2018.03.012.
  • Poorgholam, P., P. Yaghmaei, and Z. Hajebrahimi. 2018. Thymoquinone recovers learning function in a rat model of Alzheimer’s disease. Avicenna Journal of Phytomedicine 8 (3):188–97.
  • Quintin, D., P. Garcia-Gomez, M. Ayuso, and A. Sanmartin. 2019. Active biocompounds to improve food nutritional value. Trends in Food Science & Technology 84:19–21. doi: 10.1016/j.tifs.2018.03.024.
  • Radi, E., P. Formichi, C. Battisti, and A. Federico. 2014. Apoptosis and oxidative stress in neurodegenerative diseases. Journal of Alzheimer’s Disease 42 Suppl 3 (Suppl 3):S125–S52. doi: 10.3233/JAD-132738.
  • Ramasamy, V. S., M. Samidurai, H. J. Park, M. Wang, R. Y. Park, S. Y. Yu, H. K. Kang, S. Hong, W. S. Choi, Y. Y. Lee, et al. 2020. Avenanthramide-C restores impaired plasticity and cognition in Alzheimer’s disease model mice. Molecular Neurobiology 57 (1):315–30. doi: 10.1007/s12035-019-01707-5.
  • Ravi, S. K., B. N. Ramesh, R. Mundugaru, and B. Vincent. 2018. Multiple pharmacological activities of caesalpinia crista against aluminium-induced neurodegeneration in rats: Relevance for Alzheimer’s disease. Environmental Toxicology and Pharmacology 58:202–11. doi: 10.1016/j.etap.2018.01.008.
  • Reddy, P. H., M. Manczak, X. Yin, M. C. Grady, A. Mitchell, S. Tonk, C. S. Kuruva, J. S. Bhatti, R. Kandimalla, M. Vijayan, et al. 2018. Protective effects of Indian spice curcumin against amyloid-β in Alzheimer’s disease. Journal of Alzheimer’s Disease 61 (3):843–66. doi: 10.3233/JAD-170512.
  • Rehman, M. U., A. F. Wali, A. Ahmad, S. Shakeel, S. Rasool, R. Ali, S. M. Rashid, H. Madkhali, M. A. Ganaie, and R. Khan. 2019. Neuroprotective strategies for neurological disorders by natural products: An update. Current Neuropharmacology 17 (3):247–67. doi: 10.2174/1570159X16666180911124605.
  • Rodriguez-Casado, A. 2016. The health potential of fruits and vegetables phytochemicals: Notable examples. Critical Reviews in Food Science and Nutrition 56 (7):1097–107. doi: 10.1080/10408398.2012.755149.
  • Sabogal-Guáqueta, A. M., L. Carrillo-Hormaza, E. Osorio, and G. P. Cardona-Gómez. 2018. Effects of biflavonoids from Garcinia madruno on a triple transgenic mouse model of Alzheimer’s disease. Pharmacological Research 129:128–38. doi: 10.1016/j.phrs.2017.12.002.
  • Sadiki, F. Z., M. E. Idrissi, O. Cioanca, A. Trifan, M. Hancianu, L. Hritcu, and P. A. Postu. 2019. Tetraclinis articulata essential oil mitigates cognitive deficits and brain oxidative stress in an Alzheimer’s disease amyloidosis model. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 56:57–63. doi: 10.1016/j.phymed.2018.10.032.
  • Saxena, M., and R. Dubey. 2019. Target enzyme in Alzheimer’s disease: Acetylcholinesterase inhibitors. Current Topics in Medicinal Chemistry 19 (4):264–75. doi: 10.2174/1568026619666190128125912.
  • Schimidt, H. L., G. S. Carrazoni, A. Garcia, I. Izquierdo, P. B. Mello-Carpes, and F. P. Carpes. 2021. Strength training or green tea prevent memory deficits in a β-amyloid peptide-mediated Alzheimer’s disease model. Experimental Gerontology 143:111186. doi: 10.1016/j.exger.2020.111186.
  • Selkoe, D. J., and J. Hardy. 2016. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine 8 (6):595–608. doi: 10.15252/emmm.201606210.
