727
Views
14
CrossRef citations to date
0
Altmetric
Review Articles

Advance in dietary polyphenols as dipeptidyl peptidase-IV inhibitors to alleviate type 2 diabetes mellitus: aspects from structure-activity relationship and characterization methods

, , , &

References

  • Ahamed, T. K. S., V. K. Rajan, K. Sabira, and K. Muraleedharan. 2018. QSAR classification-based virtual screening followed by molecular docking studies for identification of potential inhibitors of 5-lipoxygenase. Computational Biology and Chemistry 77:154–66. doi: 10.1016/j.compbiolchem.2018.10.002.
  • Alves-Santos, A. M., C. S. A. Sugizaki, G. C. Lima, and M. M. V. Naves. 2020. Prebiotic effect of dietary polyphenols: A systematic review. Journal of Functional Foods 74:104169. doi: 10.1016/j.jff.2020.104169.
  • Aulifa, D. L., I. K. A. Adnyana, J. Levita, and S. Sukrasno. 2019. 4-Hydroxyderricin isolated from the sap of Angelica Keiskei Koidzumi: Evaluation of its inhibitory activity towards dipeptidyl peptidase-IV. Scientia Pharmaceutica 87 (4):30. doi: 10.3390/scipharm87040030.
  • Ballester, P. J. 2019. Selecting machine-learning scoring functions for structure-based virtual screening. Drug Discovery Today: Technologies 32–33:81–7. doi: 10.1016/j.ddtec.2020.09.001.
  • Bo-Ram, K., Y. K. Hyo, C. Inhee, K. Jin-Baek, H. J. Chang, and H. Ah-Reum. 2018. DPP-IV inhibitory potentials of flavonol glycosides isolated from the seeds of Lens culinaris: In vitro and molecular docking analyses. Molecules 23 (8):1998. doi: 10.3390/molecules23081998.
  • Bower, A. M., L. M. Real Hernandez, M. A. Berhow, and E. G. de Mejia. 2014. Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV. Journal of Agricultural and Food Chemistry 62 (26):6147–58. doi: 10.1021/jf500639f.
  • Busek, P., Z. Vanickova, P. Hrabal, M. Brabec, P. Fric, M. Zavoral, J. Skrha, K. Kmochova, M. Laclav, B. Bunganic, et al. 2016. Increased tissue and circulating levels of dipeptidyl peptidase-IV enzymatic activity in patients with pancreatic ductal adenocarcinoma. Pancreatology 16 (5):829–38. doi: 10.1016/j.pan.2016.06.001.
  • Caron, J., D. Domenger, P. Dhulster, R. Ravallec, and B. Cudennec. 2017. Using Caco-2 cells as novel identification tool for food-derived DPP-IV inhibitors. Food Research International (Ottawa, Ont.) 92:113–8. doi: 10.1016/j.foodres.2017.01.002.
  • Chen, L., C. Gnanaraj, P. Arulselvan, H. El-Seedi, and H. Teng. 2019. A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: Based on its activity in the treatment of type 2 diabetes. Trends in Food Science & Technology 85 (1):149–62. doi: 10.1016/j.tifs.2018.11.026.
  • Chien, C. H., L. H. Huang, C. Y. Chou, Y. S. Chen, Y. S. Han, G. G. Chang, P. H. Liang, and X. Chen. 2004. One site mutation disrupts dimer formation in human DPP-IV proteins. The Journal of Biological Chemistry 279 (50):52338–45. doi: 10.1074/jbc.M406185200.
  • Chinsembu, K. C. 2019. Diabetes mellitus and nature’s pharmacy of putative antidiabetic plants. Journal of Herbal Medicine 15:100230. doi: 10.1016/j.hermed.2018.09.001.
  • Defronzo, R. A. 2009. Banting Lecture. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58 (4):773–95. doi: 10.2337/db09-9028.
