1,311
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Encapsulation of phenolic compounds within food-grade carriers and delivery systems by pH-driven method: a systematic review

ORCID Icon, , & ORCID Icon

References

  • Aditya, N. P., and S. Ko. 2015. Solid lipid nanoparticles (SLNs): Delivery vehicles for food bioactives. RSC Advances 5 (39):30902–11. doi: 10.1039/C4RA17127F.
  • Akhavan, S., E. Assadpour, I. Katouzian, and S. M. Jafari. 2018. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends in Food Science & Technology 74:132–46. doi: 10.1016/j.tifs.2018.02.001.
  • Akkermans, C., A. J. Van der Goot, P. Venema, E. Van der Linden, and R. M. Boom. 2008. Properties of protein fibrils in whey protein isolate solutions: Microstructure, flow behaviour and gelation. International Dairy Journal 18 (10–11):1034–42. doi: 10.1016/j.idairyj.2008.05.006.
  • Alavi, F., L. Chen, and Z. Emam-Djomeh. 2021. Effect of ultrasound-assisted alkaline treatment on functional property modifications of faba bean protein. Food Chemistry 354:129494. doi: 10.1016/j.foodchem.2021.129494.
  • Al-Kassas, R., M. Bansal, and J. Shaw. 2017. Nanosizing techniques for improving bioavailability of drugs. Journal of Controlled Release : Official Journal of the Controlled Release Society 260:202–12. doi: 10.1016/j.jconrel.2017.06.003.
  • Alldritt, I., B. Whitham-Agut, M. Sipin, J. Studholme, A. Trentacoste, J. A. Tripp, M. G. Cappai, P. Ditchfield, T. Devièse, R. E. M. Hedges, et al. 2019. Metabolomics reveals diet-derived plant polyphenols accumulate in physiological bone. Scientific Reports 9 (1):1–12. doi: 10.1038/s41598-019-44390-1.
  • Amawi, H., C. R. Ashby, T. Samuel, R. Peraman, and A. K. Tiwari. 2017. Polyphenolic nutrients in cancer chemoprevention and metastasis: Role of the epithelial-to-mesenchymal (EMT) pathway. Nutrients 9 (8):911. doi: 10.3390/nu9080911.
  • Ananingsih, V. K., A. Sharma, and W. Zhou. 2013. Green tea catechins during food processing and storage: A review on stability and detection. Food Research International 50 (2):469–79. doi: 10.1016/j.foodres.2011.03.004.
  • Bamidele, O. P., and M. N. Emmambux. 2021. Encapsulation of bioactive compounds by “extrusion” technologies: A review. Critical Reviews in Food Science and Nutrition 61 (18):3100–19. doi: 10.1080/10408398.2020.1793724.
  • Bhutto, A. A., Ş. Kalay, S. T. H. Sherazi, and M. Culha. 2018. Quantitative structure–activity relationship between antioxidant capacity of phenolic compounds and the plasmonic properties of silver nanoparticles. Talanta 189:174–81. doi: 10.1016/j.talanta.2018.06.080.
  • Biais, B., S. Krisa, S. Cluzet, G. Da Costa, P. Waffo-Teguo, J.-M. Merillon, and T. Richard. 2017. Antioxidant and cytoprotective activities of grapevine stilbenes. Journal of Agricultural and Food Chemistry 65 (24):4952–60. doi: 10.1021/acs.jafc.7b01254.
  • Bora, A. F. M., S. Ma, X. Li, and L. Liu. 2018. Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: Review and recent advances. Food Research International (Ottawa, Ont.) 105:241–9. doi: 10.1016/j.foodres.2017.11.047.
  • Bradbeer, J. F., R. Hancocks, F. Spyropoulos, and I. T. Norton. 2015. Low acyl gellan gum fluid gel formation and their subsequent response with acid to impact on satiety. Food Hydrocolloids 43:501–9. doi: 10.1016/j.foodhyd.2014.07.006.
  • Cheng, C., S. Peng, Z. Li, L. Zou, W. Liu, and C. Liu. 2017. Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances 7 (42):25978–86. doi: 10.1039/C7RA02861J.
  • Cheng, J., M. Zhu, and X. Liu. 2020. Insight into the conformational and functional properties of myofibrillar protein modified by mulberry polyphenols. Food Chemistry 308:125592. doi: 10.1016/j.foodchem.2019.125592.
  • Chen, A., Z. Harrell, P. Lu, E. Enriquez, L. Li, B. Zhang, P. Dowden, C. Chen, H. Wang, J. L. MacManus-Driscoll, et al. 2019. Strain enhanced functionality in a bottom-up approach enabled 3D super-nanocomposites. Advanced Functional Materials 29 (26):1900442. doi: 10.1002/adfm.201900442.
  • Chen, M., R. Li, Y. Gao, Y. Zheng, L. Liao, Y. Cao, J. Li, and W. Zhou. 2021. Encapsulation of hydrophobic and low-soluble polyphenols into nanoliposomes by pH-driven method: Naringenin and naringin as model compounds. Foods 10 (5):963. doi: 10.3390/foods10050963.
  • Chen, Y., Z. Li, X. Yi, H. Kuang, B. Ding, W. Sun, and Y. Luo. 2020. Influence of carboxymethylcellulose on the interaction between ovalbumin and tannic acid via noncovalent bonds and its effects on emulsifying properties. Lwt 118:108778. doi: 10.1016/j.lwt.2019.108778.
  • Chen, S., Y. Ma, L. Dai, W. Liao, L. Zhang, J. Liu, and Y. Gao. 2021. Fabrication, characterization, stability and re-dispersibility of curcumin-loaded gliadin-rhamnolipid composite nanoparticles using pH-driven method. Food Hydrocolloids 118:106758. doi: 10.1016/j.foodhyd.2021.106758.
  • Chen, J., J. Yang, L. Ma, J. Li, N. Shahzad, and C. K. Kim. 2020. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports 10 (1):1–9. doi: 10.1038/s41598-020-59451-z.
  • Chethan, S., and N. G. Malleshi. 2007. Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food Chemistry 105 (2):862–70. doi: 10.1016/j.foodchem.2007.02.012.
  • Chung, C., A. Sher, P. Rousset, and D. J. McClements. 2018. Impact of oil droplet concentration on the optical, rheological, and stability characteristics of O/W emulsions stabilized with plant-based surfactant: Potential application as non-dairy creamers. Food Research International (Ottawa, Ont.) 105:913–9. doi: 10.1016/j.foodres.2017.12.019.
