834
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Dietary strategies for gut-derived protein-bound uremic toxins and cardio-metabolic risk factors in chronic kidney disease: A focus on dietary fibers

ORCID Icon & ORCID Icon

References

  • Ackley, W., L. Soiefer, A. Etinger, and J. Lowenstein. 2017. Uremic retention solutes. In Aspects in dialysis, ed. A. Karkar, 9–27. London: IntechOpen.
  • Anderson, C. A., H. A. Nguyen, and D. E. Rifkin. 2016. Nutrition interventions in chronic kidney disease. The Medical Clinics of North America 100 (6):1265–83. doi: 10.1016/j.mcna.2016.06.008.
  • Aron-Wisnewsky, J., and K. Clement. 2016. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nature Reviews. Nephrology 12 (3):169–81.
  • Asghari, G., E. Yuzbashian, P. Mirmiran, and F. Azizi. 2017. The association between Dietary Approaches to Stop Hypertension and incidence of chronic kidney disease in adults: The Tehran Lipid and Glucose Study. Nephrology Dialysis Transplantation 32 (suppl_2):ii224–30. doi: 10.1093/ndt/gfw273.
  • Asghari, G., H. Farhadnejad, P. Mirmiran, A. Dizavi, E. Yuzbashian, and F. Azizi. 2017. Adherence to the Mediterranean diet is associated with reduced risk of incident chronic kidney diseases among Tehranian adults. Hypertension Research: Official Journal of the Japanese Society of Hypertension 40 (1):96–102. doi: 10.1038/hr.2016.98.
  • Bach, K. E., J. T. Kelly, S. C. Palmer, S. Khalesi, G. F. M. Strippoli, and K. L. Campbell. 2019. Healthy dietary patterns and incidence of CKD: A meta-analysis of cohort studies. Clinical Journal of the American Society of Nephrology 14 (10):1441–9. doi: 10.2215/CJN.00530119.
  • Bammens, B., P. Evenepoel, H. Keuleers, K. Verbeke, and Y. Vanrenterghem. 2006. Free serum concentrations of the protein-bound retention solute p-cresol predict mortality in hemodialysis patients. Kidney International 69 (6):1081–7. doi: 10.1038/sj.ki.5000115.
  • Barreto, F. C., D. V. Barreto, S. Liabeuf, N. Meert, G. Glorieux, M. Temmar, G. Choukroun, R. Vanholder, and Z. A. Massy, European Uremic Toxin Work Group (EUTox). 2009. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clinical Journal of the American Society of Nephrology: CJASN 4 (10):1551–8. doi: 10.2215/CJN.03980609.
  • Bello, A. K., M. Alrukhaimi, G. E. Ashuntantang, S. Basnet, R. C. Rotter, W. G. Douthat, R. Kazancioglu, A. Köttgen, M. Nangaku, N. R. Powe, et al. 2017. Complications of chronic kidney disease: Current state, knowledge gaps, and strategy for action. Kidney International Supplements 7 (2):122–9.
  • Bolati, D., H. Shimizu, Y. Higashiyama, F. Nishijima, and T. Niwa. 2011. Indoxyl sulfate induces epithelial-to-mesenchymal transition in rat kidneys and human proximal tubular cells. American Journal of Nephrology 34 (4):318–23. doi: 10.1159/000330852.
  • Borges, N. A., A. F. Barros, L. S. Nakao, C. J. Dolenga, D. Fouque, and D. Mafra. 2016. Protein-bound uremic toxins from gut microbiota and inflammatory markers in chronic kidney disease. Journal of Renal Nutrition: The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation 26 (6):396–400. doi: 10.1053/j.jrn.2016.07.005.
  • Castillo-Rodriguez, E., R. Fernandez-Prado, R. Esteras, M. V. Perez-Gomez, C. Gracia-Iguacel, B. Fernandez-Fernandez, M. Kanbay, A. Tejedor, A. Lazaro, M. Ruiz-Ortega, et al. 2018. Impact of altered intestinal microbiota on chronic kidney disease progression. Toxins (Basel) 10 (7):300. doi: 10.3390/toxins10070300.
  • Chan, M., J. Kelly, and L. Tapsell. 2017. Dietary modeling of foods for advanced CKD based on general healthy eating guidelines: What should be on the plate? American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation 69 (3):436–50. doi: 10.1053/j.ajkd.2016.09.025.
  • Chang, C. Y., H. R. Chang, H. C. Lin, and H. H. Chang. 2018. Comparison of renal function and other predictors in lacto-ovo vegetarians and omnivores with chronic kidney disease. Journal of the American College of Nutrition 37 (6):466–71. doi: 10.1080/07315724.2018.1424588.
  • Chauveau, P., C. Combe, D. Fouque, and M. Aparicio. 2013. Vegetarianism: Advantages and drawbacks in patients with chronic kidney diseases. Journal of Renal Nutrition: The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation 23 (6):399–405. doi: 10.1053/j.jrn.2013.08.004.
  • Chauveau, P., M. Aparicio, V. Bellizzi, K. Campbell, X. Hong, L. Johansson, A. Kolko, P. Molina, S. Sezer, C. Wanner, European Renal Nutrition (ERN) Working Group of the European Renal Association–European Dialysis Transplant Association (ERA-EDTA), et al. 2018. Mediterranean diet as the diet of choice for patients with chronic kidney disease. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 33 (5):725–35. doi: 10.1093/ndt/gfx085.
  • Chen, X., G. Wei, T. Jalili, J. Metos, A. Giri, M. E. Cho, R. Boucher, T. Greene, and S. Beddhu. 2016. The associations of plant protein intake with all-cause mortality in CKD. American Journal of Kidney Diseases 67 (3):423–30. doi: 10.1053/j.ajkd.2015.10.018.
  • Chen, Y.-Y., D.-Q. Chen, L. Chen, J.-R. Liu, N. D. Vaziri, Y. Guo, and Y.-Y. Zhao. 2019. Microbiome-metabolome reveals the contribution of gut-kidney axis on kidney disease. Journal of Translational Medicine 17 (1):5–11. doi: 10.1186/s12967-018-1756-4.