  • Ding, X. M., X. Y. Hu, Y. Chen, J. H. Xie, M. X. Ying, Y. D. Wang, and Q. Yu. 2021. Differentiated Caco-2 cell models in food-intestine interaction study: Current applications and future trends. Trends in Food Science & Technology 107:455–65. doi: 10.1016/j.tifs.2020.11.015.
  • Dirimanov, S., and P. Högger. 2020. Fluorescence interference of polyphenols in assays screening for dipeptidyl peptidase IV inhibitory activity. Food Frontiers 1 (4):484–92. doi: 10.1002/fft2.51.
  • Divya, K., H. K. Vivek, B. S. Priya, and N. Swamy. 2020. Rapid detection of DPP-IV activity in porcine serum: A fluorospectrometric assay. Analytical Biochemistry 592:113557. doi: 10.1016/j.ab.2019.113557.
  • Elya, B., R. Handayani, R. Sauriasari, A. U. S. Hasyyati, I. T. Permana, and Y. I. Permatasar. 2015. Antidiabetic activity and phytochemical screening of extracts from Indonesian plants by inhibition of alpha amylase, alpha glucosidase and dipeptidyl peptidase IV. Pakistan Journal of Biological Sciences 18 (6):273–278. doi: 10.3923/pjbs.2015.279.284.
  • Fan, J. F., M. H. Johnson, M. A. Lila, G. G. Yousef, and E. G. de Mejia. 2013. Berry and citrus phenolic compounds inhibit dipeptidyl peptidase IV: Implications in diabetes management. Evidence-Based Complementary and Alternative Medicine 2013:479505. doi: 10.1155/2013/479505.
  • Fang, C., H. Kim, L. Yanagisawa, W. Bennett, M. A. Sirven, R. C. Alaniz, S. T. Talcott, and S. U. Mertens-Talcott. 2019. Gallotannins and Lactobacillus plantarum WCFS1 mitigate high-fat diet-induced inflammation and induce biomarkers for thermogenesis in adipose tissue in gnotobiotic mice. Molecular Nutrition & Food Research 63 (9):1–12. doi: 10.1002/mnfr.201800937.
  • Gao, F. Y., Y. S. Fu, J. J. Yi, A. N. Gao, Y. J. Jia, and S. B. Cai. 2020. Effects of different dietary flavonoids on dipeptidyl peptidase-IV activity and expression: Insights into Structure-Activity Relationship. Journal of Agricultural and Food Chemistry 68 (43):12141–51. doi: 10.1021/acs.jafc.0c04974.
  • Gómez-Juaristi, M., B. Sarria, L. Goya, L. Bravo-Clemente, and R. Mateos. 2020. Experimental confounding factors affecting stability, transport and metabolism of flavanols and hydroxycinnamic acids in Caco-2 cells. Food Research International 129:108797. doi: 10.1016/j.foodres.2019.108797.
  • Gonzales, G. B., J. V. Camp, H. Vissenaekens, K. Raes, G. Smagghe, and C. Grootaert. 2015. Review on the use of cell cultures to study metabolism, transport, and accumulation of flavonoids: From mono-cultures to co-culture systems. Comprehensive Reviews in Food Science and Food Safety 14 (6):741–54. doi: 10.1111/1541-4337.12158.
  • González-Abuín, N., N. Martínez-Micaelo, M. Blay, A. Ardévol, and M. Pinent. 2014. Grape-seed procyanidins prevent the cafeteria-diet-induced decrease of glucagon-like peptide-1 production. Journal of Agricultural and Food Chemistry 62 (5):1066–72. doi: 10.1021/jf405239p.
  • González-Abuín, N., N. Martínez-Micaelo, M. Blay, G. Pujadas, S. Garcia-Vallvé, M. Pinent, and A. Ardévol. 2012. Grape seed-derived procyanidins decrease dipeptidyl-peptidase 4 activity and expression. Journal of Agricultural and Food Chemistry 60 (36):9055–61. doi: 10.1021/jf3010349.