  • Dai, L., H. Zhou, Y. Wei, Y. Gao, and D. J. McClements. 2019. Curcumin encapsulation in zein-rhamnolipid composite nanoparticles using a pH-driven method. Food Hydrocolloids 93:342–50. doi: 10.1016/j.foodhyd.2019.02.041.
  • Datta, S., Y. Kato, S. Higashiharaguchi, K. Aratsu, A. Isobe, T. Saito, D. D. Prabhu, Y. Kitamoto, M. J. Hollamby, A. J. Smith, et al. 2020. Self-assembled poly-catenanes from supramolecular toroidal building blocks. Nature 583 (7816):400–5. doi: 10.1038/s41586-020-2445-z.
  • Deng, N., Z. Deng, C. Tang, C. Liu, S. Luo, T. Chen, and X. Hu. 2021. Formation, structure and properties of the starch-polyphenol inclusion complex: A review. Trends in Food Science & Technology 112:667–75. doi: 10.1016/j.tifs.2021.04.032.
  • Dima, C., E. Assadpour, S. Dima, and S. M. Jafari. 2020. Bioactive-loaded nanocarriers for functional foods: From designing to bioavailability. Current Opinion in Food Science 33:21–9. doi: 10.1016/j.cofs.2019.11.006.
  • Eghbal, N., and R. Choudhary. 2018. Complex coacervation: Encapsulation and controlled release of active agents in food systems. Lwt 90:254–64. doi: 10.1016/j.lwt.2017.12.036.
  • Esposto, B. S., P. Jauregi, D. R. Tapia-Blacido, and M. Martelli-Tosi. 2021. Liposomes vs. chitosomes: Encapsulating food bioactives. Trends in Food Science & Technology 108:40–8. doi: 10.1016/j.tifs.2020.12.003.
  • Fang, Z., X. Cai, J. Wu, L. Zhang, Y. Fang, and S. Wang. 2021. Effect of simultaneous treatment combining ultrasonication and pH-shifting on SPI in the formation of nanoparticles and encapsulating resveratrol. Food Hydrocolloids 111:106250. doi: 10.1016/j.foodhyd.2020.106250.
  • Feng, Y., and Y. Lee. 2019. Microfluidic fabrication of wrinkled protein microcapsules and their nanomechanical properties affected by protein secondary structure. Journal of Food Engineering 246:102–10. doi: 10.1016/j.jfoodeng.2018.10.028.
  • Fu, X., J. Cai, X. Zhang, W.-D. Li, H. Ge, and Y. Hu. 2018. Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Advanced Drug Delivery Reviews 132:169–87. doi: 10.1016/j.addr.2018.07.006.
  • Garavand, F., M. Jalai-Jivan, E. Assadpour, and S. M. Jafari. 2021. Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chemistry 364:130376. doi: 10.1016/j.foodchem.2021.130376.
  • Garcia-Seisdedos, H., C. Empereur-Mot, N. Elad, and E. D. Levy. 2017. Proteins evolve on the edge of supramolecular self-assembly. Nature 548 (7666):244–7. doi: 10.1038/nature23320.
  • Garrec, D. A., and I. T. Norton. 2012. Understanding fluid gel formation and properties. Journal of Food Engineering 112 (3):175–82. doi: 10.1016/j.jfoodeng.2012.04.001.
  • Gaur, V. K., R. K. Regar, N. Dhiman, K. Gautam, J. K. Srivastava, S. Patnaik, and M. Kamthan, and N. Manickam. 2019. Biosynthesis and characterization of sophorolipid biosurfactant by Candida spp.: Application as food emulsifier and antibacterial agent. Bioresource Technology 285:121314. doi: 10.1016/j.biortech.2019.121314.
  • Gomez-Mascaraque, L. G., and A. Lopez-Rubio. 2016. Protein-based emulsion electrosprayed micro- and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives. Journal of Colloid and Interface Science 465:259–70. doi: 10.1016/j.jcis.2015.11.061.
  • Goncalves, A., B. N. Estevinho, and F. Rocha. 2021. Methodologies for simulation of gastrointestinal digestion of different controlled delivery systems and further uptake of encapsulated bioactive compounds. Trends in Food Science & Technology 114:510–20. doi: 10.1016/j.tifs.2021.06.007.
  • Guo, Q., I. Bayram, W. Zhang, J. Su, X. Shu, F. Yuan, L. Mao, and Y. Gao. 2021. Fabrication and characterization of curcumin-loaded pea protein isolate-surfactant complexes at neutral pH. Food Hydrocolloids 111:106214. doi: 10.1016/j.foodhyd.2020.106214.
  • Guo, Q., J. Su, X. Shu, F. Yuan, L. Mao, and Y. Gao. 2020. Development of high methoxyl pectin-surfactant-pea protein isolate ternary complexes: Fabrication, characterization and delivery of resveratrol. Food Chemistry 321:126706. doi: 10.1016/j.foodchem.2020.126706.
  • Guo, Q., J. Su, X. Shu, F. Yuan, L. Mao, J. Liu, and Y. Gao. 2020. Production and characterization of pea protein isolate-pectin complexes for delivery of curcumin: Effect of esterified degree of pectin. Food Hydrocolloids 105:105777. doi: 10.1016/j.foodhyd.2020.105777.
  • He, J., Y. Zong, R. Wang, W. Feng, Z. Chen, and T. Wang. 2021. Simultaneous refolding of wheat proteins and soy proteins forming novel antibiotic superstructures by carrying eugenol. Journal of Agricultural and Food Chemistry 69 (27):7698–708. doi: 10.1021/acs.jafc.1c01210.
  • Hu, Y., C. Qiu, Y. Qin, X. Xu, L. Fan, J. Wang, and Z. Jin. 2021. Cyclodextrin–phytochemical inclusion complexes: Promising food materials with targeted nutrition and functionality. Trends in Food Science & Technology 109:398–412. doi: 10.1016/j.tifs.2020.12.023.
  • Huang, A., D. J. McClements, S. Luo, T. Chen, J. Ye, and C. Liu. 2022. Fabrication of rutin-protein complexes to form and stabilize bilayer emulsions: Impact of concentration and pretreatment. Food Hydrocolloids 122:107056. doi: 10.1016/j.foodhyd.2021.107056.
