2,131
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Current extraction, purification, and identification techniques of tea polyphenols: An updated review

ORCID Icon, , , , , , ORCID Icon & ORCID Icon show all

References

  • Afroz Bakht, M., M. H. Geesi, Y. Riadi, M. Imran, M. Imtiyaz Ali, M. J. Ahsan, and N. Ajmal. 2019. Ultrasound-assisted extraction of some branded tea: Optimization based on polyphenol content, antioxidant potential and thermodynamic study. Saudi Journal of Biological Sciences 26 (5):1043–52. doi: 10.1016/j.sjbs.2018.07.013.
  • Ahmad, R. S., M. S. Butt, N. Huma, M. T. Sultan, M. U. Arshad, Z. Mushtaq, and F. Saeed. 2014. Quantitative and qualitative portrait of green tea catechins (GTC) through HPLC. International Journal of Food Properties 17 (7):1626–36. doi: 10.1080/10942912.2012.723232.
  • Al Jitan, S., S. A. Alkhoori, and L. F. Yousef. 2018. Phenolic acids from plants: Extraction and application to human health. In Studies in natural products chemistry, ed. R. Atta ur, Vol. 58, 389–417. Amsterdam: Elsevier.
  • Ashfaq, F., M. S. Butt, A. Bilal, and H. A. R. Suleria. 2019. Impact of solvent and supercritical fluid extracts of green tea on physicochemical and sensorial aspects of chicken soup. AIMS Agriculture and Food 4 (3):794–806. doi: 10.3934/agrfood.2019.3.794.
  • Aziz, H. R., B. F. Raana, K. B. Fariba, and A. Aslan. 2020. Application of tea extract in food industry. Current Nutrition and Food Science 16 (7):998–1004. doi: 10.2174/1573401316666191218120443.
  • Balci, F., and F. Özdemir. 2016. Influence of shooting period and extraction conditions on bioactive compounds in Turkish green tea. Food Science and Technology 36 (4):737–43. doi: 10.1590/1678-457x.17016.
  • Bao, J., X. Wang, J. Gu, X. Dai, K. Zhang, Q. Wang, J. Ma, and H. Peng. 2020. Effects of macroporous adsorption resin on antibiotic resistance genes and the bacterial community during composting. Bioresource Technology 295 (121997):121997. doi: 10.1016/j.biortech.2019.121997.
  • Barba, F. J., Z. Zhu, M. Koubaa, A. S. Sant’Ana, and V. Orlien. 2016. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science & Technology 49:96–109. doi: 10.1016/j.tifs.2016.01.006.
  • Bindes, M. M. M., V. L. Cardoso, M. H. M. Reis, and D. C. Boffito. 2019. Maximisation of the polyphenols extraction yield from green tea leaves and sequential clarification. Journal of Food Engineering 241:97–104. doi: 10.1016/j.jfoodeng.2018.08.006.
  • Both, S., F. Chemat, and J. Strube. 2014. Extraction of polyphenols from black tea-conventional and ultrasound assisted extraction. Ultrasonics Sonochemistry 21 (3):1030–4. doi: 10.1016/j.ultsonch.2013.11.005.
  • Cao, H. 2013. Polysaccharides from Chinese tea: Recent advance on bioactivity and function. International Journal of Biological Macromolecules 62:76–9. doi: 10.1016/j.ijbiomac.2013.08.033.
  • Cao, S.-Y., C.-N. Zhao, R.-Y. Gan, X.-Y. Xu, X.-L. Wei, H. Corke, A. G. Atanasov, and H.-B. Li. 2019. Effects and mechanisms of tea and its bioactive compounds for the prevention and treatment of cardiovascular diseases: An updated review. Antioxidants 8 (6):166. doi: 10.3390/antiox8060166.
  • Cao, X., Y. Tian, T. Zhang, and Y. Ito. 2001. Separation and purification of three individual catechins from tea polyphenol mixture by CCC. Journal of Liquid Chromatography & Related Technologies 24 (11–12):1723–32. doi: 10.1081/JLC-100104374.
  • Chandini, S. K., L. J. Rao, and R. Subramanian. 2011. Influence of extraction conditions on polyphenols content and cream constituents in black tea extracts. International Journal of Food Science & Technology 46 (4):879–86. doi: 10.1111/j.1365-2621.2011.02576.x.
  • Chen, G., Q. Yuan, M. Saeeduddin, S. Ou, X. Zeng, and H. Ye. 2016. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Carbohydrate Polymers 153:663–78. doi: 10.1016/j.carbpol.2016.08.022.