  • Green, B. D., P. R. Flatt, and C. J. Bailey. 2006. Dipeptidyl peptidase IV (DPP IV) inhibitors: A newly emerging drug class for the treatment of type 2 diabetes. Diabetes and Vascular Disease Research 3 (3):159–65. doi: 10.3132/dvdr.2006.024.
  • Han, L., K. Y. Lu, S. J. Zhou, S. Zhang, F. Y. Xie, B. K. Qi, and Y. Li. 2021. Development of an oil-in-water emulsion stabilized by a black bean protein-based nanocomplex for co-delivery of quercetin and perilla oil. LWT - Food Science and Technology 138:110644. doi: 10.1016/j.lwt.2020.110644.
  • Huang, P. K., S. R. Lin, C. H. Chang, M. J. Tsai, D. N. Lee, and C. F. Weng. 2019. Natural phenolic compounds potentiate hypoglycemia via inhibition of Dipeptidyl peptidase IV. Scientific Reports 9 (1):15585. doi: 10.1038/s41598-019-52088-7.
  • Imai, M., T. Yamane, M. Kozuka, S. Takenaka, T. Sakamoto, T. Ishida, T. Nakagaki, Y. Nakano, and H. Inui. 2020. Caffeoylquinic acids from aronia juice inhibit both dipeptidyl peptidase IV and α-glucosidase activities. LWT - Food Science and Technology 129:109544. doi: 10.1016/j.lwt.2020.10954.
  • Jia, Y. J., Y. L. Ma, G. G. Cheng, Y. Y. Zhang, and S. B. Cai. 2019. Comparative study of dietary flavonoids with different structures as α-glucosidase inhibitors and insulin sensitizers. Journal of Agricultural and Food Chemistry 67 (37):10521–33. doi: 10.1021/acs.jafc.9b04943.
  • Jia, Y. J., Y. L. Ma, P. Zou, G. G. Cheng, J. X. Zhou, and S. B. Cai. 2019. Effects of different oligochitosans on isoflavone metabolites, antioxidant activity, and isoflavone biosynthetic genes in soybean (Glycine max) Seeds during Germination. Journal of Agricultural and Food Chemistry 67 (16):4652–61. doi: 10.1021/acs.jafc.8b07300.
  • Johnson, M. H., and E. G. de Mejia. 2016. Phenolic compounds from fermented berry beverages modulated gene and protein expression to increase insulin secretion from pancreatic β-cells in vitro. Journal of Agricultural and Food Chemistry 64 (12):2569–81. doi: 10.1021/acs.jafc.6b00239.
  • Johnson, M. H., E. G. de Mejia, J. F. Fan, M. A. Lila, and G. G. Yousef. 2013. Anthocyanins and proanthocyanidins from blueberry–blackberry fermented beverages inhibit markers of inflammation in macrophages and carbohydrate‐utilizing enzymes in vitro. Molecular Nutrition & Food Research 57 (7):1182–97. doi: 10.1002/mnfr.201200678.
  • Juillerat-Jeanneret, L. 2014. Dipeptidyl peptidase IV and its inhibitors: Therapeutics for type 2 diabetes and what else? Journal of Medicinal Chemistry 57 (6):2197–212. doi: 10.1021/jm400658e.
  • Kalhotra, P., V. C. S. R. Chittepu, G. Osorio-Revilla, and T. Gallardo-Velázquez. 2018. Structure-activity relationship and molecular docking of natural product library reveal chrysin as a novel dipeptidyl peptidase-4 (DPP-4) inhibitor: An integrated in silico and in vitro study. Molecules 23 (6):1368. doi: 10.3390/molecules23061368.
  • Kato, E., Y. Uenishi, Y. Inagaki, M. Kurokawa, and J. Kawabata. 2016. Isolation of rugosin A, B and related compounds as dipeptidyl peptidase-IV inhibitors from rose bud extract powder. Bioscience, Biotechnology, and Biochemistry 80 (11):2087–92. doi: 10.1080/09168451.2016.1214533.