  • Jafari, S. M., C. Arpagaus, M. A. Cerqueira, and K. Samborska. 2021. Nano spray drying of food ingredients; materials, processing and applications. Trends in Food Science & Technology 109:632–46. doi: 10.1016/j.tifs.2021.01.061.
  • Jiang, T., W. Liao, and C. Charcosset. 2020. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Research International (Ottawa, Ont.) 132:109035. doi: 10.1016/j.foodres.2020.109035.
  • Jiang, J., Q. Wang, and Y. L. Xiong. 2018. A pH shift approach to the improvement of interfacial properties of plant seed proteins. Current Opinion in Food Science 19:50–6. doi: 10.1016/j.cofs.2018.01.002.
  • Joye, I. J., G. Davidov-Pardo, and D. J. McClements. 2014. Nanotechnology for increased micronutrient bioavailability. Trends in Food Science & Technology 40 (2):168–82. doi: 10.1016/j.tifs.2014.08.006.
  • Joye, I. J., and D. J. McClements. 2013. Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends in Food Science & Technology 34 (2):109–23. doi: 10.1016/j.tifs.2013.10.002.
  • Joye, I. J., and D. J. McClements. 2014. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Current Opinion in Colloid & Interface Science 19 (5):417–27. doi: 10.1016/j.cocis.2014.07.002.
  • Ju, J., X. Chen, Y. Xie, H. Yu, Y. Guo, Y. Cheng, H. Qian, and W. Yao. 2019. Application of essential oil as a sustained release preparation in food packaging. Trends in Food Science & Technology 92:22–32. doi: 10.1016/j.tifs.2019.08.005.
  • Katouzian, I., A. F. Esfanjani, S. M. Jafari, and S. Akhavan. 2017. Formulation and application of a new generation of lipid nano-carriers for the food bioactive ingredients. Trends in Food Science & Technology 68:14–25. doi: 10.1016/j.tifs.2017.07.017.
  • Kevij, H. T., M. Mohammadian, and M. Salami. 2019. Complexation of curcumin with whey protein isolate for enhancing its aqueous solubility through a solvent-free pH-driven approach. Journal of Food Processing and Preservation 43 (12):e14227. doi: 10.1111/jfpp.14227.
  • Kevij, H. T., M. Salami, M. Mohammadian, and M. Khodadadi. 2020. Fabrication and investigation of physicochemical, food simulant release, and antioxidant properties of whey protein isolate-based films activated by loading with curcumin through the pH-driven method. Food Hydrocolloids 108:106026. doi: 10.1016/j.foodhyd.2020.106026.
  • Khan, H., M. Reale, H. Ullah, A. Sureda, S. Tejada, Y. Wang, Z. Zhang, and J. Xiao. 2020. Anti-cancer effects of polyphenols via targeting p53 signaling pathway: Updates and future directions. Biotechnology Advances 38:107385. doi: 10.1016/j.biotechadv.2019.04.007.
  • Khanbabaee, K., and T. Van Ree. 2001. Tannins: Classification and definition. Natural Product Reports 18 (6):641–9. doi: 10.1039/B101061L.[PMC].[. 11820762
  • Kharat, M., Z. Du, G. Zhang, and D. J. McClements. 2017. Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment. Journal of Agricultural and Food Chemistry 65 (8):1525–32. doi: 10.1021/acs.jafc.6b04815.
  • Kidambi, P. R., D. Jang, J. C. Idrobo, M. S. Boutilier, L. Wang, J. Kong, and R. Karnik. 2017. Nanoporous atomically thin graphene membranes for desalting and dialysis applications. Advanced Materials 29 (33):1700277. doi: 10.1002/adma.201700277.
  • Kobayashi, R., T. Ishiguro, A. Ozeki, K. Kawai, and T. Suzuki. 2020. Property changes of frozen soybean curd during frozen storage in "Kori-tofu" manufacturing process. Food Hydrocolloids 104:105714. doi: 10.1016/j.foodhyd.2020.105714.
  • Kristinsson, H. G., and H. O. Hultin. 2003. Changes in conformation and subunit assembly of cod myosin at low and high pH and after subsequent refolding. Journal of Agricultural and Food Chemistry 51 (24):7187–96. doi: 10.1021/jf026193m.
  • Leopoldini, M., N. Russo, and M. Toscano. 2011. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry 125 (2):288–306. doi: 10.1016/j.foodchem.2010.08.012.
  • Liang, G., W. Chen, X. Qie, M. Zeng, F. Qin, Z. He, and J. Chen. 2020. Modification of soy protein isolates using combined pre-heat treatment and controlled enzymatic hydrolysis for improving foaming properties. Food Hydrocolloids 105:105764. doi: 10.1016/j.foodhyd.2020.105764.
  • Li, Z., Q. Lin, D. J. McClements, Y. Fu, H. Xie, T. Li, and G. Chen. 2021. Curcumin-loaded core-shell biopolymer nanoparticles produced by the pH-driven method: Physicochemical and release properties. Food Chemistry 355:129686. doi: 10.1016/j.foodchem.2021.129686.
  • Li, H., X. Zhang, C. Zhao, H. Zhang, Y. Chi, L. Wang, H. Zhang, S. Bai, and X. Zhang. 2022. Entrapment of curcumin in soy protein isolate using the pH-driven method: Nanoencapsulation and formation mechanism. LWT 153:112480. doi: 10.1016/j.lwt.2021.112480.
  • Liu, Q., J. Cheng, X. Sun, and M. Guo. 2021. Preparation, characterization, and antioxidant activity of zein nanoparticles stabilized by whey protein nanofibrils. International Journal of Biological Macromolecules 167:862–70. doi: 10.1016/j.ijbiomac.2020.11.043.
  • Liu, W., Y. Hou, Y. Jin, Y. Wang, X. Xu, and J. Han. 2020. Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends in Food Science & Technology 104:177–89. doi: 10.1016/j.tifs.2020.08.012.
  • Liu, Y., L. Huang, D. Li, Y. Wang, Z. Chen, C. Zou, W. Liu, Y. Ma, M. Cao, and G.-M. Liu. 2020. Re-assembled oleic acid-protein complexes as nano-vehicles for astaxanthin: Multispectral analysis and molecular docking. Food Hydrocolloids 103:105689. doi: 10.1016/j.foodhyd.2020.105689.