  • Senturk Parreidt, T., M. Lindner, I. Rothkopf, M. Schmid, and K. Müller. 2019. The development of a uniform alginate-based coating for cantaloupe and strawberries and the characterization of water barrier properties. Foods 8 (6):203. doi: 10.3390/foods8060203.
  • Septembre-Malaterre, A., F. Remize, and P. Poucheret. 2018. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Research International 104:86–99. doi: 10.1016/j.foodres.2017.09.031.
  • Shah, R. S., H.-G. Lee, Z. Xiongwei, G. Perry, M. A. Smith, and R. J. Castellani. 2008. Current approaches in the treatment of Alzheimer’s disease. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 62 (4):199–207. doi: 10.1016/j.biopha.2008.02.005.
  • Shalaby, M. A., H. A. Nounou, and M. M. Deif. 2019. The potential value of capsaicin in modulating cognitive functions in a rat model of streptozotocin-induced Alzheimer’s disease. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery 55 (1):1–13. doi: 10.1186/s41983-019-0094-7.
  • Shang, A., S. Y. Cao, X. Y. Xu, R. Y. Gan, G. Y. Tang, H. Corke, V. Mavumengwana, and H.-B. Li. 2019. Bioactive compounds and biological functions of garlic (L.). Foods 8 (7):246. doi: 10.3390/foods8070246.
  • Shang, A., R. Y. Gan, X. Y. Xu, Q. Q. Mao, P. Z. Zhang, and H. B. Li. 2021. Effects and mechanisms of edible and medicinal plants on obesity: An updated review. Critical Reviews in Food Science and Nutrition 61 (12):2061–17. doi: 10.1080/10408398.2020.1769548.
  • Shen, L., L. Liu, X.-Y. Li, and H.-F. Ji. 2019. Regulation of gut microbiota in Alzheimer’s disease mice by silibinin and silymarin and their pharmacological implications. Applied Microbiology and Biotechnology 103 (17):7141–9. doi: 10.1007/s00253-019-09950-5.
  • Sheng, C., P. Xu, K. Zhou, D. Deng, C. Zhang, and Z. Wang. 2017. Icariin attenuates synaptic and cognitive deficits in an Aβ1-42-induced rat model of Alzheimer’s disease . BioMed Research International 2017:7464872. doi: 10.1155/2017/7464872.
  • Shi, J., J. Ni, T. Lu, X. Zhang, M. Wei, T. Li, W. Liu, Y. Wang, Y. Shi, and J. Tian. 2017. Adding Chinese herbal medicine to conventional therapy brings cognitive benefits to patients with Alzheimer’s disease: A retrospective analysis. BMC Complementary and Alternative Medicine 17 (1):533. doi: 10.1186/s12906-017-2040-5.
  • Shimohama, S. 2000. Apoptosis in Alzheimer’s disease-an update. Apoptosis: An International Journal on Programmed Cell Death 5 (1):9–16. doi: 10.1023/a:1009625323388.
  • Shin, S. J., S. G. Jeon, J. I. Kim, Y. O. Jeong, S. Kim, Y. H. Park, S. K. Lee, H. H. Park, S. B. Hong, and S. Oh. 2019. Red ginseng attenuates Aβ-induced mitochondrial dysfunction and Aβ-mediated pathology in an animal model of Alzheimer’s disease. International Journal of Molecular Sciences 20 (12):3030. doi: 10.3390/ijms20123030.
  • Šimić, G., M. Babić Leko, S. Wray, C. Harrington, I. Delalle, N. Jovanov-Milošević, D. Bažadona, L. Buée, R. de Silva, G. D. Giovanni, et al. 2016. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 6 (1):6. doi: 10.3390/biom6010006.
  • Singh, D., R. Gupta, and S. A. Saraf. 2012. Herbs-are they safe enough? An overview. Critical Reviews in Food Science and Nutrition 52 (10):876–98. doi: 10.1080/10408398.2010.512426.
  • Song, L., Z. Piao, L. Yao, L. Zhang, and Y. Lu. 2020. Schisandrin ameliorates cognitive deficits, endoplasmic reticulum stress and neuroinflammation in streptozotocin (STZ)-induced Alzheimer’s disease rats. Experimental Animals 69 (3):363–73. doi: 10.1538/expanim.19-0146.