  • Kim, B. R., S. B. Paudel, J. W. Nam, C. H. Jin, I. S. Lee, and A. R. Han. 2020. Constituents of Coreopsis Lanceolate flower and their dipeptidyl peptidase IV inhibitory effects. Molecules 25 (19):4370. doi: 10.3390/molecules25194370.
  • Kozuka, M., T. Yamane, Y. Nakano, T. Nakagaki, I. Ohkubo, and H. Ariga. 2015. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice. Biochemical and Biophysical Research Communications 465 (3):433–6. doi: 10.1016/j.bbrc.2015.08.031.
  • Kumar, D., V. K. Hamse, K. N. Neema, P. B. Shubha, D. M. Chetan, and N. S. Shivananju. 2020. Purification and biochemical characterization of a novel secretory dipeptidyl peptidase IV from porcine serum. Molecular and Cellular Biochemistry 471 (1-2):71–80. doi: 10.1007/s11010-020-03766-y.
  • Lacroix, I. M. E., and E. C. Y. Li-Chan. 2016. Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation–Current knowledge and future research considerations. Trends in Food Science & Technology 54:1–16. doi: 10.1016/j.tifs.2016.05.008.
  • Lambeir, A. M., C. Durinx, S. Scharpé, and I. D. Meester. 2003. Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Critical Reviews in Clinical Laboratory Sciences 40 (3):209–94. doi: 10.1080/713609354.
  • Lammi, C., C. Bollati, S. Ferruzza, G. Ranaldi, Y. Sambuy, and A. Arnoldi. 2018. Soybean- and lupin-derived peptides inhibit DPP-IV activity on in situ human intestinal Caco-2 cells and ex vivo human serum. Nutrients 10 (8):1082. doi: 10.3390/nu10081082.
  • Les, F., J. M. Arbonés-Mainar, M. S. Valero, and V. López. 2018. Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. Journal of Ethnopharmacology 220:67–74. doi: 10.1016/j.jep.2018.03.029.
  • Li, H. J., K. S. Leung, M. H. Wong, and P. J. Ballester. 2015. Improving autoDock vina using random forest: The growing accuracy of binding affinity prediction by the effective exploitation of larger data sets. Molecular Informatics 34 (2–3):115–26. doi: 10.1002/minf.201400132.
  • Liu, X. J., Y. S. Fu, Q. Ma, J. J. Yi, and S. B. Cai. 2021. Anti-diabetic effects of different phenolic-rich fractions from Rhus chinensis Mill. fruits in vitro. eFood 2 (1):37–46. doi: 10.2991/efood.k.210222.002.
  • Liu, X. J., J. Y. Shi, J. J. Yi, X. Zhang, Q. Ma, and S. B. Cai. 2020. The effect of in vitro simulated gastrointestinal digestion on phenolic bioaccessibility and bioactivities of Prinsepia utilis Royle fruits. LWT - Food Science and Technology 138:110782. doi: 10.1016/j.lwt.2020.110782.
  • Madina, N., V. Filip, S. Hesham, and T. Evangelia. 2017. Rosemary extract as a potential anti-hyperglycemic agent: Current evidence and future perspectives. Nutrients 9 (9):968. doi: 10.3390/nu9090968.
  • Majeed, M., S. Majeed, L. Mundkur, K. Nagabhushanam, S. Arumugam, K. Beede, and F. Ali. 2020. Standardized Emblica officinalis fruit extract inhibited the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase-4 and displayed antioxidant potential. Journal of the Science of Food and Agriculture 100 (2):509–16. doi: 10.1002/jsfa.10020.
  • Marondedze, E. F., K. K. Govender, and P. P. Govender. 2020. Ligand-based pharmacophore modelling and virtual screening for the identification of amyloid-beta diagnostic molecules. Journal of Molecular Graphics & Modelling 101:107711. doi: 10.1016/j.jmgm.2020.107711.