  • Liu, Q., Y. Qin, J. Chen, B. Jiang, and T. Zhang. 2021. Fabrication, characterization, physicochemical stability and simulated gastrointestinal digestion of pterostilbene loaded zein-sodium caseinate-fucoidan nanoparticles using pH-driven method. Food Hydrocolloids 119:106851. doi: 10.1016/j.foodhyd.2021.106851.
  • Liyanaarachchi, W. S., and T. Vasiljevic. 2018. Caseins and their interactions that modify heat aggregation of whey proteins in commercial dairy mixtures. International Dairy Journal 83:43–51. doi: 10.1016/j.idairyj.2018.03.006.
  • Li, Y., Z. Zhang, W. Ren, Y. Wang, B. K. Mintah, M. Dabbour, Y. Hou, R. He, Y. Cheng, and H. Ma. 2021. Inhibition effect of ultrasound on the formation of lysinoalanine in rapeseed protein isolates during pH shift treatment. Journal of Agricultural and Food Chemistry 69 (30):8536–45. doi: 10.1021/acs.jafc.1c02422.
  • Li, X.-M., J. Zhu, Y. Pan, R. Meng, B. Zhang, and H.-Q. Chen. 2019. Fabrication and characterization of pickering emulsions stabilized by octenyl succinic anhydride-modified gliadin nanoparticle. Food Hydrocolloids 90:19–27. doi: 10.1016/j.foodhyd.2018.12.012.
  • Lopez, C. 2011. Milk fat globules enveloped by their biological membrane: Unique colloidal assemblies with a specific composition and structure. Current Opinion in Colloid & Interface Science 16 (5):391–404. doi: 10.1016/j.cocis.2011.05.007.
  • Luo, Y., Y. Zhang, K. Pan, F. Critzer, P. M. Davidson, and Q. Zhong. 2014. Self-emulsification of alkaline-dissolved clove bud oil by whey protein, gum arabic, lecithin, and their combinations. Journal of Agricultural and Food Chemistry 62 (19):4417–24. doi: 10.1021/jf500698k.
  • Lyu, X., J. Lee, and W. N. Chen. 2019. Potential natural food preservatives and their sustainable production in yeast: Terpenoids and polyphenols. Journal of Agricultural and Food Chemistry 67 (16):4397–417. doi: 10.1021/acs.jafc.8b07141.
  • Ma, Y., S. Chen, W. Liao, L. Zhang, J. Liu, and Y. Gao. 2020. Formation, physicochemical stability, and redispersibility of curcumin-loaded rhamnolipid nanoparticles using the pH-driven method. Journal of Agricultural and Food Chemistry 68 (27):7103–11. doi: 10.1021/acs.jafc.0c01326.
  • Ma, W., A. Guo, Y. Zhang, H. Wang, Y. Liu, and H. Li. 2014. A review on astringency and bitterness perception of tannins in wine. Trends in Food Science & Technology 40 (1):6–19. doi: 10.1016/j.tifs.2014.08.001.
  • Malaspina, D. C., C. Vinas, F. Teixidor, and J. Faraudo. 2020. Atomistic simulations of COSAN: Amphiphiles without a head-and-tail design display "head and tail" surfactant behavior. Angewandte Chemie (International ed. in English) 59 (8):3088–92. doi: 10.1002/anie.201913257.
  • Maleki, S. J., J. F. Crespo, and B. Cabanillas. 2019. Anti-inflammatory effects of flavonoids. Food Chemistry 299:125124. doi: 10.1016/j.foodchem.2019.125124.
  • Manolova, Y., V. Deneva, L. Antonov, E. Drakalska, D. Momekova, and N. Lambov. 2014. The effect of the water on the curcumin tautomerism: A quantitative approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 132:815–20. doi: 10.1016/j.saa.2014.05.096.
  • Mantovani, R. A., G. d F. Furtado, F. M. Netto, and R. L. Cunha. 2018. Assessing the potential of whey protein fibril as emulsifier. Journal of Food Engineering 223:99–108. doi: 10.1016/j.jfoodeng.2017.12.006.
  • Maqsoudlou, A., E. Assadpour, H. Mohebodini, and S. M. Jafari. 2020. Improving the efficiency of natural antioxidant compounds via different nanocarriers. Advances in Colloid and Interface Science 278:102122. doi: 10.1016/j.cis.2020.102122.
  • McClements, D. J. 2015. Nanoparticle-and microparticle-based delivery systems: Encapsulation protection and release of active compounds, eds. D. J. McClements. Boca Raton, FL: CRC Press, Taylor & Francis Group. doi: 10.1201/b17280.
  • Messager, L., J. Gaitzsch, L. Chierico, and G. Battaglia. 2014. Novel aspects of encapsulation and delivery using polymersomes. Current Opinion in Pharmacology 18:104–11. doi: 10.1016/j.coph.2014.09.017.
  • Metwaly, A. M., L. Zhu, L. Huang, and D. Dou. 2019. Black ginseng and its saponins: Preparation, phytochemistry and pharmacological effects. Molecules 24 (10):1856. doi: 10.3390/molecules24101856.
  • Moghadam, M., M. Salami, M. Mohammadian, L. Delphi, H. Sepehri, Z. Emam-Djomeh, and A. A. Moosavi-Movahedi. 2020. Walnut protein-curcumin complexes: Fabrication, structural characterization, antioxidant properties, and in vitro anticancer activity. Journal of Food Measurement and Characterization 14 (2):876–85. doi: 10.1007/s11694-019-00336-9.
  • Mohammadian, M., M. Salami, M. Moghadam, A. Amirsalehi, and Z. Emam-Djomeh. 2021. Mung bean protein as a promising biopolymeric vehicle for loading of curcumin: Structural characterization, antioxidant properties, and in vitro release kinetics. Journal of Drug Delivery Science and Technology 61:102148. doi: 10.1016/j.jddst.2020.102148.
  • Munekata, P. E. S., M. Pateiro, W. Zhang, R. Dominguez, L. Xing, E. M. Fierro, and J. M. Lorenzo. 2021. Health benefits, extraction and development of functional foods with curcuminoids. Journal of Functional Foods 79:104392. doi: 10.1016/j.jff.2021.104392.
  • Nahum, V., and A. J. Domb. 2021. Recent developments in solid lipid microparticles for food ingredients delivery. Foods 10 (2):400. doi: 10.3390/foods10020400.
  • Nikiforidis, C. V. 2019. Structure and functions of oleosomes (oil bodies). Advances in Colloid and Interface Science 274:102039. doi: 10.1016/j.cis.2019.102039.