  • Spangenberg, E. E., and K. N. Green. 2017. Inflammation in Alzheimer’s disease: Lessons learned from microglia-depletion models. Brain, Behavior, and Immunity 61:1–11. doi: 10.1016/j.bbi.2016.07.003.
  • Sun, P., J. B. Yin, L. H. Liu, J. Guo, S. H. Wang, C. H. Qu, and C. X. Wang. 2019. Protective role of dihydromyricetin in Alzheimer’s disease rat model associated with activating AMPK/SIRT1 signaling pathway. Bioscience Reports 39 (1):BSR20180902. doi: 10.1042/BSR20180902.
  • Sun, W., C. Liu, X. Zhou, X. Li, X. Chu, X. Wang, and F. Han. 2020. Serum lipidomics study reveals protective effects of Rhodiola crenulata extract on Alzheimer’s disease rats. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1158:122346. doi: 10.1016/j.jchromb.2020.122346.
  • Syeda, T., M. Sanchez-Tapia, L. Pinedo-Vargas, O. Granados, D. Cuervo-Zanatta, E. Rojas-Santiago, S. A. Díaz-Cintra, N. Torres, and C. Perez-Cruz. 2018. Bioactive food abates metabolic and synaptic alterations by modulation of gut microbiota in a mouse model of Alzheimer’s disease. Journal of Alzheimer’s Disease 66 (4):1657–82. doi: 10.3233/JAD-180556.
  • Takeda, S. 2019. Tau propagation as a diagnostic and therapeutic target for dementia: Potentials and unanswered questions. Frontiers in Neuroscience 13:1274. doi: 10.3389/fnins.2019.01274.
  • Tang, G. Y., X. Meng, Y. Li, C. N. Zhao, Q. Liu, and H. B. Li. 2017. Effects of vegetables on cardiovascular diseases and related mechanisms. Nutrients 9 (8):857. doi: 10.3390/nu9080857.
  • Tang, H., J. Wang, L. Zhao, and X. Zhao. 2017. Rhodiola rosea L. extract shows protective activity against Alzheimer’s disease in 3xTg-AD mice. Tropical Journal of Pharmaceutical Research 16 (3):509–14. doi: 10.4314/tjpr.v16i3.3.
  • Tao, J., S. Li, R. Y. Gan, C. N. Zhao, X. Meng, and H. B. Li. 2020. Targeting gut microbiota with dietary components on cancer: Effects and potential mechanisms of action. Critical Reviews in Food Science and Nutrition 60 (6):1025–37. doi: 10.1080/10408398.2018.1555789.
  • Tian, Y., W. Lu, H. Deng, F. Yang, Y. Guo, L. Gao, and Y. Xu. 2018. Phlorizin administration ameliorates cognitive deficits by reducing oxidative stress, tau hyper‐phosphorylation, and neuroinflammation in a rat model of Alzheimer’s disease. Journal of Food Biochemistry 42 (6):e12644. doi: 10.1111/jfbc.12644.
  • Vasefi, M., E. Ghaboolian-Zare, H. Abedelwahab, and A. Osu. 2020. Environmental toxins and Alzheimer’s disease progression. Neurochemistry International 141:104852. doi: 10.1016/j.neuint.2020.104852.
  • Venegas, C., and M. T. Heneka. 2017. Danger-associated molecular patterns in Alzheimer’s disease. Journal of Leukocyte Biology 101 (1):87–98. doi: 10.1189/jlb.3MR0416-204R.
  • Vishala, T. C., G. Pitchaiah, D. Pravadha, and A. Annapurna. 2019. Effect of plain and fortified amla fruit powder on aluminum-induced Alzheimer’s disease in wistar rats. Pharmacognosy Research 11 (4):406–9. doi: 10.4103/pr.pr_17_17.
  • Wang, C., J. Hao, X. Liu, C. Li, X. Yuan, R. J. Lee, T. Bai, and D. Wang. 2020. Isoforsythiaside attenuates Alzheimer’s disease via regulating mitochondrial function through the PI3K/AKT pathway. International Journal of Molecular Sciences 21 (16):5687. doi: 10.3390/ijms21165687.
