888
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Recent insights into the molecular regulators and mechanisms of taurine to modulate lipid metabolism: a review

& ORCID Icon

References

  • Bai, J., X. Yao, L. Jiang, Q. Zhang, H. Guan, S. Liu, W. Wu, T. Qiu, N. Gao, L. Yang, et al. 2016. Taurine protects against As2O3-induced autophagy in livers of rat offspring through PPARγ pathway. Scientific Reports 6 (1):1–4. doi: 10.1038/srep27733.
  • Banks, M. A., D. Porter, W. W. Martin, and G. Castranova. 1991. Ozone-induced lipid peroxidation and membrane leakage in isolated rat alveolar macrophages: Protective effects of taurine. The Journal of Nutritional Biochemistry 2 (6):308–13. doi: 10.1016/0955-2863(91)90072-D.
  • Batista, T. M., R. A. Ribeiro, P. M. da Silva, M. R. L. Camargo, P. C. Lollo, A. C. Boschero, and E. M. Carneiro. 2013. Taurine supplementation improves liver glucose control in normal protein and malnourished mice fed a high-fat diet. Molecular Nutrition & Food Research 57 (3):423–34. doi: 10.1002/mnfr.201200345.
  • Batitucci, G., C. F. C. Brandao, F. G. De Carvalho, J. S. Marchini, K. Pfrimer, E. Ferrioli, F. Q. Cunha, M. Papoti, S. I. B. M. Terrazas, M. V. M. Junqueira-Franco, et al. 2019. Taurine supplementation increases irisin levels after high intensity physical training in obese women. Cytokine 123:154741. doi: 10.1016/j.cyto.2019.154741.
  • Benchoula, K., A. Arya, I. S. Parhar, and W. E. Hwa. 2021. FoxO1 signaling as a therapeutic target for type 2 diabetes and obesity. European Journal of Pharmacology 891:173758. doi: 10.1016/j.ejphar.2020.173758
  • Bonfleur, M. L., P. C. Borck, R. A. Ribeiro, L. C. Caetano, G. M. Soares, E. M. Carneiro, and S. L. Balbo. 2015. Improvement in the expression of hepatic genes involved in fatty acid metabolism in obese rats supplemented with taurine. Life Sciences 135:15–21. doi: 10.1016/j.lfs.2015.05.019.
  • Borck, P. C., J. F. Vettorazzi, R. C. S. Branco, T. M. Batista, J. C. Santos-Silva, V. Y. Nakanishi, A. C. Boschero, R. A. Ribeiro, and E. M. Carneiro. 2018. Taurine supplementation induces long-term beneficial effects on glucose homeostasis in ob/ob mice. Amino Acids 50 (6):765–74. doi: 10.1007/s00726-018-2553-3.
  • Branco, R. C. S., R. L. Camargo, T. M. Batista, J. F. Vettorazzi, P. C. Borck, J. C. R. dos Santos‐Silva, A. C. Boschero, C. C. Zoppi, and E. M. Carneiro. 2017. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion . FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 31 (9):4078–87. doi: 10.1096/fj.201600326RRR.
  • Caetano, L. C., M. L. Bonfleur, R. A. Ribeiro, T. R. Nardelli, C. Lubaczeuski, J. D. N. Da Silva, E. M. Carneiro, and S. L. Balbo. 2017. Taurine supplementation regulates Iκ-Bα protein expression in adipose tissue and serum IL-4 and TNF-α concentrations in MSG obesity. European Journal of Nutrition 56 (2):705–13. doi: 10.1007/s00394-015-1114-8.
  • Camargo, R. L., T. M. Batista, R. A. Ribeiro, R. C. Branco, P. M. Da Silva, C. Izumi, T. R. Araujo, L. J. Greene, A. C. Boschero, and E. M. Carneiro. 2015. Taurine supplementation preserves hypothalamic leptin action in normal and protein-restricted mice fed on a high-fat diet. Amino Acids 47 (11):2419–35. doi: 10.1007/s00726-015-2035-9.
  • Cao, P. J., Y. Jin, J. M. E. Li, R. Zhou, and M. Z. Yang. 2016. PGC-1α may associated with the anti-obesity effect of taurine on rats induced by arcuate nucleus lesion. Nutritional Neuroscience 19 (2):86–93. doi: 10.1179/1476830514Y.0000000153.