  • Pandita, D., S. Kumar, N. Poonia, and V. Lather. 2014. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Research International 62:1165–74. doi: 10.1016/j.foodres.2014.05.059.
  • Pan, K., Y. Luo, Y. Gan, S. J. Baek, and Q. Zhong. 2014. pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity. Soft Matter 10 (35):6820–30. doi: 10.1039/c4sm00239c.
  • Pan, K., and Q. Zhong. 2016a. Low energy, organic solvent-free co-assembly of zein and caseinate to prepare stable dispersions. Food Hydrocolloids 52:600–6. doi: 10.1016/j.foodhyd.2015.08.014.
  • Pan, K., and Q. Zhong. 2016b. Organic nanoparticles in foods: Fabrication, characterization, and Utilization. Annual Review of Food Science and Technology 7:245–66. doi: 10.1146/annurev-food-041715-033215.
  • Peanparkdee, M., and S. Iwamoto. 2020. Encapsulation for improving in vitro gastrointestinal digestion of plant polyphenols and their applications in food products. Food Reviews International 1–19. doi: 10.1080/87559129.2020.1733595.
  • Pei, Y., J. Wan, M. You, D. J. McClements, Y. Li, and B. Li. 2019. Impact of whey protein complexation with phytic acid on its emulsification and stabilization properties. Food Hydrocolloids 87:90–6. doi: 10.1016/j.foodhyd.2018.07.034.
  • Peng, S., Z. Li, L. Zou, W. Liu, C. Liu, and D. J. McClements. 2018a. Enhancement of curcumin bioavailability by encapsulation in sophorolipid-coated nanoparticles: An in vitro and in vivo study. Journal of Agricultural and Food Chemistry 66 (6):1488–97. doi: 10.1021/acs.jafc.7b05478.
  • Peng, S., Z. Li, L. Zou, W. Liu, C. Liu, and D. J. McClements. 2018b. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food & Function 9 (3):1829–39. doi: 10.1039/C7FO01814B.
  • Peng, S., L. Zhou, Q. Cai, L. Zou, C. Liu, W. Liu, and D. J. McClements. 2020. Utilization of biopolymers to stabilize curcumin nanoparticles prepared by the pH-shift method: Caseinate, whey protein, soy protein and gum Arabic. Food Hydrocolloids 107:105963. doi: 10.1016/j.foodhyd.2020.105963.
  • Peng, S., L. Zou, W. Liu, C. Liu, and D. J. McClements. 2018. Fabrication and characterization of curcumin-loaded liposomes formed from sunflower lecithin: Impact of composition and environmental stress. Journal of Agricultural and Food Chemistry 66 (46):12421–30. doi: 10.1021/acs.jafc.8b04136.
  • Peng, S., L. Zou, W. Zhou, W. Liu, C. Liu, and D. J. McClements. 2019. Encapsulation of lipophilic polyphenols into nanoliposomes using pH-driven method: Advantages and disadvantages. Journal of Agricultural and Food Chemistry 67 (26):7506–11. doi: 10.1021/acs.jafc.9b01602.
  • Pujara, N., S. Jambhrunkar, K. Y. Wong, M. McGuckin, and A. Popat. 2017. Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate. Journal of Colloid and Interface Science 488:303–8. doi: 10.1016/j.jcis.2016.11.015.
  • Rahaiee, S., E. Assadpour, A. F. Esfanjani, A. S. Silva, and S. M. Jafari. 2020. Application of nano/microencapsulated phenolic compounds against cancer. Advances in Colloid and Interface Science 279:102153. doi: 10.1016/j.cis.2020.102153.
  • Rahman, M. M., and B. P. Lamsal. 2021. Ultrasound-assisted extraction and modification of plant-based proteins: Impact on physicochemical, functional, and nutritional properties. Comprehensive Reviews in Food Science and Food Safety 20 (2):1457–80. doi: 10.1111/1541-4337.12709.
  • Rahnasto-Rilla, M., J. Tyni, M. Huovinen, E. Jarho, T. Kulikowicz, S. Ravichandran, V. A. Bohr, L. Ferrucci, M. Lahtela-Kakkonen, and R. Moaddel. 2018. Natural polyphenols as sirtuin 6 modulators. Scientific Reports 8 (1):1–11. doi: 10.1038/s41598-018-22388-5.
  • Salah, E., M. M. Abouelfetouh, Y. Pan, D. Chen, and S. Xie. 2020. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids and Surfaces B, Biointerfaces 196:111305. doi: 10.1016/j.colsurfb.2020.111305.
  • Samborska, K., S. Boostani, M. Geranpour, H. Hosseini, C. Dima, S. Khoshnoudi-Nia, H. Rostamabadi, S. R. Falsafi, R. Shaddel, S. Akbari-Alavijeh, et al. 2021. Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends in Food Science & Technology 108:297–325. doi: 10.1016/j.tifs.2021.01.008.
  • Sang, Z., J. Qian, J. Han, X. Deng, J. Shen, G. Li, and Y. Xie. 2020. Comparison of three water-soluble polyphosphate tripolyphosphate, phytic acid, and sodium hexametaphosphate as crosslinking agents in chitosan nanoparticle formulation. Carbohydrate Polymers 230:115577. doi: 10.1016/j.carbpol.2019.115577.
  • Santonocito, D., M. G. Sarpietro, C. Carbone, A. Panico, A. Campisi, E. A. Siciliano, G. Sposito, F. Castelli, and C. Puglia, and C. Puglia. 2020. Curcumin containing PEGylated solid lipid nanoparticles for systemic administration: A preliminary study. Molecules 25 (13):2991. doi: 10.3390/molecules25132991.
  • Shi, G., Y. Shen, P. Mu, Q. Wang, Y. Yang, S. Ma, and J. Li. 2020. Effective separation of surfactant-stabilized crude oil-in-water emulsions by using waste brick powder-coated membranes under corrosive conditions. Green Chemistry 22 (4):1345–52. doi: 10.1039/C9GC04178H.
  • Shivamathi, C. S., I. G. Moorthy, R. V. Kumar, M. R. Soosai, J. P. Maran, R. S. Kumar, and P. Varalakshmi. 2019. Optimization of ultrasound assisted extraction of pectin from custard apple peel: Potential and new source. Carbohydrate Polymers 225:115240. doi: 10.1016/j.carbpol.2019.115240.