  • Wang, D., X. Dong, and C. Wang. 2018. Honokiol ameliorates amyloidosis and neuroinflammation and improves cognitive impairment in Alzheimer’s disease transgenic mice. The Journal of Pharmacology and Experimental Therapeutics 366 (3):470–8. doi: 10.1124/jpet.118.248674.
  • Wang, D., S. Li, J. Chen, L. Liu, and X. Zhu. 2017. The effects of astilbin on cognitive impairments in a transgenic mouse model of Alzheimer’s disease. Cellular and Molecular Neurobiology 37 (4):695–706. doi: 10.1007/s10571-016-0405-9.
  • Wang, H., Q. Li, S. Sun, and S. Chen. 2020. Neuroprotective effects of salidroside in a mouse model of Alzheimer’s disease. Cellular and Molecular Neurobiology 40 (7):1133–42. doi: 10.1007/s10571-020-00801-w.
  • Wang, J., B. L. Sun, Y. Xiang, D. Y. Tian, C. Zhu, W. W. Li, Y. H. Liu, X. L. Bu, L. L. Shen, W. S. Jin, et al. 2020. Capsaicin consumption reduces brain amyloid-beta generation and attenuates Alzheimer’s disease-type pathology and cognitive deficits in APP/PS1 mice. Translational Psychiatry 10 (1):230. doi: 10.1038/s41398-020-00918-y.
  • Wang, Q., H. Jiang, L. Wang, H. Yi, Z. Li, and R. Liu. 2019. Vitegnoside mitigates neuronal injury, mitochondrial apoptosis, and inflammation in an Alzheimer’s disease cell model via the p38 MAPK/JNK pathway. Journal of Alzheimer’s Disease 72 (1):199–214. doi: 10.3233/JAD-190640.
  • Wang, X., J. Wu, C. Yu, Y. Tang, J. Liu, H. Chen, B. Jin, Q. Mei, S. Cao, and D. Qin. 2017. Lychee seed saponins improve cognitive function and prevent neuronal injury via inhibiting neuronal apoptosis in a rat model of Alzheimer’s disease. Nutrients 9 (2):105. doi: 10.3390/nu9020105.
  • Wang, Y., J. Shen, X. Yang, Y. Jin, Z. Yang, R. Wang, F. Zhang, and R. J. Linhardt. 2018. Akebia saponin D reverses corticosterone hypersecretion in an Alzheimer’s disease rat model. Biomedicine & Pharmacotherapy 107:219–25. doi: 10.1016/j.biopha.2018.07.149.
  • Wang, Y. L., M. S. Wang, K. Y. Fan, T. D. Li, T. X. Yan, B. Wu, K. S. Bi, and Y. Jia. 2018. Protective effects of Alpinae oxyphyllae Fructus extracts on lipopolysaccharide-induced animal model of Alzheimer’s disease. Journal of Ethnopharmacology 217:98–106. doi: 10.1016/j.jep.2018.02.015.
  • Wei, M., Z. Liu, Y. Liu, S. Li, M. Hu, K. Yue, T. Liu, Y. He, Z. Pi, Z. Liu, et al. 2019. Urinary and plasmatic metabolomics strategy to explore the holistic mechanism of lignans in S. chinensis in treating Alzheimer’s disease using UPLC-Q-TOF-MS. Food & Function 10 (9):5656–68. doi: 10.1039/c9fo00677j.
  • Weichselbaum, E., S. Coe, J. Buttriss, and S. Stanner. 2013. Fish in the diet: A review. Nutrition Bulletin 38 (2):128–77. doi: 10.1111/nbu.12021.
  • Weng, M. H., S. Y. Chen, Z. Y. Li, and G. C. Yen. 2020. Camellia oil alleviates the progression of Alzheimer’s disease in aluminum chloride-treated rats. Free Radical Biology & Medicine 152:411–21. doi: 10.1016/j.freeradbiomed.2020.04.004.