  • Carlson, C. A., and K. H. Kim. 1973. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. Journal of Biological Chemistry 248 (1):378–80. doi: 10.1016/S0021-9258(19)44486-4.
  • Carvalho, M. B. d., C. F. C. Brandao, P. G. Fassini, T. M. Bianco, G. Batitucci, B. S. M. Galan, F. G. De Carvalho, T. S. Vieira, E. Ferriolli, J. S. Marchini, et al. 2020. Taurine supplementation increases post-exercise lipid oxidation at moderate intensity in fasted healthy males. Nutrients 12 (5):1540. doi: 10.3390/nu12051540.
  • Chang, Y. Y., C. H. Chou, C. H. Chiu, K. T. Yang, Y. L. Lin, W. L. Weng, and Y. C. Chen. 2011. Preventive effects of taurine on development of hepatic steatosis induced by a high-fat/cholesterol dietary habit. Journal of Agricultural and Food Chemistry 59 (1):450–7. doi: 10.1021/jf103167u.
  • Chen, K. C., S. S. Chang, H. J. Huang, T. L. Lin, Y. J. Wu, and C. Y. Chen. 2012. Three-in-one agonists for PPAR-α, PPAR-γ, and PPAR-δ from traditional Chinese medicine. Journal of Biomolecular Structure & Dynamics 30 (6):662–83. doi: 10.1080/07391102.2012.689699.
  • Chen, L., and G. Yang. 2014. PPARs integrate the mammalian clock and energy metabolism. PPAR Research 2014:653017.
  • Chen, W., J. Guo, Y. Zhang, and J. Zhang. 2016. The beneficial effects of taurine in preventing metabolic syndrome. Food & Function 7 (4):1849–63. doi: 10.1039/c5fo01295c.
  • Chen, Z., P. He, X. Ding, Y. Huang, H. Gu, and X. Ni. 2015. PPARγ stimulates expression of L-type amino acid and taurine transporters in human placentas: The evidence of PPARγ regulating fetal growth. Scientific Reports 5 (1):12650. doi: 10.1038/srep12650.
  • Cheong, S. H., and K. J. Chang. 2013. Antidiabetic effect of taurine in cultured rat skeletal l6 myotubes. Advances in Experimental Medicine and Biology 775 (775):311–20.
  • Chou, C. H., Y. Y. Chang, B. S. Tzang, C. L. Hsu, Y. L. Lin, H. W. Lin, and Y. C. Chen. 2012. Effects of taurine on hepatic lipid metabolism and anti-inflammation in chronic alcohol-fed rats. Food Chemistry 135 (1):24–30. doi: 10.1016/j.foodchem.2012.04.036.
  • Corrales, P., A. Vidal-Puig, and G. Medina-Gómez. 2018. PPARs and metabolic disorders associated with challenged adipose tissue plasticity. International Journal of Molecular Sciences 19 (7):2124. doi: 10.3390/ijms19072124.
  • De Almeida Martiniano, A. C., F. G. De Carvalho, J. S. Marchini, S. B. Garcia, J. E. Júnior, F. M. Mauad, A. S. R. da Silva, C. de Moraes, and E. C. de Freitas. 2015. Effects of taurine supplementation on adipose tissue of obese trained rats. Advances in Experimental Medicine and Biology 803 (803):707–14.
  • De Carvalho, F. G., B. S. Galan, P. C. Santos, K. Pritchett, K. Pfrimer, E. Ferriolli, M. Papoti, J. S. Marchini, and E. C. de Freitas. 2017. Taurine: A potential ergogenic aid for preventing muscle damage and protein catabolism and decreasing oxidative stress produced by endurance exercise. Frontiers in Physiology 8:710. doi: 10.3389/fphys.2017.00710.
  • De Carvalho, F. G., C. F. C. Brandao, G. Batitucci, A. de Oliveira Souza, G. D. Ferrari, L. C. Alberici, V. R. Muñoz, J. R. Pauli, L. P. De Moura, E. R. Ropelle, et al. 2021a. Taurine supplementation associated with exercise increases mitochondrial activity and fatty acid oxidation gene expression in the subcutaneous white adipose tissue of obese women. Clinical Nutrition (Edinburgh, Scotland) 40 (4):2180–7. doi: 10.1016/j.clnu.2020.09.044.