  • Chiang, C.-K., T. Tanaka, R. Inagi, T. Fujita, and M. Nangaku. 2011. Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Laboratory Investigation; a Journal of Technical Methods and Pathology 91 (11):1564–71. doi: 10.1038/labinvest.2011.114.
  • Chiavaroli, L., A. Mirrahimi, J. L. Sievenpiper, D. J. Jenkins, and P. M. Darling. 2015. Dietary fiber effects in chronic kidney disease: A systematic review and meta-analysis of controlled feeding trials. European Journal of Clinical Nutrition 69 (7):761–8. doi: 10.1038/ejcn.2014.237.
  • Cupisti, A., C. D’Alessandro, L. Gesualdo, C. Cosola, M. Gallieni, M. F. Egidi, and M. Fusaro. 2017. Non-traditional aspects of renal diets: Focus on fiber, alkali and Vitamin K1 intake. Nutrients 9 (5):444. doi: 10.3390/nu9050444.
  • D’Alessandro, C., G. B. Piccoli, and A. Cupisti. 2015. The "phosphorus pyramid": A visual tool for dietary phosphate management in dialysis and CKD patients. BMC Nephrology 16 (1):9. doi: 10.1186/1471-2369-16-9.
  • Davey, G. K., E. A. Spencer, P. N. Appleby, N. E. Allen, K. H. Knox, and T. J. Key. 2003. EPIC-Oxford: Lifestyle characteristics and nutrient intakes in a cohort of 33 883 meat-eaters and 31 546 non meat-eaters in the UK. Public Health Nutrition 6 (3):259–69. doi: 10.1079/PHN2002430.
  • de Brito-Ashurst, I., M. Varagunam, M. J. Raftery, and M. M. Yaqoob. 2009. Bicarbonate supplementation slows progression of CKD and improves nutritional status. Journal of the American Society of Nephrology 20 (9):2075–84. doi: 10.1681/ASN.2008111205.
  • de Faria Barros, A., N. A. Borges, L. S. Nakao, C. J. Dolenga, F. L. do Carmo, D. de Carvalho Ferreira, P. Stenvinkel, P. Bergman, B. Lindholm, and D. Mafra. 2018. Effects of probiotic supplementation on inflammatory biomarkers and uremic toxins in non-dialysis chronic kidney patients: A double-blind, randomized, placebo-controlled trial. Journal of Functional Foods 46:378–83. doi: 10.1016/j.jff.2018.05.018.
  • De Filippis, F., N. Pellegrini, L. Vannini, I. B. Jeffery, A. La Storia, L. Laghi, D. I. Serrazanetti, R. D. Cagno, I. Ferrocino, C. Lazzi, et al. 2016. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65 (11):1812–21. doi: 10.1136/gutjnl-2015-309957.
  • de Morais, E. C. 2016. Prebiotic addition in dairy products: Processing and health benefits. In Probiotics, prebiotics, and synbiotics, ed. R. R. Watson and V. R. Preedy, 37–46. San Diego: Academic Press.
  • Depner, T. A. 2017. Uremic toxicity. In Handbook of dialysis therapy, ed. A. R. Nissenson and R. N. Fine, 241–63. 5th ed. Philadelphia: Elsevier.
  • Díaz-López, A., M. Bulló, J. Basora, M. Á. Martínez-González, M. Guasch-Ferré, R. Estruch, J. Wärnberg, L. Serra-Majem, F. Arós, J. Lapetra, et al. 2013. Cross-sectional associations between macronutrient intake and chronic kidney disease in a population at high cardiovascular risk. Clinical Nutrition (Edinburgh, Scotland) 32 (4):606–12. doi: 10.1016/j.clnu.2012.10.013.
  • Dou, L., E. Bertrand, C. Cerini, V. Faure, J. Sampol, R. Vanholder, Y. Berland, and P. Brunet. 2004. The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney International 65 (2):442–51. doi: 10.1111/j.1523-1755.2004.00399.x.
  • Dou, L., M. Sallee, C. Cerini, S. Poitevin, B. Gondouin, N. Jourde-Chiche, K. Fallague, P. Brunet, R. Calaf, B. Dussol, et al. 2015. The cardiovascular effect of the uremic solute indole-3 acetic acid. Journal of the American Society of Nephrology 26 (4):876–87. doi: 10.1681/ASN.2013121283.
  • Dou, L., N. Jourde-Chiche, V. Faure, C. Cerini, Y. Berland, F. Dignat-George, and P. Brunet. 2007. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. Journal of Thrombosis and Haemostasis: JTH 5 (6):1302–8. doi: 10.1111/j.1538-7836.2007.02540.x.
  • Duni, A., V. Liakopoulos, K. P. Rapsomanikis, and E. Dounousi. 2017. Chronic kidney disease and disproportionally increased cardiovascular damage: does oxidative stress explain the burden? Oxidative Medicine and Cellular Longevity 2017:9036450. doi: 10.1155/2017/9036450.
  • Elamin, S., M. J. Alkhawaja, A. Y. Bukhamsin, M. A. S. Idris, M. M. Abdelrahman, N. K. Abutaleb, and A. A. Housawi. 2017. Gum Arabic reduces C-reactive protein in chronic kidney disease patients without affecting urea or indoxyl sulfate levels. International Journal of Nephrology 2017:9501470–6. doi: 10.1155/2017/9501470.
  • Esgalhado, M., J. A. Kemp, B. R. Paiva, J. S. Brito, L. F. M. F. Cardozo, R. Azevedo, D. B. Cunha, L. S. Nakao, and D. Mafra. 2020. Resistant starch type-2 enriched cookies modulate uremic toxins and inflammation in hemodialysis patients: A randomized, double-blind, crossover and placebo-controlled trial. Food and Function 11 (3):2617–25. doi: 10.1039/c9fo02939g.
  • Evenepoel, P., B. K. Meijers, B. R. Bammens, and K. Verbeke. 2009. Uremic toxins originating from colonic microbial metabolism. Kidney International 76:S12–S9. doi: 10.1038/ki.2009.402.