  • Chen, T., and C. S. Yang. 2020. Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: Implications on health effects. Critical Reviews in Food Science and Nutrition 60 (16):2691–709. doi: 10.1080/10408398.2019.1654430.
  • Chen, W.-B., S.-Q. Li, L.-J. Chen, M.-J. Fang, Q.-C. Chen, Z. Wu, Y.-L. Wu, and Y.-K. Qiu. 2015. Online polar two phase countercurrent chromatography × high performance liquid chromatography for preparative isolation of polar polyphenols from tea extract in a single step. Journal of Chromatography B 997:179–86. doi: 10.1016/j.jchromb.2015.06.011.
  • Chen, X., Z. Feng, X. Huang, D. Pei, and D. Di. 2014. Effective on-line combination of high shear technique and continuous sample injection in high-performance counter-current chromatography for isolation and purification of polyphenols in green tea. Journal of Liquid Chromatography & Related Technologies 37 (18):2571–86. doi: 10.1080/10826076.2013.853306.
  • Choi, S. J., Y. D. Hong, B. Lee, J. S. Park, H. W. Jeong, W. G. Kim, S. S. Shin, and K. D. Yoon. 2015. Separation of polyphenols and caffeine from the acetone extract of fermented tea leaves (Camellia sinensis) using high-performance countercurrent chromatography. Molecules (Basel, Switzerland) 20 (7):13216–25. doi: 10.3390/molecules200713216.
  • Choung, M.-G., Y.-S. Hwang, M.-S. Lee, J. Lee, S.-T. Kang, and T.-H. Jun. 2014. Comparison of extraction and isolation efficiency of catechins and caffeine from green tea leaves using different solvent systems. International Journal of Food Science & Technology 49 (6):1572–8. doi: 10.1111/ijfs.12454.
  • Cui, Z., A. V. Enjome Djocki, J. Yao, Q. Wu, D. Zhang, S. Nan, J. Gao, and C. Li. 2021. COSMO-SAC-supported evaluation of natural deep eutectic solvents for the extraction of tea polyphenols and process optimization. Journal of Molecular Liquids 328 (115406):115406. doi: 10.1016/j.molliq.2021.115406.
  • Cunha, S. C., and J. O. Fernandes. 2018. Extraction techniques with deep eutectic solvents. TrAC Trends in Analytical Chemistry 105:225–39. doi: 10.1016/j.trac.2018.05.001.
  • da Silva, R. P. F. F., T. A. P. Rocha-Santos, and A. C. Duarte. 2016. Supercritical fluid extraction of bioactive compounds. TrAC Trends in Analytical Chemistry 76:40–51. doi: 10.1016/j.trac.2015.11.013.
  • Damiani, E., T. Bacchetti, L. Padella, L. Tiano, and P. Carloni. 2014. Antioxidant activity of different white teas: Comparison of hot and cold tea infusions. Journal of Food Composition and Analysis 33 (1):59–66. doi: 10.1016/j.jfca.2013.09.010.
  • de Carvalho Rodrigues, V., M. V. da Silva, A. R. dos Santos, A. A. F. Zielinski, and C. W. I. Haminiuk. 2015. Evaluation of hot and cold extraction of bioactive compounds in teas. International Journal of Food Science & Technology 50 (9):2038–45. doi: 10.1111/ijfs.12858.
  • Du, Z., K. Wang, Y. Tao, L. Chen, and F. Qiu. 2012. Purification of baicalin and wogonoside from Scutellaria baicalensis extracts by macroporous resin adsorption chromatography. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 908:143–9. doi: 10.1016/j.jchromb.2012.09.024.
  • FAOSTAT. 2021. Food and Agriculture Organization Corporate Statistical Database. Accessed June 17, 2021. http://www.fao.org/faostat/en/#data/QC/visualize.
  • Fernandes, L., T. R. Cardim-Pires, D. Foguel, and F. L. Palhano. 2021. Green tea polyphenol epigallocatechin-gallate in amyloid aggregation and neurodegenerative diseases. Frontiers in Neuroscience 15:718188. doi: 10.3389/fnins.2021.718188.
  • Fernando, C. D., and P. Soysa. 2015. Extraction kinetics of phytochemicals and antioxidant activity during black tea (Camellia sinensis L.) brewing. Nutrition Journal 14 (1):74. doi: 10.1186/s12937-015-0060-x.
  • Filly, A., X. Fernandez, M. Minuti, F. Visinoni, G. Cravotto, and F. Chemat. 2014. Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale. Food Chemistry 150:193–8. doi: 10.1016/j.foodchem.2013.10.139.