  • Shi, L., J. Zhou, J. Guo, I. Gladden, and L. Kong. 2021. Starch inclusion complex for the encapsulation and controlled release of bioactive guest compounds. Carbohydrate Polymers 274:118596. doi: 10.1016/j.carbpol.2021.118596.
  • Silva, K. S., T. M. R. Fonseca, L. R. Amado, and M. A. Mauro. 2018. Physicochemical and microstructural properties of whey protein isolate-based films with addition of pectin. Food Packaging and Shelf Life 16:122–8. doi: 10.1016/j.fpsl.2018.03.005.
  • Silventoinen, P., and N. Sozer. 2020. Impact of Ultrasound Treatment and pH-Shifting on Physicochemical Properties of Protein-Enriched Barley Fraction and Barley Protein Isolate. Foods 9 (8):1055. doi: 10.3390/foods9081055.
  • Soares, R. M., N. M. Siqueira, M. P. Prabhakaram, and S. Ramakrishna. 2018. Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Materials Science and Engineering C 92:969–82. doi: 10.1016/j.msec.2018.08.004.
  • Sun, C., Y. Gao, and Q. Zhong. 2018a. Effects of acidification by glucono-delta-lactone or hydrochloric acid on structures of zein-caseinate nanocomplexes self-assembled during a pH cycle. Food Hydrocolloids 82:173–85. doi: 10.1016/j.foodhyd.2018.04.007.
  • Sun, C., Y. Gao, and Q. Zhong. 2018b. Properties of ternary biopolymer nanocomplexes of zein, sodium caseinate, and propylene glycol alginate and their functions of stabilizing high internal phase Pickering emulsions. Langmuir : The ACS Journal of Surfaces and Colloids 34 (31):9215–27. doi: 10.1021/acs.langmuir.8b01887.
  • Sun, X., W. Zhang, L. Zhang, S. Tian, and F. Chen. 2021. Effect of ultrasound-assisted extraction on the structure and emulsifying properties of peanut protein isolate. Journal of the Science of Food and Agriculture 101 (3):1150–60. doi: 10.1002/jsfa.10726.
  • Tapia-Hernández, J. A., C. L. Del-Toro-Sánchez, F. J. Cinco-Moroyoqui, J. E. Juárez-Onofre, S. Ruiz-Cruz, E. Carvajal-Millan, G. A. López-Ahumada, D. D. Castro-Enriquez, C. G. Barreras-Urbina, and F. Rodríguez-Felix. 2019. Prolamins from cereal by-products: Classification, extraction, characterization and its applications in micro- and nanofabrication. Trends in Food Science & Technology 90:111–32. doi: 10.1016/j.tifs.2019.06.005.
  • Tarhini, M., H. Greige-Gerges, and A. Elaissari. 2017. Protein-based nanoparticles: From preparation to encapsulation of active molecules. International Journal of Pharmaceutics 522 (1-2):172–97. doi: 10.1016/j.ijpharm.2017.01.067.
  • Tian, Y., G. Xu, W. Cao, J. Li, A. Taha, H. Hu, and S. Pan. 2021. Interaction between pH-shifted β-conglycinin and flavonoids hesperetin/hesperidin: Characterization of nanocomplexes and binding mechanism. Lwt 140:110698. doi: 10.1016/j.lwt.2020.110698.
  • Tian, Y., Z. Zhang, A. Taha, Y. Chen, H. Hu, and S. Pan. 2020. Interfacial and emulsifying properties of beta-conglycinin/pectin mixtures at the oil/water interface: Effect of pH. Food Hydrocolloids 109:106145. doi: 10.1016/j.foodhyd.2020.106145.
  • Timilsena, Y. P., T. O. Akanbi, N. Khalid, B. Adhikari, and C. J. Barrow. 2019. Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules 121:1276–86. doi: 10.1016/j.ijbiomac.2018.10.144.
  • Tippel, J., M. Lehmann, R. von Klitzing, and S. Drusch. 2016. Interfacial properties of Quillaja saponins and its use for micellisation of lutein esters. Food Chemistry 212:35–42. doi: 10.1016/j.foodchem.2016.05.130.
  • Tønnesen, H. H., and J. Karlsen. 1985. Studies on curcumin and curcuminoids. VI. Kinetics of curcumin degradation in aqueous solutionZeitschrift Fur Lebensmittel-Untersuchung und -Forschung 180 (5):402–4. doi: 10.1007/BF01027775.
  • Tsao, R. 2010. Chemistry and biochemistry of dietary polyphenols. Nutrients 2 (12):1231–46. doi: 10.3390/nu2121231.
  • Van Zee, N. J., B. Adelizzi, M. F. J. Mabesoone, X. Meng, A. Aloi, R. H. Zha, M. Lutz, I. A. W. Filot, A. R. A. Palmans, and E. W. Meijer. 2018. Potential enthalpic energy of water in oils exploited to control supramolecular structure. Nature 558 (7708):100–3. doi: 10.1038/s41586-018-0169-0.
  • Vitale, A., and R. S. Boston. 2008. Endoplasmic reticulum quality control and the unfolded protein response: Insights from plants. Traffic (Copenhagen, Denmark) 9 (10):1581–8. doi: 10.1111/j.1600-0854.2008.00780.x.
  • Wang, T., X. Chen, Q. Zhong, Z. Chen, R. Wang, and A. R. Patel. 2019. Facile and efficient construction of water-soluble biomaterials with tunable mesoscopic structures using all-natural edible proteins. Advanced Functional Materials 29 (31):1901830. doi: 10.1002/adfm.201901830.
  • Wang, M., Y. Fu, G. Chen, Y. Shi, X. Li, H. Zhang, and Y. Shen. 2018. Fabrication and characterization of carboxymethyl chitosan and tea polyphenols coating on zein nanoparticles to encapsulate beta-carotene by anti-solvent precipitation method. Food Hydrocolloids 77:577–87. doi: 10.1016/j.foodhyd.2017.10.036.
  • Wang, L., L. Ke, P. Rao, and Y. Zhang. 2021. Fabrication and characterization of curcumin-loaded nanoparticles using protein from brewers’ spent grain. Lwt 150:111992. doi: 10.1016/j.lwt.2021.111992.
  • Wang, L., J. Xue, and Y. Zhang. 2019. Preparation and characterization of curcumin loaded caseinate/zein nanocomposite film using pH-driven method. Industrial Crops and Products 130:71–80. doi: 10.1016/j.indcrop.2018.12.072.