  • Matheeussen, V., A. M. Lambeir, W. Jungraithmayr, N. Gomez, K. M. Entee, P. V. D. Veken, S. Scharpé, and I. D. Meester. 2012. Method comparison of dipeptidyl peptidase IV activity assays and their application in biological samples containing reversible inhibitors. Clinica Chimica Acta 413 (3–4):456–62. doi: 10.1016/j.cca.2011.10.031.
  • Mohanty, I. R., M. Borde, S. Kumar C, and U. Maheshwari. 2019. Dipeptidyl peptidase IV Inhibitory activity of Terminalia arjuna attributes to its cardioprotective effects in experimental diabetes: In silico, in vitro and in vivo analyses. Phytomedicine 57:158–65. doi: 10.1016/j.phymed.2018.09.195.
  • Mojica, L., M. Berhow, and E. G. De Mejia. 2019. Black bean coat anthocyanin-rich extracts and pure anthocyanins modulated molecular markers of diabetes. The FASEB Journal 31:646. doi: 10.1096/fasebj.31.1_supplement.646.38.
  • Motta, S., M. Guaita, C. Cassino, and A. Bosso. 2020. Relationship between polyphenolic content, antioxidant properties and oxygen consumption rate of different tannins in a model wine solution. Food Chemistry 313:126045. doi: 10.1016/j.foodchem.2019.126045.
  • Nagatsu, T., M. Hino, H. Fuyamada, T. Hayakawa, S. Sakakibara, Y. Nakagawa, and T. Takemoto. 1976. New chromogenic substrates for X-prolyl dipeptidyl-aminopeptidase. Analytical Biochemistry 74 (2):466–76. doi: 10.1016/0003-2697(76)90227-X.
  • Nath, V., M. Ramchandani, N. Kumar, R. Agrawal, and V. Kumar. 2021. Computational identification of potential dipeptidyl peptidase (DPP)-IV inhibitors: Structure based virtual screening, molecular dynamics simulation and knowledge based SAR studies. Journal of Molecular Structure 1224:129006. doi: 10.1016/j.molstruc.2020.129006.
  • Navarrete, P., A. Pizzi, H. Pasch, K. Rode, and L. Delmotte. 2010. MALDI-TOF and 13C NMR characterization of maritime pine industrial tannin extract. Industrial Crops and Products 32 (2):105–10. doi: 10.1016/j.indcrop.2010.03.010.
  • Niu, B., Y. Zhang, J. Ding, Y. Lu, M. Wang, W. Lu, X. Yuan, and J. Yin. 2014. Predicting network of drug-enzyme interaction based on machine learning method. Biochim Biophys Acta 1844 (1 Pt B):214–23. doi: 10.1016/j.bbapap.2013.07.008.
  • Nongonierma, A. B., and R. J. FitzGerald. 2019. Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins. Journal of Food Biochemistry 43 (1):e12451. doi: 10.1111/jfbc.12451.
  • Ou, Y. G., R. E. Wilson, and S. G. Weber. 2018. Methods of measuring enzyme activity ex vivo and in vivo. Annual Review of Analytical Chemistry 11 (1):509–33. doi: 10.1146/annurev-anchem-061417-125619.
  • Parmar, H. S., P. Jain, D. S. Chauhan, M. K. Bhinchar, V. Munjal, M. Yusuf, K. Choube, A. Tawani, V. Tiwari, E. Manivannan, et al. 2012. DPP-IV inhibitory potential of naringin: An in silico, in vitro and in vivo study. Diabetes Research and Clinical Practice 97 (1):105–11. doi: 10.1016/j.diabres.2012.02.011.
  • Proença, C., M. Freitas, D. Ribeiro, S. M. Tomé, A. N. Araújo, A. M. S. Silva, P. A. Fernandes, and E. Fernandes. 2019. The dipeptidyl peptidase-4 inhibitory effect of flavonoids is hindered in protein rich environments. Food & Function 10 (9):5718–31. doi: 10.1039/C9FO00722A.