  • Gadkari, P. V., and M. Balaraman. 2017. Mass transfer and kinetic modelling of supercritical CO2 extraction of fresh tea leaves (Camellia sinensis L.). Brazilian Journal of Chemical Engineering 34 (3):799–810. doi: 10.1590/0104-6632.20170343s20150545.
  • Gadkari, P. V., M. Balarman, and U. S. Kadimi. 2015. Polyphenols from fresh frozen tea leaves (Camellia assamica L.,) by supercritical carbon dioxide extraction with ethanol entrainer - application of response surface methodology. Journal of Food Science and Technology 52 (2):720–30. doi: 10.1007/s13197-013-1085-9.
  • Gallo, M., R. Ferracane, G. Graziani, A. Ritieni, and V. Fogliano. 2010. Microwave assisted extraction of phenolic compounds from four different spices. Molecules (Basel, Switzerland) 15 (9):6365–74. doi: 10.3390/molecules15096365.
  • Ghasemzadeh-Mohammadi, V., B. Zamani, M. Afsharpour, and A. Mohammadi. 2017. Extraction of caffeine and catechins using microwave-assisted and ultrasonic extraction from green tea leaves: An optimization study by the IV-optimal design. Food Science and Biotechnology 26 (5):1281–90. doi: 10.1007/s10068-017-0182-3.
  • Guo, L., J. Guo, W. Zhu, and X. Jiang. 2016. Optimized synchronous extraction process of tea polyphenols and polysaccharides from Huaguoshan Yunwu tea and their antioxidant activities. Food and Bioproducts Processing 100:303–10. doi: 10.1016/j.fbp.2016.08.001.
  • He, C., H. Du, C. Tan, Z. Chen, Z. Chen, F. Yin, Y. Xu, and X. Liu. 2018. Semi-continuous pressurized hot water extraction of black tea. Journal of Food Engineering 227:30–41. doi: 10.1016/j.jfoodeng.2018.02.001.
  • Henríquez, C., A. Córdova, S. Almonacid, and J. Saavedra. 2014. Kinetic modeling of phenolic compound degradation during drum-drying of apple peel by-products. Journal of Food Engineering 143:146–53. doi: 10.1016/j.jfoodeng.2014.06.037.
  • Hu, B., L. Wang, B. Zhou, X. Zhang, Y. Sun, H. Ye, L. Zhao, Q. Hu, G. Wang, and X. Zeng. 2009. Efficient procedure for isolating methylated catechins from green tea and effective simultaneous analysis of ten catechins, three purine alkaloids, and gallic acid in tea by high-performance liquid chromatography with diode array detection. Journal of Chromatography A 1216 (15):3223–31. doi: 10.1016/j.chroma.2009.02.020.
  • Hu, C.-J., Y. Gao, Y. Liu, X.-Q. Zheng, J.-H. Ye, Y.-R. Liang, and J.-L. Lu. 2016. Studies on the mechanism of efficient extraction of tea components by aqueous ethanol. Food Chemistry 194:312–8. doi: 10.1016/j.foodchem.2015.08.029.
  • Huang, Y., K. Xing, L. Qiu, Q. Wu, and H. Wei. 2021. Therapeutic implications of functional tea ingredients for ameliorating inflammatory bowel disease: A focused review. Critical Reviews in Food Science and Nutrition:1–15. doi: 10.1080/10408398.2021.1884532.
  • Imran, A., M. U. Arshad, M. S. Arshad, M. Imran, F. Saeed, and M. Sohaib. 2018. Lipid peroxidation diminishing perspective of isolated theaflavins and thearubigins from black tea in arginine induced renal malfunctional rats. Lipids in Health and Disease 17 (1):157. doi: 10.1186/s12944-018-0808-3.
  • Ismail, A., S. Akhtar, M. Riaz, Y. Y. Gong, M. N. Routledge, and I. Naeem. 2020. Prevalence and exposure assessment of aflatoxins through black tea consumption in the multan city of Pakistan and the impact of tea making process on aflatoxins. Frontiers in Microbiology 11 (446). doi: 10.3389/fmicb.2020.00446.
  • Jakovljević Kovač, M., V. Pavić, A. Huđ, I. Cindrić, and M. Molnar. 2021. Determination of suitable macroporous resins and desorbents for carnosol and carnosic acid from deep eutectic solvent sage (Salvia officinalis) extract with assessment of antiradical and antibacterial activity. Antioxidants 10 (4):556. doi: 10.3390/antiox10040556.