  • Evenepoel, P., R. Poesen, and B. Meijers. 2017. The gut-kidney axis. Pediatric Nephrology (Berlin, Germany) 32 (11):2005–14. doi: 10.1007/s00467-016-3527-x.
  • Frassetto, L. A., K. M. Todd, R. C. MorrisJr, and A. Sebastian. 1998. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. The American Journal of Clinical Nutrition 68 (3):576–83. doi: 10.1093/ajcn/68.3.576.
  • Furuse, S. U., T. Ohse, A. Jo-Watanabe, A. Shigehisa, K. Kawakami, T. Matsuki, O. Chonan, and M. Nangaku. 2014. Galacto-oligosaccharides attenuate renal injury with microbiota modification. Physiological Reports 2 (7):e12029. doi: 10.14814/phy2.12029.
  • Gibson, G. R., and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. The Journal of Nutrition 125 (6):1401–12. doi: 10.1093/jn/125.6.1401.
  • Gluba-Brzozka, A., B. Franczyk, and J. Rysz. 2017. Vegetarian diet in chronic kidney disease-A friend or foe. Nutrients 9 (4):374. doi: 10.3390/nu9040374.
  • Gopinath, B., D. C. Harris, V. M. Flood, G. Burlutsky, J. Brand-Miller, and P. Mitchell. 2011. Carbohydrate nutrition is associated with the 5-year incidence of chronic kidney disease 1–3. The Journal of Nutrition 141 (3):433–9. doi: 10.3945/jn.110.134304.
  • Goraya, N., and D. E. Wesson. 2015. Dietary interventions to improve outcomes in chronic kidney disease. Current Opinion in Nephrology and Hypertension 24 (6):505–10.
  • Goraya, N., J. Simoni, C. H. Jo, and D. E. Wesson. 2014. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney International 86 (5):1031–8. doi: 10.1038/ki.2014.83.
  • Goraya, N., J. Simoni, C.-H. Jo, and D. E. Wesson. 2013. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clinical Journal of the American Society of Nephrology 8 (3):371–81. doi: 10.2215/CJN.02430312.
  • Gouroju, S., P. Rao, A. R. Bitla, K. S. Vinapamula, S. M. Manohar, and S. Vishnubhotla. 2017. Role of gut-derived uremic toxins on oxidative stress and inflammation in patients with chronic kidney disease. Indian Journal of Nephrology 27 (5):359–64. doi: 10.4103/ijn.IJN_71_17.
  • Gryp, T., K. De Paepe, R. Vanholder, F. M. Kerckhof, W. Van Biesen, T. Van de Wiele, F. Verbeke, M. Speeckaert, M. Joossens, M. M. Couttenye, et al. 2020. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney International 97 (6):1230–42. doi: 10.1016/j.kint.2020.01.028.
  • Gutiérrez, O. M. 2013. Disorders of phosphorus homeostasis: Emerging targets for slowing progression of chronic kidney disease. In Nutritional management of renal disease, ed. J. D. Kopple, S. G. Massry, and K. Kalantar-Zadeh, 249–55. 3rd ed. San Diego: Academic Press.
  • Gutierrez, O. M., and M. Wolf. 2010. Dietary phosphorus restriction in advanced chronic kidney disease: Merits, challenges, and emerging strategies. Seminars in Dialysis 23 (4):401–6.
  • Gutierrez-Diaz, I., T. Fernandez-Navarro, B. Sanchez, A. Margolles, and S. Gonzalez. 2016. Mediterranean diet and faecal microbiota: A transversal study. Food & Function 7 (5):2347–56. doi: 10.1039/c6fo00105j.
  • Haring, B., E. Selvin, M. Liang, J. Coresh, M. E. Grams, N. Petruski-Ivleva, L. M. Steffen, and C. M. Rebholz. 2017. Dietary protein sources and risk for incident chronic kidney disease: Results from the Atherosclerosis Risk in Communities (ARIC) study. Journal of Renal Nutrition 27 (4):233–42. doi: 10.1053/j.jrn.2016.11.004.
  • Harmsen, H. J. M., and M. C. de Goffau. 2016. The human gut microbiota. In Microbiota of the human body: Implications in health and disease, ed. A. Schwiertz, 95–108. Switzerland: Springer.
  • Heindel, J., S. Baid-Agrawal, C. M. Rebholz, J. Nadal, M. Schmid, E. Schaeffner, M. P. Schneider, H. Meiselbach, N. Kaesler, M. Bergmann, et al. 2020. Association between dietary patterns and kidney function in patients with chronic kidney disease: A cross-sectional analysis of the German chronic kidney disease study. Journal of Renal Nutrition 30 (4):296–304. doi: 10.1053/j.jrn.2019.09.008.
  • Hendrikx, T. K., E. A. Van Gurp, W. M. Mol, W. Schoordijk, V. D. Sewgobind, J. N. Ijzermans, W. Weimar, and C. C. Baan. 2009. End-stage renal failure and regulatory activities of CD4 + CD25bright + FoxP3+ T-cells. Nephrology Dialysis Transplantation 24 (6):1969–78. doi: 10.1093/ndt/gfp005.
  • Hill, N. R., S. T. Fatoba, J. L. Oke, J. A. Hirst, C. A. O’Callaghan, D. S. Lasserson, and F. D. R. Hobbs. 2016. Global prevalence of chronic kidney disease - A systematic review and meta-analysis. PLoS One 11 (7):e0158765. doi: 10.1371/journal.pone.0158765.
  • Huang, X., J. J. Jimenez-Moleon, B. Lindholm, T. Cederholm, J. Arnlov, U. Riserus, P. Sjogren, and J. J. Carrero. 2013. Mediterranean diet, kidney function, and mortality in men with CKD. Clinical Journal of the American Society of Nephrology 8 (9):1548–55. doi: 10.2215/CJN.01780213.
  • Hung, T. V., and T. Suzuki. 2018. Dietary fermentable fibers attenuate chronic kidney disease in mice by protecting the intestinal barrier. The Journal of Nutrition 148 (4):552–61. doi: 10.1093/jn/nxy008.