  • De Carvalho, F. G., C. F. C. Brandao, V. R. Muñoz, G. Batitucci, M. E. d A. Tavares, G. R. Teixeira, J. R. Pauli, L. P. De Moura, E. R. Ropelle, D. E. Cintra, et al. 2021b. Taurine supplementation in conjunction with exercise modulated cytokines and improved subcutaneous white adipose tissue plasticity in obese women. Amino Acids 53 (9):1391–403. doi: 10.1007/s00726-021-03041-4.
  • De Carvalho, F. G., V. R. Muñoz, C. F. C. Brandao, F. M. Simabuco, I. C. B. Pavan, S. C. B. R. Nakandakari, J. R. Pauli, L. P. De Moura, E. R. Ropelle, J. S. Marchini, et al. 2022. Taurine upregulates insulin signaling and mitochondrial metabolism in vitro but not in adipocytes of obese women. Nutrition (Burbank, Los Angeles County, Calif.) 93:111430. doi: 10.1016/j.nut.2021.111430.
  • De Carvalho, F. G., R. A. Barbieri, M. B. Carvalho, C. C. Dato, E. Z. Campos, R. B. Gobbi, M. Papoti, A. S. Silva, and E. C. de Freitas. 2018. Taurine supplementation can increase lipolysis and affect the contribution of energy systems during front crawl maximal effort. Amino Acids 50 (1):189–98. doi: 10.1007/s00726-017-2505-3.
  • De la Puerta, C., F. J. Arrieta, J. A. Balsa, J. Botella-Carretero, I. Zamarrón, and C. Vázquez. 2010. Taurine and glucose metabolism: A review. Nutricion Hospitalaria 25 (6):910–9.
  • De Luca, A., S. Pierno, and D. C. Camerino. 2015. Taurine: The appeal of a safe amino acid for skeletal muscle disorders. Journal of Translational Medicine 13 (1):1–18. doi: 10.1186/s12967-015-0610-1.
  • Dong, Y., X. Li, Y. Liu, J. Gao, and J. Tao. 2021. The molecular targets of taurine confer anti-hyperlipidemic effects. Life Sciences 278:119579. doi: 10.1016/j.lfs.2021.119579.
  • Eilertsen, K., R. Larsen, H. K. Maehre, I. K. Jensen, and E. O. Elvevoll. 2012. Anticholesterolemic and antiatherogenic effects of taurine supplementation is model dependent. In Lipoproteins-role in health and diseases. ed. S. Frank and G. Kostner, 269–288. London: IntechOpen.
  • Finck, B. N., and D. P. Kelly. 2006. PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease. The Journal of Clinical Investigation 116 (3):615–22. doi: 10.1172/JCI27794.
  • Fitzgerald, K. A., M. Malhotra, C. M. Curtin, F. J. O’ Brien, and C. M. O’ Driscoll. 2015. Life in 3D is never flat: 3D models to optimise drug delivery. Journal of Controlled Release: Official Journal of the Controlled Release Society 215:39–54. doi: 10.1016/j.jconrel.2015.07.020.
  • Gregor, A., M. Pignitter, C. Fahrngruber, S. Bayer, V. Somoza, J. König, and K. Duszka. 2021. Caloric restriction increases levels of taurine in the intestine and stimulates taurine uptake by conjugation to glutathione. The Journal of Nutritional Biochemistry 96:108781. doi: 10.1016/j.jnutbio.2021.108781.
  • Guan, L., and P. Miao. 2020. The effects of taurine supplementation on obesity, blood pressure and lipid profile: A meta-analysis of randomized controlled trials. European Journal of Pharmacology 885:173533. doi: 10.1016/j.ejphar.2020.173533.
  • Guizoni, D. M., J. F. Vettorazzi, E. M. Carneiro, and A. P. Davel. 2020. Modulation of endothelium-derived nitric oxide production and activity by taurine and taurine-conjugated bile acids. Nitric Oxide: Biology and Chemistry 94:48–53. doi: 10.1016/j.niox.2019.10.008.
  • Guo, J., Y. Gao, X. Cao, J. Zhang, and W. Chen. 2018. Cholesterol-lowering effect of taurine in HepG2 cell. Lipids Health Disease 16 (1):1–7.
  • Guo, Y. Y., B. Y. Li, W. Q. Peng, L. Guo, and Q. Q. Tang. 2019. Taurine-mediated browning of white adipose tissue is involved in its anti-obesity effect in mice. The Journal of Biological Chemistry 294 (41):15014–24. doi: 10.1074/jbc.RA119.009936.