  • Jiang, T., R. Ghosh, and C. Charcosset. 2021. Extraction, purification and applications of curcumin from plant materials—A comprehensive review. Trends in Food Science & Technology 112:419–30. doi: 10.1016/j.tifs.2021.04.015.
  • Jin, X., M. Liu, Z. Chen, R. Mao, Q. Xiao, H. Gao, and M. Wei. 2015. Separation and purification of epigallocatechin-3-gallate (EGCG) from green tea using combined macroporous resin and polyamide column chromatography. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1002:113–22. doi: 10.1016/j.jchromb.2015.07.055.
  • Kalai Selvi, I., and S. Nagarajan. 2018. Separation of catechins from green tea (Camellia sinensis L.) by microwave assisted acetylation, evaluation of antioxidant potential of individual components and spectroscopic analysis. LWT - Food Science and Technology 91:391–7. doi: 10.1016/j.lwt.2018.01.042.
  • Khan, N., and H. Mukhtar. 2007. Tea polyphenols for health promotion. Life Sciences 81 (7):519–33. doi: 10.1016/j.lfs.2007.06.011.
  • Khan, S. A., R. Aslam, and H. A. Makroo. 2019. High pressure extraction and its application in the extraction of bio-active compounds: A review. Journal of Food Process Engineering 42 (1):e12896. doi: 10.1111/jfpe.12896.
  • Koiwai, H., and N. Masuzawa. 2007. Extraction of catechins from green tea using ultrasound. Japanese Journal of Applied Physics 46 (7B):4936–8. doi: 10.1143/JJAP.46.4936.
  • Komes, D., D. Horžić, A. Belščak, K. K. Ganić, and I. Vulić. 2010. Green tea preparation and its influence on the content of bioactive compounds. Food Research International 43 (1):167–76. doi: 10.1016/j.foodres.2009.09.022.
  • Kong, X.-J., C. Peng, Y.-H. Lan, W.-X. Li, S.-S. Chi, C. Zheng, L.-Y. Dong, and X.-H. Wang. 2019. Boronate decorated membrane via atom transfer radical polymerization for separation and enrichment of polyphenols from tea drinks. Analytical Methods 11 (32):4116–25. doi: 10.1039/C9AY01229J.
  • Lee, L.-S., N. Lee, Y. H. Kim, C.-H. Lee, S. P. Hong, Y.-W. Jeon, and Y.-E. Kim. 2013. Optimization of ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology. Molecules (Basel, Switzerland) 18 (11):13530–45. doi: 10.3390/molecules181113530.
  • Li, B., Q. Mao, D. Zhou, M. Luo, R. Gan, H. Li, S. Huang, A. Saimaiti, A. Shang, and H. Li. 2021. Effects of tea against alcoholic fatty liver disease by modulating gut microbiota in chronic alcohol-exposed mice. Foods 10 (6):1232. doi: 10.3390/foods10061232.
  • Li, D.-C., and J.-G. Jiang. 2010. Optimization of the microwave-assisted extraction conditions of tea polyphenols from green tea. International Journal of Food Sciences and Nutrition 61 (8):837–45. doi: 10.3109/09637486.2010.489508.
  • Li, J., Z. Han, Y. Zou, and B. Yu. 2015. Efficient extraction of major catechins in Camellia sinensis leaves using green choline chloride-based deep eutectic solvents. RSC Advances 5 (114):93937–44. doi: 10.1039/C5RA15830C.
  • Li, W., J. Zhang, S. Tan, Q. Zheng, X. Zhao, X. Gao, and Y. Lu. 2019. Citric acid-enhanced dissolution of polyphenols during soaking of different teas. Journal of Food Biochemistry 43 (12):e13046. doi: 10.1111/jfbc.13046.
  • Lin, F.-J., X.-L. Wei, H.-Y. Liu, H. Li, Y. Xia, D.-T. Wu, P.-Z. Zhang, G. R. Gandhi, L. Hua-Bin, and R.-Y. Gan. 2021. State-of-the-art review of dark tea: From chemistry to health benefits. Trends in Food Science & Technology 109:126–38. doi: 10.1016/j.tifs.2021.01.030.
  • Liu, B., J. Liu, D. Huang, J. Wei, and D. Di. 2020. Boric acid modified macroporous adsorption resin and its adsorption properties for catechol compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects 595 (124674):124674. doi: 10.1016/j.colsurfa.2020.124674.
  • Liu, Y., Q. Bai, Y. Liu, D. Di, M. Guo, L. Zhao, and J. Li. 2014. Simultaneous purification of tea polyphenols and caffeine from discarded green tea by macroporous adsorption resins. European Food Research and Technology 238 (1):59–69. doi: 10.1007/s00217-013-2073-z.