  • Ikizler, T. A., J. D. Burrowes, L. D. Byham-Gray, K. L. Campbell, J. J. Carrero, W. Chan, D. Fouque, A. N. Friedman, S. Ghaddar, and D. J. Goldstein-Fuchs. 2020. KDOQI clinical practice guideline for nutrition in CKD: 2020 Update. American Journal of Kidney Diseases 76 (1):1–107. doi: 10.1053/j.ajkd.2020.05.006.
  • Institute of Medicine. 2005. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: The National Academies Press. doi: 10.17226/10490.
  • Ishikawa, Y., and E. L. P. Sattler. 2017. Dietary patterns and cardiovascular disease prevention among patients with diabetes. Current Nutrition Reports 6 (4):299–306. doi: 10.1007/s13668-017-0220-z.
  • Iwashita, Y., M. Ohya, M. Yashiro, T. Sonou, K. Kawakami, Y. Nakashima, T. Yano, Y. Iwashita, T. Mima, S. Negi, et al. 2018. Dietary changes involving bifidobacterium longum and other nutrients delays chronic kidney disease progression. American Journal of Nephrology 47 (5):325–32. doi: 10.1159/000488947.
  • Jones, W. L. 2001. Demineralization of a wide variety of foods for the renal patient. Journal of Renal Nutrition: The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation 11 (2):90–6. doi: 10.1053/jren.2001.22489.
  • Kalantar-Zadeh, K., and D. Fouque. 2017. Nutritional management of chronic kidney disease. The New England Journal of Medicine 377 (18):1765–76. doi: 10.1056/NEJMra1700312.
  • Khatri, M., Y. P. Moon, N. Scarmeas, Y. Gu, H. Gardener, K. Cheung, C. B. Wright, R. L. Sacco, T. L. Nickolas, and M. S. Elkind. 2014. The association between a Mediterranean-style diet and kidney function in the Northern Manhattan Study cohort. Clinical Journal of the American Society of Nephrology 9 (11):1868–75. doi: 10.2215/CJN.01080114.
  • Khosroshahi, H. T., B. Abedi, M. Ghojazadeh, A. Samadi, and A. Jouyban. 2019. Effects of fermentable high fiber diet supplementation on gut derived and conventional nitrogenous product in patients on maintenance hemodialysis: A randomized controlled trial. Nutrition & Metabolism 16:18. doi: 10.1186/s12986-019-0343-x.
  • Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. 2013. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney International Supplements 3:1–150.
  • Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. 2020. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney International 98:1–115.
  • Kieffer, D. A., R. J. Martin, and S. H. Adams. 2016. Impact of dietary fibers on nutrient management and detoxification organs: Gut, liver, and kidneys. Advances in Nutrition (Bethesda, MD) 7 (6):1111–21. doi: 10.3945/an.116.013219.
  • Knight, E. L., M. J. Stampfer, S. E. Hankinson, D. Spiegelman, and G. C. Curhan. 2003. The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Annals of Internal Medicine 138 (6):460–7. doi: 10.7326/0003-4819-138-6-200303180-00009.
  • Koppe, L., D. Fouque, and C. O. Soulage. 2018. The role of gut microbiota and diet on uremic retention solutes production in the context of chronic kidney disease. Toxins (Basel) 10 (4):155. doi:3390/toxins10040155. doi: 10.3390/toxins10040155.
  • Koppe, L., N. J. Pillon, R. E. Vella, M. L. Croze, C. C. Pelletier, S. Chambert, Z. Massy, G. Glorieux, R. Vanholder, Y. Dugenet, et al. 2013. p-Cresyl sulfate promotes insulin resistance associated with CKD. Journal of the American Society of Nephrology: JASN 24 (1):88–99. doi: 10.1681/ASN.2012050503.
  • Kraut, J. A., and N. E. Madias. 2017. Adverse effects of the metabolic acidosis of chronic kidney disease. Advances in Chronic Kidney Disease 24 (5):289–97. doi: 10.1053/j.ackd.2017.06.005.
  • Krznaric, Z., D. V. Bender, and T. Mestrovic. 2019. The Mediterranean diet and its association with selected gut bacteria. Current Opinion in Clinical Nutrition and Metabolic Care 22:401–6.
  • Krishnamurthy, V. M., G. Wei, B. C. Baird, M. Murtaugh, M. B. Chonchol, K. L. Raphael, T. Greene, and S. Beddhu. 2012. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney International 81 (3):300–6. doi: 10.1038/ki.2011.355.
  • Lee, H. S., K. B. Lee, Y. Y. Hyun, Y. Chang, S. Ryu, and Y. Choi. 2017. DASH dietary pattern and chronic kidney disease in elderly Korean adults. European Journal of Clinical Nutrition 71 (6):755–61. doi: 10.1038/ejcn.2016.240.
  • Lew, Q. J., T. H. Jafar, H. W. Koh, A. Jin, K. Y. Chow, J. M. Yuan, and W. P. Koh. 2017. Red meat intake and risk of ESRD. Journal of the American Society of Nephrology 28 (1):304–12. doi: 10.1681/ASN.2016030248.
  • Liabeuf, S., D. V. Barreto, F. C. Barreto, N. Meert, G. Glorieux, E. Schepers, M. Temmar, G. Choukroun, R. Vanholder, and Z. A. Massy, European Uraemic Toxin Work Group (EUTox). 2010. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 25 (4):1183–91. doi: 10.1093/ndt/gfp592.
  • Liabeuf, S., N. Neirynck, T. B. Drueke, R. Vanholder, and Z. A. Massy. 2014. Clinical studies and chronic kidney disease: What did we learn recently? Seminars in Nephrology 34 (2):164–79. doi: 10.1016/j.semnephrol.2014.02.008.
  • Lin, C. J., C. F. Pan, C. K. Chuang, H. L. Liu, F. J. Sun, T. J. Wang, H. H. Chen, and C. J. Wu. 2014. Association of indoxyl sulfate with fibroblast growth factor 23 in patients with advanced chronic kidney disease. The American Journal of the Medical Sciences 347 (5):370–6. doi: 10.1097/MAJ.0b013e3182989f26.