  • Hamaguchi, T., J. Azuma, and S. Schaffer. 1991. Interaction of taurine with methionine: Inhibition of myocardial phospholipid methyltransferase. Journal of Cardiovascular Pharmacology 18 (2):224–30. doi: 10.1097/00005344-199108000-00008.
  • Herzig, S., F. Long, U. S. Jhala, S. Hedrick, R. Quinn, A. Bauer, D. Rudolph, G. Schutz, C. Yoon, P. Puigserver, et al. 2001. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413 (6852):179–83. doi: 10.1038/35093131.
  • Hoang, M. H., Y. Jia, H. J. Jun, J. H. Lee, K. Y. Hwang, D. W. Choi, S. J. Um, B. Y. Lee, S. G. You, and S. J. Lee. 2012. Taurine is a liver X receptor-α ligand and activates transcription of key genes in the reverse cholesterol transport without inducing hepatic lipogenesis . Molecular Nutrition & Food Research 56 (6):900–11. doi: 10.1002/mnfr.201100611.
  • Hultman, K., C. Alexanderson, L. Mannerås, M. Sandberg, A. Holmäng, and T. Jansson. 2007. Maternal taurine supplementation in the late pregnant rat stimulates postnatal growth and induces obesity and insulin resistance in adult offspring. The Journal of Physiology 579 (Pt 3):823–33. doi: 10.1113/jphysiol.2006.124610.
  • Huxtable, R. J. 1992. Physiological actions of taurine. Physiological Reviews 72 (1):101–63. doi: 10.1152/physrev.1992.72.1.101.
  • Iizuka, K., R. G. Bruick, G. K. Liang, J. D. Horton, and K. Uyeda. 2004. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proceedings of the National Academy of Sciences of the United States of America 101 (19):7281–6. doi: 10.1073/pnas.0401516101.
  • Ijiri, Y., H. Ikaruga, Y. Tamura, M. Ura, M. Morishita, M. Mori, H. Ishii, Y. Yamori, and J. Yamamoto. 2011. Fish ingredient taurine might raise endogenous thrombolytic activity in healthy middle-aged Japanese, assessed by a global thrombosis test (GTT): P-MO-273. Journal of Thrombosis and Haemostasis 9 (S2): doi: 10.1111/j.1538-7836.2011.04380_1.x.
  • Ito, T. N., Miyazaki, S. Schaffer, and J. Azuma. 2014. Tissue taurine depletion alters metabolic response to exercise and reduces running capacity in mice. Journal of Amino Acids 2014:964680. doi:10.1155/2014/964680.
  • Ito, T. N., Miyazaki, S. Schaffer, and J. Azuma. 2015. Potential anti-aging role of taurine via proper protein folding: A study from taurine transporter knockout mouse. Advances in Experimental and Medical Biology 803:481–7. doi: 10.1007/978-3-319-15126-7_38.
  • Jakaria, M., S. Azam, M. E. Haque, S.-H. Jo, M. S. Uddin, I.-S. Kim, and D.-K. Choi. 2019. Taurine and its analogs in neurological disorders: Focus on therapeutic potential and molecular mechanisms. Redox Biology 24:101223. doi: 10.1016/j.redox.2019.101223.
  • Jeukendrup, A. E., W. H. Saris, and A. J. Wagenmakers. 1998. Fat metabolism during exercise: A review. Part I: Fatty acid mobilization and muscle metabolism. International Journal of Sports Medicine 19 (4):231–44. doi: 10.1055/s-2007-971911.
  • Jong, C. J., J. Azuma, and S. Schaffer. 2012. Mechanism underlying the antioxidant activity of taurine: Prevention of mitochondrial oxidant production. Amino Acids 42 (6):2223–32. doi: 10.1007/s00726-011-0962-7.
  • Kawamata, Y., R. Fujii, M. Hosoya, M. Harada, H. Yoshida, M. Miwa, S. Fukusumi, Y. Habata, T. Itoh, Y. Shintani, et al. 2003. A G protein-coupled receptor responsive to bile acids. The Journal of Biological Chemistry 278 (11):9435–40. doi: 10.1074/jbc.M209706200.
  • Kim, H. M., C. H. Do, and D. H. Lee. 2010. Characterization of taurine as an anti-obesity agent in C. elegans. Journal of Biomedical Science 17 (Suppl 1):S33–S6. doi: 10.1186/1423-0127-17-S1-S33.