  • Liu, Z., and H. He. 2017. Synthesis and applications of boronate affinity materials: From class selectivity to biomimetic specificity. Accounts of Chemical Research 50 (9):2185–93. doi: 10.1021/acs.accounts.7b00179.
  • Lou, Y.-X., X.-S. Fu, X.-P. Yu, Z.-H. Ye, H.-F. Cui, and Y.-F. Zhang. 2017. Stable isotope ratio and elemental profile combined with support vector machine for provenance discrimination of oolong tea (Wuyi-rock tea). Journal of Analytical Methods in Chemistry 2017 (5454231):1–8. doi: 10.1155/2017/5454231.
  • Luo, M., R.-Y. Gan, B.-Y. Li, Q.-Q. Mao, A. Shang, X.-Y. Xu, H.-Y. Li, and H.-B. Li. 2021. Effects and mechanisms of tea on Parkinson’s disease, Alzheimer’s disease and depression. Food Reviews International. Advance Online Publication doi: 10.1080/87559129.2021.1904413.
  • Luo, Q., J.-R. Zhang, H.-B. Li, D.-T. Wu, F. Geng, H. Corke, X.-L. Wei, and R.-Y. Gan. 2020. Green extraction of antioxidant polyphenols from green tea (Camellia sinensis). Antioxidants 9 (9):785. doi: 10.3390/antiox9090785.
  • Lv, H.-P., Y. Zhu, J.-F. Tan, L. Guo, W.-D. Dai, and Z. Lin. 2015. Bioactive compounds from Pu-erh tea with therapy for hyperlipidaemia. Journal of Functional Foods 19:194–203. doi: 10.1016/j.jff.2015.09.047.
  • Menezes Maciel Bindes, M., M. Hespanhol Miranda Reis, V. L. Cardoso, and D. C. Boffito. 2019. Ultrasound-assisted extraction of bioactive compounds from green tea leaves and clarification with natural coagulants (chitosan and Moringa oleífera seeds). Ultrasonics Sonochemistry 51:111–9. doi: 10.1016/j.ultsonch.2018.10.014.
  • Meng, J.-M., S.-Y. Cao, X.-L. Wei, R.-Y. Gan, Y.-F. Wang, S.-X. Cai, X.-Y. Xu, P.-Z. Zhang, and H.-B. Li. 2019. Effects and mechanisms of tea for the prevention and management of diabetes mellitus and diabetic complications: An updated review. Antioxidants 8 (6):170. doi: 10.3390/antiox8060170.
  • Mhatre, S., T. Srivastava, S. Naik, and V. Patravale. 2021. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 85 (153286):153286. doi: 10.1016/j.phymed.2020.153286.
  • Miyoshi, N., H. Tanabe, T. Suzuki, K. Saeki, and Y. Hara. 2020. Applications of a standardized green tea catechin preparation for viral warts and human papilloma virus-related and unrelated cancers. Molecules 25 (11):2588. doi: 10.3390/molecules25112588.
  • Mondal, M., and S. De. 2019. Purification of polyphenols from green tea leaves and performance prediction using the blend hollow fiber ultrafiltration membrane. Food and Bioprocess Technology 12 (6):933–53. doi: 10.1007/s11947-019-02262-6.
  • Pan, X., G. Niu, and H. Liu. 2003. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing: Process Intensification 42 (2):129–33. doi: 10.1016/S0255-2701(02)00037-5.
  • Pérez-Burillo, S., R. Giménez, J. A. Rufián-Henares, and S. Pastoriza. 2018. Effect of brewing time and temperature on antioxidant capacity and phenols of white tea: Relationship with sensory properties. Food Chemistry 248:111–8. doi: 10.1016/j.foodchem.2017.12.056.
  • Plaza, M., and C. Turner. 2015. Pressurized hot water extraction of bioactives. TrAC Trends in Analytical Chemistry 71:39–54. doi: 10.1016/j.trac.2015.02.022.
  • Plaza, M., and M. L. Marina. 2019. Pressurized hot water extraction of bioactives. TrAC Trends in Analytical Chemistry 116:236–47. doi: 10.1016/j.trac.2019.03.024.
  • Ramalho, S. A., N. Nigam, G. B. Oliveira, P. A. de Oliveira, T. O. M. Silva, A. G. P. dos Santos, and N. Narain. 2013. Effect of infusion time on phenolic compounds and caffeine content in black tea. Food Research International 51 (1):155–61. doi: 10.1016/j.foodres.2012.11.031.