  • Rasmussen, H. B., S. Branner, F. C. Wiberg, and N. Wagtmann. 2003. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nature Structural Biology 10 (1):19–25. doi: 10.1038/nsb882.
  • Riyanti, A., A. G. Suganda, and E. Y. Sukandar. 2016. Dipeptidyl peptidase-IV inhibitory activity of some Indonesian medicinal plants. Asian Journal of Pharmaceutical and Clinical Research 9 (2):375–7.
  • Rozano, L., M. R. A. Zawawi, M. A. Ahmad, and I. B. Jaganath. 2017. Computational analysis of Gynura bicolor bioactive compounds as dipeptidyl peptidase-IV inhibitor. Advances in Bioinformatics 2017 (3):5124165. doi: 10.1155/2017/5124165.
  • Sieg, J., F. Flachsenberg, and M. Rarey. 2019. In need of bias control: Evaluating chemical data for machine learning in structure-based virtual screening. Journal of Chemical Information and Modeling 59 (3):947–61. doi: 10.1021/acs.jcim.8b00712.
  • Singla, R. K., R. Kumar, S. Khan, K. Kumari, and A. Garg. 2019. Natural products: Potential source of DPP-IV inhibitors. Current Protein and Peptide Science 20 (12):1218–25. doi: 10.2174/1389203720666190502154129.
  • Soto-Covasich, J., M. Reyes-Farias, R. F. Torres, K. Vasquez, L. Duarte, J. Quezada, P. Jimenez, M. T. Pino, L. Garcia-Nannig, L. Mercado, et al. 2020. A polyphenol-rich Calafate (Berberis microphylla) extract rescues glucose tolerance in mice fed with cafeteria diet. Journal of Functional Foods 67:103856. doi: 10.1016/j.jff.2020.103856.
  • Srivastava, S., P. Shree, and Y. B. Tripathi. 2017. Active phytochemicals of Pueraria tuberosa for DPP-IV inhibition: In silico and experimental approach. Journal of Diabetes and Metabolic Disorders 16 (1):46. doi: 10.1186/s40200-017-0328-0.
  • Sun, L. J., M. J. Gidley, and F. J. Warren. 2017. The mechanism of interactions between tea polyphenols and porcine pancreatic alpha‐amylase: Analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry. Molecular Nutrition & Food Research 61 (10):1700324. doi: 10.1002/mnfr.201700324.
  • Sun, L. J., Y. Y. Wang, and M. Miao. 2020. Inhibition of α-amylase by polyphenolic compounds: Substrate digestion, binding interactions and nutritional intervention. Trends in Food Science & Technology 104:190–207. doi: 10.1016/j.tifs.2020.08.003.
  • Sun, L. J., F. J. Warren, and M. J. Gidley. 2019. Natural products for glycaemic control: Polyphenols as inhibitors of alpha-amylase. Trends in Food Science & Technology 91:262–73. doi: 10.1016/j.tifs.2019.07.009.
  • Syama, H. P., K. B. Arun, G. Sinumol, R. Dhanya, S. Suseela, A. P. Nisha, L. R. Shankar, A. Sundaresan, and P. Jayamurthy. 2018. Syzygium cumini seed exhibits antidiabetic potential via multiple pathways involving inhibition of α‐glucosidase, DPP‐IV, glycation, and ameliorating glucose uptake in L6 cell lines. Journal of Food Processing and Preservation 42 (2):e13464. doi: 10.1111/jfpp.13464.
  • Ussher, J. R., J. E. Campbell, E. E. Mulvihill, L. L. Baggio, H. E. Bates, B. A. McLean, K. Gopal, M. Capozzi, B. Yusta, X. Cao, et al. 2018. Inactivation of the glucose-dependent insulinotropic polypeptide receptor improves outcomes following experimental myocardial Infarction. Cell Metab 27 (2):450–60. doi: 10.1016/j.cmet.2017.11.003.