  • Kim, K. S., H. M. Doss, H. J. Kim, and H. I. Yang. 2020. Taurine stimulates thermoregulatory genes in brown fat tissue and muscle without an influence on inguinal white fat tissue in a high-Fat diet-induced obese mouse model. Foods 9 (6):688. doi: 10.3390/foods9060688.
  • Kim, K. S., D. H. Oh, J. Y. Kim, B. G. Lee, J. S. You, K. J. Chang, H. J. Chung, M. C. Yoo, H. I. Yang, J. H. Kang, et al. 2012. Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes. Experimental & Molecular Medicine 44 (11):665–73. doi: 10.3858/emm.2012.44.11.075.
  • Kim, K. S., M. J. Jang, S. Fang, S. G. Yoon, I. Y. Kim, J. K. Seong, H.-I. Yang, and D. H. Hahm. 2019. Anti-obesity effect of taurine through inhibition of adipogenesis in white fat tissue but not in brown fat tissue in a high-fat diet-induced obese mouse model. Amino Acids 51 (2):245–54. doi: 10.1007/s00726-018-2659-7.
  • Kishida, T., S. Miyazato, H. Ogawa, and K. Ebihara. 2003. Taurine prevents hypercholesterolemia in ovariectomized rats fed corn oil but not in those fed coconut oil. The Journal of Nutrition 133 (8):2616–21. doi: 10.1093/jn/133.8.2616.
  • Kola, B., A. B. Grossman, and M. Korbonits. 2008. The role of AMP-activated protein kinase in obesity. Obesity and Metabolism 36:198–211.
  • Lam, N. V., W. Chen, K. Suruga, N. Nishimura, T. Goda, and H. Yokogoshi. 2006a. Enhancing effect of taurine on CYP7A1 mRNA expression in Hep G2 cells. Amino Acids 30 (1):43–8. doi: 10.1007/s00726-005-0244-3.
  • Lam, N. V., W. Chen, K. Suruga, N. Nishimura, T. Goda, and H. Yokogoshi. 2006b. Effects of taurine on mRNA levels of nuclear receptors and factors involved in cholesterol and bile acid homeostasis in mice. Advances in Experimental Medicine and Biological Sciences 583:193–202.
  • Lambert, I. H., D. M. Kristensen, J. B. Holm, and O. H. Mortensen. 2015. Physiological role of taurine-from organism to organelle. Acta Physiologica (Oxford, England) 213 (1):191–212. doi: 10.1111/apha.12365.
  • Li, M., C. M. Reynolds, D. M. Sloboda, C. Gray, and M. H. Vickers. 2013. Effects of taurine supplementation on hepatic markers of inflammation and lipid metabolism in mothers and offspring in the setting of maternal obesity. PLoS One 8 (10):e76961. doi: 10.1371/journal.pone.0076961.
  • Li, M., C. M. Reynolds, C. Gray, R. Patel, D. M. Sloboda, and M. H. Vickers. 2020. Long-term effects of a maternal high-fat: High-fructose diet on offspring growth and metabolism and impact of maternal taurine supplementation. Journal of Developmental Origins of Health and Disease 11 (4):419–26.
  • Liang, H., and W. F. Ward. 2006. PGC-1alpha: A key regulator of energy metabolism. Advances in Physiology Education 30 (4):145–51. doi: 10.1152/advan.00052.2006.
  • Lin, S., S. Hirai, Y. Yamaguchi, T. Goto, N. Takahashi, F. Tani, C. Mutoh, T. Sakurai, S. Murakami, R. Yu, et al. 2013. Taurine improves obesity-induced inflammatory responses and modulates the unbalanced phenotype of adipose tissue macrophages . Molecular Nutrition & Food Research 57 (12):2155–65. doi: 10.1002/mnfr.201300150.
  • Liu, C., and J. Lin. 2011. PGC-1 coactivators in the control of energy metabolism. Acta Biochimica et Biophysica Sinica 43 (4):248–57. doi: 10.1093/abbs/gmr007.
  • Lombardini, J. B., and J. D. Militante. 2006. Effects of taurine supplementation on cholesterol levels with potential ramification in atherosclerosis. Advances in Experimental Medicine and Biology 583:251–4. doi: 10.1007/978-0-387-33504-9_27.