  • Rashidinejad, A., S. Boostani, A. Babazadeh, A. Rehman, A. Rezaei, S. Akbari-Alavijeh, R. Shaddel, and S. M. Jafari. 2021. Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Research International (Ottawa, ON) 142 (110186):110186. doi: 10.1016/j.foodres.2021.110186.
  • Saklar Ayyildiz, S., B. Karadeniz, N. Sagcan, B. Bahar, A. A. Us, and C. Alasalvar. 2018. Optimizing the extraction parameters of epigallocatechin gallate using conventional hot water and ultrasound assisted methods from green tea. Food and Bioproducts Processing 111:37–44. doi: 10.1016/j.fbp.2018.06.003.
  • Saklar, S., E. Ertas, I. S. Ozdemir, and B. Karadeniz. 2015. Effects of different brewing conditions on catechin content and sensory acceptance in Turkish green tea infusions. Journal of Food Science and Technology 52 (10):6639–46. doi: 10.1007/s13197-015-1746-y.
  • Santana-Mayor, Á., R. Rodríguez-Ramos, A. V. Herrera-Herrera, B. Socas-Rodríguez, and M. Á. Rodríguez-Delgado. 2021. Deep eutectic solvents. The new generation of green solvents in analytical chemistry. TrAC Trends in Analytical Chemistry 134 (116108):116108. doi: 10.1016/j.trac.2020.116108.
  • Sanz, V., N. Flórez-Fernández, H. Domínguez, and M. D. Torres. 2020. Clean technologies applied to the recovery of bioactive extracts from Camellia sinensis leaves agricultural wastes. Food and Bioproducts Processing 122:214–21. doi: 10.1016/j.fbp.2020.05.007.
  • Saxena, M., S. G. Chaudhri, A. K. Das, P. S. Singh, and A. Bhattacharya. 2019. Cross-linked thin poly(vinyl alcohol) membrane supported on polysulfone in tea polyphenol separation. Separation Science and Technology 54 (3):343–59. doi: 10.1080/01496395.2018.1519579.
  • Shivashankara, A. R., S. Rao, T. George, S. Abraham, M. D. Colin, P. L. Palatty, and M. S. Baliga. 2019. Tea (Camellia sinensis L. Kuntze) as hepatoprotective agent: A revisit. In Dietary interventions in liver disease, ed. R. R. Watson and V. R. Preedy, 183–92. London: Academic Press.
  • Sousa, L. d S., B. V. Cabral, G. S. Madrona, V. L. Cardoso, and M. H. M. Reis. 2016. Purification of polyphenols from green tea leaves by ultrasound assisted ultrafiltration process. Separation and Purification Technology 168:188–98. doi: 10.1016/j.seppur.2016.05.029.
  • Tang, G.-Y., X. Meng, R.-Y. Gan, C.-N. Zhao, Q. Liu, Y.-B. Feng, S. Li, X.-L. Wei, A. G. Atanasov, H. Corke, et al. 2019. Health functions and related molecular mechanisms of tea components: An update review. International Journal of Molecular Sciences 20 (24):6196. doi: 10.3390/ijms20246196.
  • Turkmen, N., Y. S. Velioglu, F. Sari, and G. Polat. 2007. Effect of extraction conditions on measured total polyphenol contents and antioxidant and antibacterial activities of black tea. Molecules (Basel, Switzerland) 12 (3):484–96. doi: 10.3390/12030484.
  • Vinatoru, M., T. J. Mason, and I. Calinescu. 2017. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends in Analytical Chemistry 97:159–78. doi: 10.1016/j.trac.2017.09.002.
  • Vuong, Q. V., S. P. Tan, C. E. Stathopoulos, and P. D. Roach. 2012. Improved extraction of green tea components from teabags using the microwave oven. Journal of Food Composition and Analysis 27 (1):95–101. doi: 10.1016/j.jfca.2012.06.001.
  • Wang, L., L.-H. Gong, C.-J. Chen, H.-B. Han, and H.-H. Li. 2012. Column-chromatographic extraction and separation of polyphenols, caffeine and theanine from green tea. Food Chemistry 131 (4):1539–45. doi: 10.1016/j.foodchem.2011.09.129.
  • Wang, S.-T., W.-Q. Cui, D. Pan, M. Jiang, B. Chang, and L.-X. Sang. 2020. Tea polyphenols and their chemopreventive and therapeutic effects on colorectal cancer. World Journal of Gastroenterology 26 (6):562–97. doi: 10.3748/wjg.v26.i6.562.