  • Wang, K., X. B. Chen, Y. Chen, S. R. Sheng, and Z. S. Huang. 2020. Grape seed procyanidins suppress the apoptosis and senescence of chondrocytes and ameliorates osteoarthritis via the DPP4-Sirt1 pathway. Food & Function 11 (12):10493–505. doi: 10.1039/D0FO01377C.
  • Wang, Y. T., D. P. Russo, C. Liu, Q. Zhou, H. Zhu, and Y. H. Zhang. 2020. Predictive modeling of angiotensin I-converting enzyme inhibitory peptides using various machine learning approaches. Journal of Agricultural and Food Chemistry 68 (43):12132–40. doi: 10.1021/acs.jafc.0c04624.
  • Wang, F., Y. Y. Zhang, T. T. Yu, J. T. He, J. Cui, J. N. Wang, X. N. Cheng, and J. F. Fan. 2018. Oat globulin peptides regulate antidiabetic drug targets and glucose transporters in Caco-2 cells. Journal of Functional Foods 42:12–20. doi: 10.1016/j.jff.2017.12.061.
  • Wu, X. Q., H. F. Ding, X. Hu, J. H. Pan, Y. J. Liao, D. M. Gong, and G. W. Zhang. 2018. Exploring inhibitory mechanism of gallocatechin gallate on a-amylase and a-glucosidase relevant to postprandial hyperglycemia. Journal of Functional Foods 48:200–9. doi: 10.1016/j.jff.2018.07.022.
  • Wu, Z. H., Y. Zhang, X. R. Gong, G. G. Cheng, S. B. Pu, and S. B. Cai. 2020. The preventive effect of phenolic-rich extracts from Chinese sumac fruits against nonalcoholic fatty liver disease in rats induced by a high-fat diet. Food & Function 11 (1):799–812. doi: 10.1039/C9FO02262G.
  • Xiao, J. B. 2018. Stability of dietary polyphenols: It’s never too late to mend? Food and Chemical Toxicology 119:3–5. doi: 10.1016/j.fct.2018.03.051.
  • Xiao, J. B., G. Y. Kai, K. Yamamoto, and X. Q. Chen. 2013. Advance in dietary polyphenols as α-glucosidases inhibitors: A review on structure-activity relationship aspect. Critical Reviews in Food Science and Nutrition 53 (8):818–36. doi: 10.1080/10408398.2011.561379.
  • Xiao, J. B., X. L. Ni, G. Y. Kai, and X. Q. Chen. 2015. Advance in dietary polyphenols as aldose reductases inhibitors: Structure-activity relationship aspect. Critical Reviews in Food Science and Nutrition 55 (1):16–31. doi: 10.1080/10408398.2011.584252.
  • Xu, F. R., Y. J. Yao, X. Y. Xu, M. Wang, M. M. Pan, S. Y. Ji, J. Wu, D. L. Jiang, X. R. Ju, and L. F. Wang. 2019. Identification and quantification of DPP-IV-inhibitory peptides from hydrolyzed-rapeseed-protein-derived napin with analysis of the interactions between key residues and protein domains. Journal of Agricultural and Food Chemistry 67 (13):3679–90. doi: 10.1021/acs.jafc.9b01069.
  • Yang, H. X., X. X. Tuo, L. B. Wang, R. Tundis, M. P. Portillo, J. Simal-Gandara, Y. Yu, L. Zou, J. B. Xiao, and J. J. Deng. 2021. Bioactive procyanidins from dietary sources: The relationship between bioactivity and polymerization degree. Trends in Food Science & Technology 111:114–27. doi: 10.1016/j.tifs.2021.02.063.
  • Yasuo, N., and M. Sekijima. 2019. Improved method of structure-based virtual screening via interaction-energy-based learning. Journal of Chemical Information and Modeling 59 (3):1050–61. doi: 10.1021/acs.jcim.8b00673.