  • Wang, T., M. Yue, P. Xu, R. Wang, and Z. Chen. 2018. Toward water-solvation of rice proteins via backbone hybridization by casein. Food Chemistry 258:278–83. doi: 10.1016/j.foodchem.2018.03.084.
  • Wang, Y., L. Zhang, P. Wang, X. Xu, and G. Zhou. 2020. pH-shifting encapsulation of curcumin in egg white protein isolate for improved dispersity, antioxidant capacity and thermal stability. Food Research International (Ottawa, Ont.) 137:109366. doi: 10.1016/j.foodres.2020.109366.
  • Wei, Y., X. Zhan, L. Dai, L. Zhang, L. Mao, F. Yuan, J. Liu, and Y. Gao. 2021. Formation mechanism and environmental stability of whey protein isolate-zein core-shell complex nanoparticles using the pH-shifting method. Lwt 139:110605. doi: 10.1016/j.lwt.2020.110605.
  • Wei, Y., J. Zhang, A. H. Memon, and H. Liang. 2017. Molecular model and in vitro antioxidant activity of a water-soluble and stable phloretin/hydroxypropyl-beta-cyclodextrin inclusion complex. Journal of Molecular Liquids 236:68–75. doi: 10.1016/j.molliq.2017.03.098.
  • Wei, X.-Q., J.-F. Zhu, X.-B. Wang, and K. Ba. 2020. Improving the stability of liposomal curcumin by adjusting the inner aqueous chamber ph of liposomes. ACS Omega 5 (2):1120–6. doi: 10.1021/acsomega.9b03293.
  • Wiedenmann, V., K. Oehlke, U. van der Schaaf, B. Hetzer, R. Greiner, and H. P. Karbstein. 2018. Impact of the incorporation of solid lipid nanoparticles on ss-lactoglobulin gel matrices. Food Hydrocolloids 84:498–507. doi: 10.1016/j.foodhyd.2018.06.007.
  • Wu, C., L. Li, Q. Zhong, R. Cai, P. Wang, X. Xu, G. Zhou, M. Han, Q. Liu, T. Hu, et al. 2019. Myofibrillar protein–curcumin nanocomplexes prepared at different ionic strengths to improve oxidative stability of marinated chicken meat products. Lwt 99:69–76. doi: 10.1016/j.lwt.2018.09.024.
  • Wu, M., Q. Luo, R. Nie, X. Yang, Z. Tang, and H. Chen. 2021. Potential implications of polyphenols on aging considering oxidative stress, inflammation, autophagy, and gut microbiota. Critical Reviews in Food Science and Nutrition 61 (13):2175–93. doi: 10.1080/10408398.2020.1773390.
  • Wu, S., Y. Zhang, F. Ren, Y. Qin, J. Liu, J. Liu, Q. Wang, and H. Zhang. 2018. Structure-affinity relationship of the interaction between phenolic acids and their derivatives and β-lactoglobulin and effect on antioxidant activity . Food Chemistry 245:613–9. doi: 10.1016/j.foodchem.2017.10.122.
  • Xue, J., Z. Li, H. Duan, J. He, and Y. Luo. 2021. Chemically modified phytoglycogen: Physicochemical characterizations and applications to encapsulate curcumin. Colloids and Surfaces B, Biointerfaces 205:111829. doi: 10.1016/j.colsurfb.2021.111829.
  • Xue, J., Y. Luo, B. Balasubramanian, A. Upadhyay, Z. Li, and Y. Luo. 2021. Development of novel biopolymer-based dendritic nanocomplexes for encapsulation of phenolic bioactive compounds: A proof-of-concept study. Food Hydrocolloids 120:106987. doi: 10.1016/j.foodhyd.2021.106987.
  • Xue, J., T. Wang, Q. Hu, M. Zhou, and Y. Luo. 2018. Insight into natural biopolymer-emulsified solid lipid nanoparticles for encapsulation of curcumin: Effect of loading methods. Food Hydrocolloids 79:110–6. doi: 10.1016/j.foodhyd.2017.12.018.
  • Xu, G., L. Li, X. Bao, and P. Yao. 2020. Curcumin, casein and soy polysaccharide ternary complex nanoparticles for enhanced dispersibility, stability and oral bioavailability of curcumin. Food Bioscience 35:100569. doi: 10.1016/j.fbio.2020.100569.
  • Xu, K., Z. Shi, J. Lyu, Q. Zhang, T. Zhong, G. Du, and S. Wang. 2020. Effects of hydrothermal pretreatment on nano-mechanical property of switchgrass cell wall and on energy consumption of isolated lignin-coated cellulose nanofibrils by mechanical grinding. Industrial Crops and Products 149:112317. doi: 10.1016/j.indcrop.2020.112317.
  • Xu, Y., J. Wu, and S. Wang. 2021. Comparative study of whey protein isolate and gelatin treated by pH-shifting combined with ultrasonication in loading resveratrol. Food Hydrocolloids 117:106694. doi: 10.1016/j.foodhyd.2021.106694.
  • Yan, S., F. Xie, S. Zhang, L. Jiang, B. Qi, and Y. Li. 2021. Effects of soybean protein isolate - polyphenol conjugate formation on the protein structure and emulsifying properties: Protein - polyphenol emulsification performance in the presence of chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects 609:125641. doi: 10.1016/j.colsurfa.2020.125641.
  • Yuan, Y., J. Huang, S. He, M. Ma, D. Wang, and Y. Xu. 2021. One-step self-assembly of curcumin-loaded zein/sophorolipid nanoparticles: Physicochemical stability, redispersibility, solubility and bioaccessibility. Food & Function 12 (13):5719–30. doi: 10.1039/d1fo00942g.
  • Yuan, Y., J. Xiao, P. Zhang, M. Ma, D. Wang, and Y. Xu. 2021. Development of pH-driven zein/tea saponin composite nanoparticles for encapsulation and oral delivery of curcumin. Food Chemistry 364:130401. doi: 10.1016/j.foodchem.2021.130401.
  • Yuan, D., F. Zhou, P. Shen, Y. Zhang, L. Lin, and M. Zhao. 2021. Self-assembled soy protein nanoparticles by partial enzymatic hydrolysis for pH-driven encapsulation and delivery of hydrophobic cargo curcumin. Food Hydrocolloids 120:106759. doi: 10.1016/j.foodhyd.2021.106759.