  • Lin, C. J., H. L. Liu, C. F. Pan, C. K. Chuang, T. Jayakumar, T. J. Wang, H. H. Chen, and C. J. Wu. 2012. Indoxyl sulfate predicts cardiovascular disease and renal function deterioration in advanced chronic kidney disease. Archives of Medical Research 43 (6):451–6. doi: 10.1016/j.arcmed.2012.08.002.
  • Lin, C. J., V. Wu, P. C. Wu, and C. J. Wu. 2015. Meta-analysis of the associations of p-Cresyl Sulfate (PCS) and Indoxyl Sulfate (IS) with cardiovascular events and all-cause mortality in patients with chronic renal failure. PLoS One 10 (7):e0132589. doi: 10.1371/journal.pone.0132589.
  • Mafra, D., J. C. Lobo, A. F. Barros, L. Koppe, N. D. Vaziri, and D. Fouque. 2014. Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiology 9 (3):399–410. doi: 10.2217/fmb.13.165.
  • Mair, R. D., T. L. Sirich, N. S. Plummer, and T. W. Meyer. 2018. Characteristics of colon-derived uremic solutes. Clinical Journal of the American Society of Nephrology: CJASN 13 (9):1398–404. doi: 10.2215/CJN.03150318.
  • Marzocco, S., F. Dal Piaz, L. D. Micco, S. Torraca, M. L. Sirico, D. Tartaglia, G. Autore, and B. D. Iorio. 2013. Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purification 35 (1-3):196–201. doi: 10.1159/000346628.
  • Maukonen, J., and M. Saarela. 2015. Human gut microbiota: Does diet matter? The Proceedings of the Nutrition Society 74 (1):23–36. doi: 10.1017/S0029665114000688.
  • Meert, N., E. Schepers, G. Glorieux, M. Van Landschoot, J. L. Goeman, M. A. Waterloos, A. Dhondt, J. Van der Eycken, and R. Vanholder. 2012. Novel method for simultaneous determination of p-cresylsulphate and p-cresylglucuronide: clinical data and pathophysiological implications. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 27 (6):2388–96. doi: 10.1093/ndt/gfr672.
  • Meijers, B. K., B. Bammens, B. De Moor, B. K. Verbeke, Y. Vanrenterghem, and P. Evenepoel. 2008. Free p-cresol is associated with cardiovascular disease in hemodialysis patients. Kidney International 73 (10):1174–80. doi: 10.1038/ki.2008.31.
  • Meijers, B. K., V. De Preter, K. Verbeke, Y. Vanrenterghem, and P. Evenepoel. 2010. p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 25 (1):219–24. doi: 10.1093/ndt/gfp414.
  • Mekki, K., N. Bouzidi-Bekada, A. Kaddous, and M. Bouchenak. 2010. Mediterranean diet improves dyslipidemia and biomarkers in chronic renal failure patients. Food & Function 1 (1):110–5. doi: 10.1039/c0fo00032a.
  • Meyer, T. W., and T. H. Hostetter. 2012. Uremic solutes from colon microbes. Kidney International 81 (10):949–54. doi: 10.1038/ki.2011.504.
  • Mirmiran, P., E. Yuzbashian, Z. Bahadoran, G. Asghari, and F. Azizi. 2016. Dietary acid-base load and risk of chronic kidney disease in adults: Tehran lipid and glucose study. Iranian Journal of Kidney Diseases 10 (3):119–25.
  • Mishima, E., S. Fukuda, C. Mukawa, A. Yuri, Y. Kanemitsu, Y. Matsumoto, Y. Akiyama, N. N. Fukuda, H. Tsukamoto, K. Asaji, et al. 2017. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney International 92 (3):634–45. doi: 10.1016/j.kint.2017.02.011.
  • Mitsou, E. K., A. Kakali, S. Antonopoulou, K. C. Mountzouris, M. Yannakoulia, D. B. Panagiotakos, and A. Kyriacou. 2017. Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. The British Journal of Nutrition 117 (12):1645–55. doi: 10.1017/S0007114517001593.
  • Montemurno, E., C. Cosola, G. Dalfino, G. Daidone, M. De Angelis, M. Gobbetti, and L. Gesualdo. 2014. What would you like to eat, Mr CKD Microbiota? A Mediterranean Diet, please!. Kidney & Blood Pressure Research 39 (2-3):114–23. doi: 10.1159/000355785.
  • Moraes, C., N. A. Borges, and D. Mafra. 2016. Resistant starch for modulation of gut microbiota: Promising adjuvant therapy for chronic kidney disease patients? European Journal of Nutrition 55 (5):1813–21. doi: 10.1007/s00394-015-1138-0.
  • Nagami, G. T., and L. L. Hamm. 2017. Regulation of acid-base balance in chronic kidney disease. Advances in Chronic Kidney Disease 24 (5):274–9. doi: 10.1053/j.ackd.2017.07.004.
  • Nangaku, M., I. Mimura, J. Yamaguchi, Y. Higashijima, T. Wada, and T. Tanaka. 2015. Role of uremic toxins in erythropoiesis-stimulating agent resistance in chronic kidney disease and dialysis patients. Journal of Renal Nutrition: The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation 25 (2):160–3. doi: 10.1053/j.jrn.2014.10.011.
  • NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases). 2016. Preventing chronic kidney disease. Last Modified October 2016. Accessed January 16, 2020. https://www.niddk.nih.gov/health-information/kidney-disease/chronic-kidney-disease-ckd/prevention.
  • Nii-Kono, T., Y. Iwasaki, M. Uchida, A. Fujieda, A. Hosokawa, M. Motojima, H. Yamato, K. Kurokawa, and M. Fukagawa. 2007. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney International 71 (8):738–43. doi: 10.1038/sj.ki.5002097.
  • Niwa, T. 2012. Indoxyl Sulfate. In Uremic toxins, ed. T. Niwa, 51–76.
  • Niwa, T., and H. Shimizu. 2012. Indoxyl sulfate induces nephrovascular senescence. Journal of Renal Nutrition: The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation 22 (1):102–6. doi: 10.1053/j.jrn.2011.10.032.