  • Wang, W., C. Ma, S. Chen, S. Zhu, Z. Lou, and H. Wang. 2014. Preparative purification of epigallocatechin-3-gallate (EGCG) from tea polyphenols by adsorption column chromatography. Chromatographia 77 (23–24):1643–52. doi: 10.1007/s10337-014-2764-z.
  • Weggler, B. A., B. Gruber, P. Teehan, R. Jaramillo, and F. L. Dorman. 2020. Inlets and sampling. In Separation science and technology, ed. N. H. Snow, Vol. 12, 141–203. London: Academic Press.
  • Wei, Y., T. Li, S. Xu, T. Ni, W.-W. Deng, and J. Ning. 2021. The profile of dynamic changes in yellow tea quality and chemical composition during yellowing process. LWT - Food Science and Technology 139 (110792):110792. doi: 10.1016/j.lwt.2020.110792.
  • Xi, J., D. Shen, S. Zhao, B. Lu, Y. Li, and R. Zhang. 2009. Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction. International Journal of Pharmaceutics 382 (1–2):139–43. doi: 10.1016/j.ijpharm.2009.08.023.
  • Xi, J., D. Shen, Y. Li, and R. Zhang. 2011. Ultrahigh pressure extraction as a tool to improve the antioxidant activities of green tea extracts. Food Research International 44 (9):2783–7. doi: 10.1016/j.foodres.2011.06.001.
  • Xiang, L., S. Pan, X. Lai, L. Sun, Z. Li, Q. Li, Y. Huang, and S. Sun. 2018. Optimization of brewing conditions in epigallocatechin-3-gallate (EGCG) extraction from Jinxuan summer green tea by response surface methodology. Journal of Applied Botany and Food Quality 91:163–70. doi: 10.5073/JABFQ.2018.091.022.
  • Xu, P., L. Chen, and Y. Wang. 2019. Effect of storage time on antioxidant activity and inhibition on α-amylase and α-glucosidase of white tea. Food Science & Nutrition 7 (2):636–44. doi: 10.1002/fsn3.899.
  • Xu, X.-Y., C.-N. Zhao, S.-Y. Cao, G.-Y. Tang, R.-Y. Gan, and H.-B. Li. 2020. Effects and mechanisms of tea for the prevention and management of cancers: An updated review. Critical Reviews in Food Science and Nutrition 60 (10):1693–705. doi: 10.1080/10408398.2019.1588223.
  • Xu, X.-Y., J.-M. Meng, Q.-Q. Mao, A. Shang, B.-Y. Li, C.-N. Zhao, G.-Y. Tang, S.-Y. Cao, X.-L. Wei, R.-Y. Gan, et al. 2019. Effects of tannase and ultrasound treatment on the bioactive compounds and antioxidant activity of green tea extract. Antioxidants 8 (9):362. doi: 10.3390/antiox8090362.
  • Xu, Y., Y. Jin, Y. Wu, and Y. Tu. 2010. Isolation and purification of four individual theaflavins using semi-preparative high performance liquid chromatography. Journal of Liquid Chromatography & Related Technologies 33 (20):1791–801. doi: 10.1080/10826076.2010.526865.
  • Xue, F., C. Li, and B. Adhikari. 2020. Physicochemical properties of soy protein isolates-cyanidin-3-galactoside conjugates produced using free radicals induced by ultrasound. Ultrasonics Sonochemistry 64 (104990):104990. doi: 10.1016/j.ultsonch.2020.104990.
  • Yanagida, A., A. Shoji, Y. Shibusawa, H. Shindo, M. Tagashira, M. Ikeda, and Y. Ito. 2006. Analytical separation of tea catechins and food-related polyphenols by high-speed counter-current chromatography. Journal of Chromatography. A 1112 (1-2):195–201. doi: 10.1016/j.chroma.2005.09.086.
  • Yao, L., Y. Jiang, N. Datta, R. Singanusong, X. Liu, J. Duan, K. Raymont, A. Lisle, and Y. Xu. 2004. HPLC analyses of flavanols and phenolic acids in the fresh young shoots of tea (Camellia sinensis) grown in Australia. Food Chemistry 84 (2):253–63. doi: 10.1016/S0308-8146(03)00209-7.
  • Zhang, H., and J. Qian. 2011. Separation and analysis of EGCG from crude tea polyphenols by high-speed countercurrent chromatography. 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet) 3516–9. doi: 10.1109/CECNET.2011.5768421.
  • Zhang, H., B. Tang, and K. Row. 2014. Extraction of catechin compounds from green tea with a new green solvent. Chemical Research in Chinese Universities 30 (1):37–41. doi: 10.1007/s40242-014-3339-0.