  • Zang, X., C. Yue, Y. Wang, M. Shao, and G. Yu. 2019. Effect of limited enzymatic hydrolysis on the structure and emulsifying properties of rice bran protein. Journal of Cereal Science 85:168–74. doi: 10.1016/j.jcs.2018.09.001.
  • Zdziennicka, A., J. Krawczyk, and B. Jańczuk. 2018. Volumetric properties of rhamnolipid and surfactin at different temperatures. Journal of Molecular Liquids 255:562–71. doi: 10.1016/j.molliq.2018.02.015.
  • Zhan, X., L. Dai, L. Zhang, and Y. Gao. 2020. Entrapment of curcumin in whey protein isolate and zein composite nanoparticles using pH-driven method. Food Hydrocolloids 106:105839. doi: 10.1016/j.foodhyd.2020.105839.
  • Zhang, H., Y. Fu, Y. Xu, F. Niu, Z. Li, C. Ba, B. Jin, G. Chen, and X. Li. 2019. One-step assembly of zein/caseinate/alginate nanoparticles for encapsulation and improved bioaccessibility of propolis. Food & Function 10 (2):635–45. doi: 10.1039/c8fo01614c.
  • Zhang, L., W. Liao, Y. Wei, Z. Tong, Y. Wang, and Y. Gao. 2021. Fabrication, characterization and in vitro digestion of food-grade β-carotene high loaded microcapsules: A wet-milling and spray drying coupling approach. Lwt 151:112176. doi: 10.1016/j.lwt.2021.112176.
  • Zhang, Y., Q. Ma, F. Critzer, P. M. Davidson, and Q. Zhong. 2016. Organic thyme oil emulsion as an alternative washing solution to enhance the microbial safety of organic cantaloupes. Food Control 67:31–8. doi: 10.1016/j.foodcont.2016.02.032.
  • Zhang, L., D. J. McClements, Z. Wei, G. Wang, X. Liu, and F. Liu. 2020. Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability. Critical Reviews in Food Science and Nutrition 60 (12):2083–97. doi: 10.1080/10408398.2019.1630358.
  • Zhang, H., Y. Shen, M. Li, G. Zhu, H. Feng, and J. Li. 2019. Egg shell powders-coated membrane for surfactant-stabilized crude oil-in-water emulsions efficient separation. ACS Sustainable Chemistry & Engineering 7 (12):10880–7. doi: 10.1021/acssuschemeng.9b01756.
  • Zhang, Y., D. Yuan, P. Shen, F. Zhou, Q. Zhao, and M. Zhao. 2021. pH-Driven formation of soy peptide nanoparticles from insoluble peptide aggregates and their application for hydrophobic active cargo delivery. Food Chemistry 355:129509. doi: 10.1016/j.foodchem.2021.129509.
  • Zhang, Y., and Q. Zhong. 2020. Physical and antimicrobial properties of neutral nanoemulsions self-assembled from alkaline thyme oil and sodium caseinate mixtures. International Journal of Biological Macromolecules 148:1046–52. doi: 10.1016/j.ijbiomac.2020.01.233.
  • Zhang, Q., Y. Zhou, W. Yue, W. Qin, H. Dong, and T. Vasanthan. 2021. Nanostructures of protein-polysaccharide complexes or ­conjugates for encapsulation of bioactive compounds. Trends in Food Science & Technology 109:169–96. doi: 10.1016/j.tifs.2021.01.026.
  • Zhang, Y., F. Zhou, M. Zhao, Z. Ning, D. Sun-Waterhouse, and B. Sun. 2017. Soy peptide aggregates formed during hydrolysis reduced protein extraction without decreasing their nutritional value. Food & Function 8 (12):4384–95. doi: 10.1039/c7fo00812k.
  • Zheng, B., H. Lin, X. Zhang, and D. J. McClements. 2019. Fabrication of Curcumin-Loaded Dairy Milks Using the pH-Shift Method: Formation, Stability, and Bioaccessibility. Journal of Agricultural and Food Chemistry 67 (44):12245–54. doi: 10.1021/acs.jafc.9b04904.
  • Zheng, B., S. Peng, X. Zhang, and D. J. McClements. 2018. Impact of delivery system type on curcumin bioaccessibility: Comparison of curcumin-loaded nanoemulsions with commercial curcumin supplements. Journal of Agricultural and Food Chemistry 66 (41):10816–26. doi: 10.1021/acs.jafc.8b03174.
  • Zheng, B., X. Zhang, H. Lin, and D. J. McClements. 2019. Loading natural emulsions with nutraceuticals using the pH-driven method: Formation & stability of curcumin-loaded soybean oil bodies. Food & Function 10 (9):5473–84. doi: 10.1039/c9fo00752k.
  • Zheng, B., H. Zhou, and D. J. McClements. 2021. Nutraceutical-fortified plant-based milk analogs: Bioaccessibility of curcumin-loaded almond, cashew, coconut, and oat milks. Lwt 147:111517. doi: 10.1016/j.lwt.2021.111517.
  • Zhou, M., T. Wang, Q. Hu, and Y. Luo. 2016. Low density lipoprotein/pectin complex nanogels as potential oral delivery vehicles for curcumin. Food Hydrocolloids 57:20–9. doi: 10.1016/j.foodhyd.2016.01.010.
  • Zhou, W., Y. Zhang, R. Li, S. Peng, R. Ruan, J. Li, and W. Liu. 2021. Fabrication of caseinate stabilized thymol nanosuspensions via the pH-driven method: Enhancement in water solubility of thymol. Foods 10 (5):1074. doi: 10.3390/foods10051074.
  • Zhou, H., B. Zheng, and D. J. McClements. 2021a. Encapsulation of lipophilic polyphenols in plant-based nanoemulsions: Impact of carrier oil on lipid digestion and curcumin, resveratrol and quercetin bioaccessibility. Food & Function 12 (8):3420–32. doi: 10.1039/d1fo00275a.
  • Zhou, H., B. Zheng, and D. J. McClements. 2021b. In vitro gastrointestinal stability of lipophilic polyphenols is dependent on their oil-water partitioning in emulsions: Studies on curcumin. Journal of Agricultural and Food Chemistry 69 (11):3340–50. doi: 10.1021/acs.jafc.0c07578.
  • Zou, L., B. Zheng, W. Liu, C. Liu, H. Xiao, and D. J. McClements. 2015. Enhancing nutraceutical bioavailability using excipient emulsions: Influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin. Journal of Functional Foods 15:72–83. doi: 10.1016/j.jff.2015.02.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.