  • NKF (National Kidney Foundation). 2019. The DASH diet. Last Modified June 2019. Accessed January 16, 2020. https://www.kidney.org/atoz/content/Dash_Diet.
  • Patel, K. P., F. J. Luo, N. S. Plummer, T. H. Hostetter, and T. W. Meyer. 2012. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clinical Journal of the American Society of Nephrology: CJASN 7 (6):982–8. doi: 10.2215/CJN.12491211.
  • Pignanelli, M., C. Just, C. Bogiatzi, V. Dinculescu, G. B. Gloor, E. Allen-Vercoe, G. Reid, B. L. Urquhart, K. N. Ruetz, T. J. Velenosi, et al. 2018. Mediterranean diet score: Associations with metabolic products of the intestinal microbiome, carotid plaque burden, and renal function. Nutrients 10 (6):779. doi: 10.3390/nu10060:779.
  • Pletinck, A., R. Vanholder, and G. Glorieux. 2012. p-cresyl sulfate. In Uremic toxins, ed. T. Niwa, 77–86. Hoboken, NJ: John Wiley & Sons, Inc.
  • Poesen, R., P. Evenepoel, H. de Loor, D. Kuypers, P. Augustijns, and B. Meijers. 2016. Metabolism, protein binding, and renal clearance of microbiota-derived p-cresol in patients with CKD. Clinical Journal of the American Society of Nephrology 11 (7):1136–44. doi: 10.2215/CJN.00160116.
  • Ramezani, A., and D. S. Raj. 2014. The gut microbiome, kidney disease, and targeted interventions. Journal of the American Society of Nephrology: JASN 25 (4):657–70.
  • Ramezani, A., Z. A. Massy, B. Meijers, P. Evenepoel, R. Vanholder, and D. S. Raj. 2016. Role of the gut microbiome in uremia: A potential therapeutic target. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation 67 (3):483–98. doi: 10.1053/j.ajkd.2015.09.027.
  • Ramos, C. I., R. G. Armani, M. E. F. Canziani, M. A. Dalboni, C. J. R. Dolenga, L. S. Nakao, K. L. Campbell, and L. Cuppari. 2019. Effect of prebiotic (fructooligosaccharide) on uremic toxins of chronic kidney disease patients: A randomized controlled trial. Nephrology Dialysis Transplantation 34 (11):1876–84. doi: 10.1093/ndt/gfy171.
  • Rebholz, C. M., D. C. Crews, M. E. Grams, L. M. Steffen, A. S. Levey, E. R. Miller, 3rd, L. J. Appel, and J. Coresh. 2016. DASH (Dietary Approaches to Stop Hypertension) diet and risk of subsequent kidney disease. American Journal of Kidney Diseases 68 (6):853–61. doi: 10.1053/j.ajkd.2016.05.019.
  • Rebholz, C. M., J. Coresh, M. E. Grams, L. M. Steffen, C. A. M. Anderson, L. J. Appel, and D. C. Crews. 2015. Dietary acid load and incident chronic kidney disease: Results from the ARIC Study. American Journal of Nephrology 42 (6):427–35. doi: 10.1159/000443746.
  • Remer, T., and F. Manz. 1995. Potential renal acid load of foods and its influence on urine pH. Journal of the American Dietetic Association 95 (7):791–7. doi: 10.1016/S0002-8223(95)00219-7.
  • Rossi, M., D. W. Johnson, H. Xu, J. J. Carrero, E. Pascoe, C. French, and K. L. Campbell. 2015. Dietary protein-fiber ratio associates with circulating levels of indoxyl sulfate and p-cresyl sulfate in chronic kidney disease patients. Nutrition, Metabolism, and Cardiovascular Diseases 25 (9):860–5. doi: 10.1016/j.numecd.2015.03.015.
  • Rossi, M., D. W. Johnson, M. Morrison, E. M. Pascoe, J. S. Coombes, J. M. Forbes, C. C. Szeto, B. C. McWhinney, J. P. Ungerer, and K. L. Campbell. 2016. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): A randomized trial. Clinical Journal of the American Society of Nephrology: CJASN 11 (2):223–31. doi: 10.2215/CJN.05240515.
  • Rossi, M., K. Klein, D. W. Johnson, and K. L. Campbell. 2012. Pre-, pro-, and synbiotics: Do they have a role in reducing uremic toxins? A systematic review and meta-analysis. International Journal of Nephrology 2012:673631. doi: 10.1155/2012/673631.
  • Salmean, Y. A., M. S. Segal, S. P. Palii, and W. J. Dahl. 2015. Fiber supplementation lowers plasma p-cresol in chronic kidney disease patients. Journal of Renal Nutrition 25 (3):316–20. doi: 10.1053/j.jrn.2014.09.002.
  • Satoh, M., H. Hayashi, M. Watanabe, K. Ueda, H. Yamato, T. Yoshioka, and M. Motojima. 2003. Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure. Nephron Experimental Nephrology 95 (3):e111-8–e118. doi: 10.1159/000074327.
  • Scialla, J. J., L. J. Appel, M. Wolf, W. Yang, X. M. Zhang, S. M. Sozio, E. R. Miller, L. A. Bazzano, M. Cuevas, M. J. Glenn, et al. 2012. Plant protein intake is associated with fibroblast growth factor 23 and serum bicarbonate levels in patients with chronic kidney disease: The chronic renal insufficiency cohort study. Journal of Renal Nutrition: The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation 22 (4):379–10. doi: 10.1053/j.jrn.2012.01.026.
  • Shafi, T., T. L. Sirich, T. W. Meyer, T. H. Hostetter, N. S. Plummer, S. Hwang, M. L. Melamed, T. Banerjee, J. Coresh, and N. R. Powe. 2017. Results of the HEMO Study suggest that p-cresol sulfate and indoxyl sulfate are not associated with cardiovascular outcomes. Kidney International 92 (6):1484–92. doi: 10.1016/j.kint.2017.05.012.