  • World Health Organization. 2019. Healthy diet. Regional Office for the Eastern Mediterranean. https://www.who.int/news-room/fact-sheets/detail/healthy-diet
  • Xia, H., L. Wu, M. Chu, H. Feng, C. Lu, Q. Wang, M. He, and X. Ge. 2017. Effects of breviscapine on amyloid beta 1-42 induced Alzheimer’s disease mice: A HPLC-QTOF-MS based plasma metabonomics study. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1057:92–100. doi: 10.1016/j.jchromb.2017.05.003.
  • Xie, Z., J. Zhao, H. Wang, Y. Jiang, Q. Yang, Y. Fu, H. Zeng, C. Hölscher, J. Xu, and Z. Zhang. 2020. Magnolol alleviates alzheimer’s disease-like pathology in transgenic C. elegans by promoting microglia phagocytosis and the degradation of beta-amyloid through activation of PPAR-γ. Biomedicine & Pharmacotherapy  124:109886. doi: 10.1016/j.biopha.2020.109886.
  • Xu, M., T. Yan, K. Fan, M. Wang, Y. Qi, F. Xiao, K. Bi, and Y. Jia. 2019. Polysaccharide of Schisandra chinensis Fructus ameliorates cognitive decline in a mouse model of Alzheimer’s disease. Journal of Ethnopharmacology 237:354–65. doi: 10.1016/j.jep.2019.02.046.
  • Xu, X. Y., C. N. Zhao, S. Y. Cao, G. Y. Tang, R. Y. Gan, and H. B. Li. 2020. Effects and mechanisms of tea for the prevention and management of cancers: An updated review. Critical Reviews in Food Science and Nutrition 60 (10):1693–705. doi: 10.1080/10408398.2019.1588223.
  • Yadav, E., D. Singh, B. Debnath, P. Rathee, P. Yadav, and A. Verma. 2019. Molecular docking and cognitive impairment attenuating effect of phenolic compound rich fraction of Trianthema portulacastrum in scopolamine induced Alzheimer’s disease like condition. Neurochemical Research 44 (7):1665–77. doi: 10.1007/s11064-019-02792-7.
  • Yan, L., Y. Deng, J. Gao, Y. Liu, F. Li, J. Shi, and Q. Gong. 2017. Icariside ii effectively reduces spatial learning and memory impairments in Alzheimer’s disease model mice targeting beta-amyloid production. Frontiers in Pharmacology 8:106. doi: 10.3389/fphar.2017.00106.
  • Yang, B. Y., J. Y. Tan, Y. Liu, B. Liu, S. Jin, H. W. Guo, and H. X. Kuang. 2018. A UPLC-TOF/MS-based metabolomics study of rattan stems of Schisandra chinensis effects on Alzheimer’s disease rats model. Biomedical Chromatography 32 (2):e4037. doi: 10.1002/bmc.4037.
  • Yang, B., B. Liu, Y. Liu, H. Han, and H. Kuang. 2018. Cognitive enhancement of volatile oil from the stems of Schisandra chinensis Baill. in Alzheimer’s disease rats. Canadian Journal of Physiology and Pharmacology 96 (6):550–5. doi: 10.1139/cjpp-2016-0194.
  • Yang, W.-C., Y.-Y. Zhang, Y.-J. Li, Y.-Y. Nie, J.-Y. Liang, Y.-Y. Liu, J.-S. Liu, Y.-P. Zhang, C. Song, Z.-J. Qian, et al. 2020. Chemical composition and anti-Alzheimer’s disease-related activities of a functional oil from the edible seaweed Hizikia fusiforme. Chemistry & Biodiversity 17 (8):e2000055. doi: 10.1002/cbdv.202000055.
  • Ying, J., M. Zhang, X. Qiu, and Y. Lu. 2018. The potential of herb medicines in the treatment of esophageal cancer. Biomedicine & Pharmacotherapy 103:381–90. doi: 10.1016/j.biopha.2018.04.088.
  • Yu, H., B. Yuan, Q. Chu, C. Wang, and H. Bi. 2019. Protective roles of isoastilbin against Alzheimer’s disease via Nrf2‑mediated antioxidation and anti‑apoptosis. International Journal of Molecular Medicine 43 (3):1406–16. doi: 10.3892/ijmm.2019.4058.