  • Zhang, L., S. Gui, J. Wang, Q. Chen, J. Zeng, A. Liu, Z. Chen, and X. Lu. 2020. Oral administration of green tea polyphenols (TP) improves ileal injury and intestinal flora disorder in mice with Salmonella typhimurium infection via resisting inflammation, enhancing antioxidant action and preserving tight junction. Journal of Functional Foods 64:103654. doi: 10.1016/j.jff.2019.103654.
  • Zhang, Q., J. Zhang, J. Zhang, D. Xu, Y. Li, Y. Liu, X. Zhang, R. Zhang, Z. Wu, and P. Weng. 2021. Antimicrobial effect of tea polyphenols against foodborne pathogens: A review. Journal of Food Protection 84 (10):1801–8. doi: 10.4315/JFP-21-043.
  • Zhang, W., H. Jiang, J.-W. Rhim, J. Cao, and W. Jiang. 2021. Tea polyphenols (TP): A promising natural additive for the manufacture of multifunctional active food packaging films. Critical Reviews in Food Science and Nutrition Advance online publication. doi: 10.1080/10408398.2021.1946007.
  • Zhang, W., X. Feng, Y. Alula, and S. Yao. 2017. Bionic multi-tentacled ionic liquid-modified silica gel for adsorption and separation of polyphenols from green tea (Camellia sinensis) leaves. Food Chemistry 230:637–48. doi: 10.1016/j.foodchem.2017.03.054.
  • Zhang, X., F. Xu, Y. Gao, J. Wu, Y. Sun, and X. Zeng. 2012. Optimising the extraction of tea polyphenols, (−)-epigallocatechin gallate and theanine from summer green tea by using response surface methodology. International Journal of Food Science & Technology 47 (10):2151–7. doi: 10.1111/j.1365-2621.2012.03082.x.
  • Zhang, Z., X. Zhang, K. Bi, Y. He, W. Yan, C. S. Yang, and J. Zhang. 2021. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends in Food Science & Technology 114:11–24. doi: 10.1016/j.tifs.2021.05.023.
  • Zhao, C.-N., G.-Y. Tang, S.-Y. Cao, X.-Y. Xu, R.-Y. Gan, Q. Liu, Q.-Q. Mao, A. Shang, and H.-B. Li. 2019. Phenolic profiles and ­antioxidant activities of 30 tea infusions from green, black, oolong, white, yellow and dark teas. Antioxidants 8 (7):215. doi: 10.3390/antiox8070215.
  • Zhao, H., S. Cheng, L. Zhang, H. Dong, Y. Zhang, and X. Wang. 2019. Ultra-high-pressure-assisted extraction of wedelolactone and isodemethylwedelolactone from Ecliptae Herba and purification by high-speed counter-current chromatography. Biomedical Chromatography: BMC 33 (6):e4497. doi: 10.1002/bmc.4497.
  • Zhao, R., Y. Yan, M. Li, and H. Yan. 2008. Selective adsorption of tea polyphenols from aqueous solution of the mixture with caffeine on macroporous crosslinked poly(N-vinyl-2-pyrrolidinone). Reactive and Functional Polymers 68 (3):768–74. doi: 10.1016/j.reactfunctpolym.2007.11.016.
  • Zhao, Y., and X. Zhang. 2020. Interactions of tea polyphenols with intestinal microbiota and their implication for anti-obesity. Journal of the Science of Food and Agriculture 100 (3):897–903. doi: 10.1002/jsfa.10049.
  • Zhu, H., and P. Qin. 2011. Separation of epigallocatechin-3-gallate from crude tea polyphenols by using Cellulose diacetate graft β-cyclodextrin copolymer asymmetric membrane. Frontiers of Chemical Science and Engineering 5 (3):330–8. doi: 10.1007/s11705-010-1104-6.
  • Zhu, M.-Z., N. Li, F. Zhou, J. Ouyang, D.-M. Lu, W. Xu, J. Li, H.-Y. Lin, Z. Zhang, J.-B. Xiao, et al. 2020. Microbial bioconversion of the chemical components in dark tea. Food Chemistry 312 (126043):126043. doi: 10.1016/j.foodchem.2019.126043.
  • Zou, Y., G.-N. Qi, T. Xu, S.-X. Chen, T.-T. Liu, and Y.-F. Huang. 2016. Optimal extraction parameters of theabrownin from Sichuan dark tea. African Journal of Traditional, Complementary and Alternative Medicines 13 (3):191–6. doi: 10.4314/ajtcam.v13i3.22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.