  • Shafi, T., T. W. Meyer, T. H. Hostetter, M. L. Melamed, R. S. Parekh, S. Hwang, T. Banerjee, J. Coresh, and N. R. Powe. 2015. Free levels of selected organic solutes and cardiovascular morbidity and mortality in hemodialysis patients: Results from the Retained Organic Solutes and Clinical Outcomes (ROSCO) investigators. PLoS One 10 (5):e0126048. doi: 10.1371/journal.pone.0126048.
  • Sirich, T. L. 2015. Dietary protein and fiber in end stage renal disease. Seminars in Dialysis 28 (1):75–80. doi: 10.1111/sdi.12315.
  • Sirich, T. L., N. S. Plummer, C. D. Gardner, T. H. Hostetter, and T. W. Meyer. 2014. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clinical Journal of the American Society of Nephrology 9 (9):1603–10. doi: 10.2215/CJN.00490114.
  • Smith, P. M., M. R. Howitt, N. Panikov, M. Michaud, C. A. Gallini, Y. M. Bohlooly, J. N. Glickman, and W. S. Garrett. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science (New York, N.Y.) 341 (6145):569–73.
  • Snelson, M., R. E. Clarke, and M. T. Coughlan. 2017. Stirring the Pot: Can dietary modification alleviate the burden of CKD? Nutrients 9 (3):265. doi: 10.3390/nu9030265.
  • Soulage, C. O., L. Koppe, D. Fouque. 2013. Protein-bound uremic toxins…new targets to prevent insulin resistance and dysmetabolism in patients with chronic kidney disease. Journal of Renal Nutrition: The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation 23 (6):464–6. doi: 10.1053/j.jrn.2013.06.003.
  • Sueyoshi, M., M. Fukunaga, M. Mei, A. Nakajima, G. Tanaka, T. Murase, Y. Narita, S. Hirata, and D. Kadowaki. 2019. Effects of lactulose on renal function and gut microbiota in adenine-induced chronic kidney disease rats. Clinical and Experimental Nephrology 23 (7):908–19. doi: 10.1007/s10157-019-01727-4.
  • Sun, C. Y., S. C. Chang, and M. S. Wu. 2012b. Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney International 81 (7):640–50. doi: 10.1038/ki.2011.445.
  • Sun, C.-Y., H.-H. Hsu, and M.-S. Wu. 2012a. p-Cresol sulfate and indoxyl sulfate induce similar cellular inflammatory gene expressions in cultured proximal renal tubular cells. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 28 (1):70–8. doi: 10.1093/ndt/gfs133.
  • Szeto, C. C., T. Y. Wong, K. M. Chow, C. B. Leung, and P. K. Li. 2003. Oral sodium bicarbonate for the treatment of metabolic acidosis in peritoneal dialysis patients: A randomized placebo-control trial. Journal of the American Society of Nephrology 14 (8):2119–26. doi: 10.1097/01.ASN.0000080316.37254.7A.
  • Tanaka, H., Y. Iwasaki, H. Yamato, Y. Mori, H. Komaba, H. Watanabe, T. Maruyama, and M. Fukagawa. 2013. p-Cresyl sulfate induces osteoblast dysfunction through activating JNK and p38 MAPK pathways. Bone 56 (2):347–54. doi: 10.1016/j.bone.2013.07.002.
  • Tyson, C. C., P. H. Lin, L. Corsino, B. C. Batch, J. Allen, S. Sapp, H. Barnhart, C. Nwankwo, J. Burroughs, and L. P. Svetkey. 2016. Short-term effects of the DASH diet in adults with moderate chronic kidney disease: A pilot feeding study. Clinical Kidney Journal 9 (4):592–8. doi: 10.1093/ckj/sfw046.
  • Vanholder, R., and G. Glorieux. 2015. The intestine and the kidneys: A bad marriage can be hazardous. Clinical Kidney Journal 8 (2):168–79. doi: 10.1093/ckj/sfv004.
  • Vanholder, R., E. Schepers, A. Pletinck, E. V. Nagler, and G. Glorieux. 2014. The uremic toxicity of indoxyl sulfate and p-Cresyl sulfate: A systematic review. Journal of the American Society of Nephrology: JASN 25 (9):1897–907. doi: 10.1681/ASN.2013101062.
  • Vaziri, N. D., J. Wong, M. Pahl, Y. M. Piceno, J. Yuan, T. Z. DeSantis, Z. Ni, T. H. Nguyen, and G. L. Andersen. 2013a. Chronic kidney disease alters intestinal microbial flora. Kidney International 83 (2):308–15. doi: 10.1038/ki.2012.345.
  • Vaziri, N. D., J. Yuan, A. Rahimi, Z. Ni, H. Said, and V. S. Subramanian. 2012c. Disintegration of colonic epithelial tight junction in uremia: A likely cause of CKD-associated inflammation. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 27 (7):2686–93. doi: 10.1093/ndt/gfr624.
  • Vaziri, N. D., J. Yuan, and K. Norris. 2013b. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. American Journal of Nephrology 37 (1):1–6. doi: 10.1159/000345969.
  • Vaziri, N. D., M. V. Pahl, A. Crum, and K. Norris. 2012b. Effect of uremia on structure and function of immune system. Journal of Renal Nutrition: The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation 22 (1):149–56. doi: 10.1053/j.jrn.2011.10.020.
  • Vaziri, N. D., N. Goshtasbi, J. Yuan, S. Jellbauer, H. Moradi, M. Raffatellu, and K. Kalantar-Zadeh. 2012a. Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium. American Journal of Nephrology 36 (5):438–43. doi: 10.1159/000343886.
  • Vaziri, N. D., S. M. Liu, W. L. Lau, M. Khazaeli, S. Nazertehrani, S. H. Farzaneh, D. A. Kieffer, S. H. Adams, and R. J. Martin. 2014. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS One 9 (12):e114881. doi: 10.1371/journal.pone.0114881.
  • Vaziri, N. D., Y. Y. Zhao, and M. V. Pahl. 2016. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: The nature, mechanisms, consequences and potential treatment. Nephrology Dialysis Transplantation 31 (5):737–46. doi: 10.1093/ndt/gfv095.