  • Zhai, B., N. Zhang, X. Han, Q. Li, M. Zhang, X. Chen, G. Li, R. Zhang, P. Chen, W. Wang, et al. 2019. Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: A review. Biomedicine & Pharmacotherapy 114:108812. doi: 10.1016/j.biopha.2019.108812.
  • Zhang, C., X. Zhao, S. Lin, F. Liu, J. Ma, Z. Han, F. Jia, W. Xie, Q. Zhang, and X. Li. 2019. Neuroprotective effect of ent-kaur-15-en-17-al-18-oic acid on amyloid beta peptide-induced oxidative apoptosis in Alzheimer’s disease. Molecules 25 (1):142. doi: 10.3390/molecules25010142.
  • Zhang, M., H. X. Zheng, Y. Y. Gao, B. Zheng, J. P. Liu, H. Wang, Z. J. Yang, and Z. Y. Zhao. 2017. The influence of Schisandrin B on a model of Alzheimer’s disease using β-amyloid protein Aβ1-42-mediated damage in SH-SY5Y neuronal cell line and underlying mechanisms. Journal of Toxicology and Environmental Health, Part A 80 (22):1199–205. doi: 10.1080/15287394.2017.1367133.
  • Zhang, T., X. Han, X. Zhang, Z. Chen, Y. Mi, and X. Gou. 2020. Dietary fatty acid factors in Alzheimer’s disease: A review. Journal of Alzheimer’s Disease 78 (3):887–904. doi: 10.3233/JAD-200558.
  • Zhang, X., X. Wang, X. Hu, X. Chu, X. Li, and F. Han. 2019. Neuroprotective effects of a rhodiola crenulata extract on amyloid-β peptides (Aβ) -induced cognitive deficits in rat models of Alzheimer’s disease. Phytomedicine 57:331–8. doi: 10.1016/j.phymed.2018.12.042.
  • Zhang, Y., J. Wang, C. Wang, Z. Li, X. Liu, J. Zhang, J. Lu, and D. Wang. 2018. Pharmacological basis for the use of evodiamine in Alzheimer’s disease: Antioxidation and antiapoptosis. International Journal of Molecular Sciences 19 (5):1527. doi: 10.3390/ijms19051527.
  • Zhang, Y., X. Yang, S. Wang, and S. Song. 2019. Ginsenoside Rg3 prevents cognitive impairment by improving mitochondrial dysfunction in the rat model of Alzheimer’s disease. Journal of Agricultural and Food Chemistry 67 (36):10048–58. doi: 10.1021/acs.jafc.9b03793.
  • Zhang, Z., X. Wang, D. Zhang, Y. Liu, and L. Li. 2019. Geniposide-mediated protection against amyloid deposition and behavioral impairment correlates with downregulation of mTOR signaling and enhanced autophagy in a mouse model of Alzheimer’s disease. Aging 11 (2):536–48. doi: 10.18632/aging.101759.
  • Zhao, F., J. Zhang, and N. Chang. 2018. Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer’s disease. European Journal of Pharmacology 824:1–10. doi: 10.1016/j.ejphar.2018.01.046.
  • Zhao, Y., and B. Zhao. 2013. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxidative Medicine and Cellular Longevity 2013:316523. doi: 10.1155/2013/316523.
  • Zhou, D. D., M. Luo, A. Shang, Q. Q. Mao, B. Y. Li, R. Y. Gan, and H. B. Li. 2021. Antioxidant food components for the prevention and treatment of cardiovascular diseases: Effects, mechanisms, and clinical studies. Oxidative Medicine and Cellular Longevity 2021:6627355. doi: 10.1155/2021/6627355.
  • Zhu, S., H. Li, J. Dong, W. Yang, T. Liu, Y. Wang, X. Wang, M. Wang, and D. Zhi. 2017. Rose essential oil delayed Alzheimer’s disease-like symptoms by SKN-1 pathway in C. elegans. Journal of Agricultural and Food Chemistry 65 (40):8855–65. doi: 10.1021/acs.jafc.7b03224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.