  • Zhang, C. T., Y. L. Ma, F. D. Gao, Y. X. Zhao, S. B. Cai, and M. J. Pang. 2018. The free, esterified, and insoluble-bound phenolic profiles of Rhus chinensis Mill. fruits and their pancreatic lipase inhibitory activities with molecular docking analysis. Journal of Functional Foods 40:729–35. doi: 10.1016/j.jff.2017.12.019.
  • Zhang, L., S. T. Zhang, Y. C. Yin, S. Xing, W. N. Li, and X. Q. Fu. 2018. Hypoglycemic effect and mechanism of isoquercitrin as an inhibitor of dipeptidyl peptidase-4 in type 2 diabetic mice. RSC Advances 8 (27):14967–74. doi: 10.1039/C8RA00675J.
  • Zhang, L., Y. J. Wang, D. X. Li, C. T. Ho, J. S. Li, and X. C. Wan. 2016. The absorption, distribution, metabolism and excretion of procyanidins. Food & Function 7 (3):1273–81. doi: 10.1039/C5FO01244A.
  • Zhang, L., Z. S. Han, and D. Granato. 2021. Polyphenols in foods: Classification, methods of identification, and nutritional aspects in human health. Advances in Food and Nutrition Research. 98:1–33. doi: 10.1016/bs.afnr.2021.02.004.
  • Zhang, Q. Z., D. Luna-Vital, and E. G. de Mejia. 2019. Anthocyanins from colored maize ameliorated the inflammatory paracrine interplay between macrophages and adipocytes through regulation of NF-κB and JNK-dependent MAPK pathways. Journal of Functional Foods 54:175–86. doi: 10.1016/j.jff.2019.01.016.
  • Zhang, X., Jia, Y. J. Y. L. Ma, G. G. Cheng, and S. B. Cai. 2018. Phenolic composition, antioxidant properties, and inhibition toward digestive enzymes with molecular docking analysis of different fractions from Prinsepia utilis Royle fruits. Molecules 23 (12):3373. doi: 10.3390/molecules23123373.
  • Zhang, Y. Y., Z. L. Yang, G. G. Liu, Y. W. Wu, and J. Ouyang. 2020. Inhibitory effect of chestnut (Castanea mollissima Blume) inner skin extract on the activity of α-amylase, α-glucosidase, dipeptidyl peptidase IV and in vitro digestibility of starches. Food Chemistry 324:126847. doi: 10.1016/j.foodchem.2020.126847.
  • Zhao, B. T., D. D. Le, P. H. Nguyen, M. Y. Ali, J. S. Choi, B. S. Min, H. M. Shin, H. I. Rhee, and M. H. Woo. 2016. PTP1B, α-glucosidase, and DPP-IV inhibitory effects for chromene derivatives from the leaves of Smilax china L. Chemico-Biological Interactions 253:27–37. doi: 10.1016/j.cbi.2016.04.012.
  • Zheng, Y., S. H. Ley, and F. B. Hu. 2018. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology 14 (2):88–98. doi: 10.1038/nrendo.2017.151.
  • Zhou, J. X., Y. L. Ma, Y. J. Jia, M. J. Pang, G. G. Cheng, and S. B. Cai. 2019. Phenolic profiles, antioxidant activities and cytoprotective effects of different phenolic fractions from oil palm (Elaeis guineensis Jacq.) fruits treated by ultra-high pressure. Food Chemistry 288:68–77. doi: 10.1016/j.foodchem.2019.03.002.
  • Zhou, Q. F., J. X. Zhou, X. J. Liu, Y. B. Zhang, and S. B. Cai. 2020. Digestive enzyme inhibition of different phenolic fractions and main phenolic compounds of ultra-high-pressure-treated palm fruits: Interaction and molecular docking analyses. Journal of Food Quality 2020:1–10. doi: 10.1155/2020/8811597.
  • Zhu, J. Z., C. Chen, B. Zhang, and Q. Huang. 2020. The inhibitory effects of flavonoids on α-amylase and α-glucosidase. Critical Reviews in Food Science and Nutrition 60 (4):695–708. doi: 10.1080/10408398.2018.1548428.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.