  • Vervloet, M. G., S. Sezer, Z. A. Massy, L. Johansson, M. Cozzolino, and D. Fouque, ERA–EDTA Working Group on Chronic Kidney Disease–Mineral and Bone Disorders and the European Renal Nutrition Working Group. 2017. The role of phosphate in kidney disease. Nature Reviews. Nephrology 13 (1):27–38. doi: 10.1038/nrneph.2016.164.
  • Vince, A. J., N. I. McNeil, J. D. Wager, and O. M. Wrong. 1990. The effect of lactulose, pectin, arabinogalactan and cellulose on the production of organic acids and metabolism of ammonia by intestinal bacteria in a faecal incubation system. British Journal of Nutrition 63 (1):17–26. doi: 10.1079/BJN19900088.
  • Wang, F., H. Jiang, K. Shi, Y. Ren, P. Zhang, and S. Cheng. 2012a. Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology (Carlton, Vic.) 17 (8):733–8. doi: 10.1111/j.1440-1797.2012.01647.x.
  • Wang, I. K., H. C. Lai, C. J. Yu, C. C. Liang, C. T. Chang, H. L. Kuo, Y. F. Yang, C. C. Lin, H. H. Lin, Y. L. Liu, et al. 2012b. Real-time PCR analysis of the intestinal microbiotas in peritoneal dialysis patients. Applied and Environmental Microbiology 78 (4):1107–12. doi: 10.1128/AEM.05605-11.
  • Wang, X., S. Yang, S. Li, L. Zhao, Y. Hao, J. Qin, L. Zhang, C. Zhang, W. Bian, L. Zuo, et al. 2020. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut 69 (12):2131–42. doi: 10.1136/gutjnl-2019-319766.
  • Watanabe, H., Y. Miyamoto, D. Honda, H. Tanaka, Q. Wu, M. Endo, T. Noguchi, D. Kadowaki, Y. Ishima, S. Kotani, et al. 2013. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney International 83 (4):582–92. doi: 10.1038/ki.2012.448.
  • Webster, A. C., E. V. Nagler, R. L. Morton, and P. Masson. 2017. Chronic kidney disease. The Lancet 389 (10075):1238–52. doi: 10.1016/S0140-6736(16)32064-5.
  • Wilkens, K., V. Juneja, and E. Shanaman. 2017. Medical nutrition therapy for renal disorders. In Krause’s food & the nutrition care process, ed. L. K. Mahan and J. L. Raymond, 700–28. 14th ed. St. Louis, MO: Elsevier.
  • Wing, M. R., S. S. Patel, A. Ramezani, and D. S. Raj. 2016. Gut microbiome in chronic kidney disease. Experimental Physiology 101 (4):471–7. doi: 10.1113/EP085283.
  • Wong, J. M. W., C. W. C. Kendall, and D. J. A. Jenkins. 2010. Fermentation of prebiotics and short-chain fatty acid production. In Handbook of prebiotics and probiotics ingredients: health benefits and food applications, ed. S. S. Cho and T. Finocchiaro, 221–32. Boca Raton, FL: CRC Press.
  • Wong, J., Y. M. Piceno, T. Z. Desantis, M. Pahl, G. L. Andersen, and N. D. Vaziri. 2014. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. American Journal of Nephrology 39 (3):230–7. doi: 10.1159/000360010.
  • Wu, I. W., K. H. Hsu, C. C. Lee, C. Y. Sun, H. J. Hsu, C. J. Tsai, C. Y. Tzen, Y. C. Wang, C. Y. Lin, and M. S. Wu. 2011. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 26 (3):938–47. doi: 10.1093/ndt/gfq580.
  • Wu, I. W., K. H. Hsu, H. J. Hsu, C. C. Lee, C. Y. Sun, C. J. Tsai, and M. S. Wu. 2012. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients-a prospective cohort study. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 27 (3):1169–75. doi: 10.1093/ndt/gfr453.
  • Xu, H., X. Huang, U. Riserus, V. M. Krishnamurthy, T. Cederholm, J. Arnlov, B. Lindholm, P. Sjogren, and J. J. Carrero. 2014. Dietary fiber, kidney function, inflammation, and mortality risk. Clinical Journal of the American Society of Nephrology 9 (12):2104–10. doi: 10.2215/CJN.02260314.
  • Yamamoto, H., S. Tsuruoka, T. Ioka, H. Ando, C. Ito, T. Akimoto, A. Fujimura, T. Asano, and E. Kusano. 2006. Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells. Kidney International 69 (10):1780–5. doi: 10.1038/sj.ki.5000340.
  • Yang, T., E. M. Richards, C. J. Pepine, and M. K. Raizada. 2018. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nature Reviews. Nephrology 14 (7):442–56. doi: 10.1038/s41581-018-0018-2.
  • Yu, M., Y. J. Kim, and D. H. Kang. 2011. Indoxyl sulfate-induced endothelial dysfunction in patients with chronic kidney disease via an induction of oxidative stress. Clinical Journal of the American Society of Nephrology: CJASN 6 (1):30–9. doi: 10.2215/CJN.05340610.
  • Yuzbashian, E., G. Asghari, P. Mirmiran, P. Amouzegar-Bahambari, and F. Azizi. 2018. Adherence to low-sodium dietary approaches to stop hypertension - style diet may decrease the risk of incident chronic kidney disease among high-risk patients: a secondary prevention in prospective cohort study. Nephrology Dialysis Transplantation 33 (7):1159–68. doi: 10.1093/ndt/gfx352.
  • Zeng, H., and H. Chi. 2015. Metabolic control of regulatory T cell development and function. Trends in Immunology 36 (1):3–12. doi: 10.1016/j.it.2014.08.003.
  • Zhang, L. S., and S. S. Davies. 2016. Microbial metabolism of dietary components to bioactive metabolites: Opportunities for new therapeutic interventions. Genome Medicine 8 (1):46. doi: 10.1186/s13073-016-0296-x.
  • Zimmerman, L., H. Jörnvall, and J. Bergström. 1990. Phenylacetylglutamine and Hippuric Acid in Uremic and Healthy Subjects. Nephron 55 (3):265–71. doi: 10.1159/000185973.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.