  • Lourenco, R., and M. E. Camilo. 2002. Taurine: A conditionally essential amino acid in humans? An overview in health and disease. Nutricion Hospitalaria 17 (6):262–70.
  • Lu, Z., X. He, B. Ma, L. Zhang, J. Li, Y. Jiang, G. Zhou, and F. Gao. 2019. Dietary taurine supplementation decreases fat synthesis by suppressing the liver X receptor α pathway and alleviates lipid accumulation in the liver of chronic heat-stressed broilers. Journal of the Science of Food and Agriculture 99 (13):5631–7. doi: 10.1002/jsfa.9817.
  • Lund, E. K. 2013. Health benefits of seafood; is it just the fatty acids? Food Chemistry 140 (3):413–20. doi: 10.1016/j.foodchem.2013.01.034.
  • Luo, Y., Y. Tian, and C. Zhao. 2020. Taurine attenuates liver autophagy and injury of offspring in gestational diabetic mellitus rats. Life Sciences 257:117889. doi: 10.1016/j.lfs.2020.117889.
  • Maleki, V., R. Mahdavi, F. Hajizadeh-Sharafabad, and M. Alizadeh. 2020. A comprehensive insight into potential roles of taurine on metabolic variables in type 2 diabetes: A systematic review. Pharmaceutical Sciences 26 (3):225–38. doi: 10.34172/PS.2020.17.
  • Merezak, S., A. A. Hardikar, C. S. Yajnik, C. Remacle, and B. Reusens. 2001. Intrauterine low protein diet increases fetal beta-cell sensitivity to NO and IL-1beta: The protective role of taurine. Journal of Endocrinology 171 (2):299–308. doi: 10.1677/joe.0.1710299.
  • Mihaylova, M. M., and R. J. Shaw. 2011. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology 13 (9):1016–23. doi: 10.1038/ncb2329.
  • Milioni, F., E. D. S. Malta, L. G. S. D. A. Rocha, C. A. A. Mesquita, E. C. de Freitas, and A. M. Zagatto. 2016. Acute administration of high doses of taurine does not substantially improve high-intensity running performance and the effect on maximal accumulated oxygen deficit is unclear. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme 41 (5):498–503. doi: 10.1139/apnm-2015-0435.
  • Morsy, M. D., M. S. Aboonq, M. A. ALsleem, and A. A. Abusham. 2021. Taurine prevents high‐fat dietinduced‐hepatic steatosis in rats by direct inhibition of hepatic sterol regulatory element‐binding proteins and activation of AMP K. Clinical and Experimental Pharmacology and Physiology 48 (1):72–85. doi: 10.1111/1440-1681.13387.
  • Murakami, S. 2014. Taurine and atherosclerosis. Amino Acids 46 (1):73–80. doi: 10.1007/s00726-012-1432-6.
  • Murakami, S. 2015. Role of taurine in the pathogenesis of obesity. Molecular Nutrition & Food Research 59 (7):1353–63. doi: 10.1002/mnfr.201500067.
  • Murakami, S. 2017. The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity. Life Sciences 186:80–6. doi: 10.1016/j.lfs.2017.08.008.
  • Murakami, S., I. Yamagishi, Y. Asami, Y. Ohta, Y. Toda, Y. Nara, and Y. Yamori. 1996. Hypolipidemic effect of taurine in stroke-prone spontaneously hypertensive rats. Pharmacology 52 (5):303–13. doi: 10.1159/000139395.
  • Murakami, S., M. Fujita, M. Nakamura, M. Sakono, S. Nishizono, M. Sato, K. Imaizumi, M. Mori, and N. Fukuda. 2016. Taurine ameliorates cholesterol metabolism by stimulating bile acid production in high-cholesterol-fed rats. Clinical and Experimental Pharmacology & Physiology 43 (3):372–8. doi: 10.1111/1440-1681.12534.
  • Murakami, S., Y. Kondo, Y. Toda, H. Kitajima, K. Kameo, M. Sakono, and N. Fukuda. 2002. Effect of taurine on cholesterol metabolism in hamsters: Up-regulation of low density lipoprotein (LDL) receptor by taurine. Life Sciences 70 (20):2355–66. doi: 10.1016/S0024-3205(02)01507-2.
  • Nishimura, N., C. Umeda, H. Oda, and H. Yokogoshi. 2003. The effect of taurine on the cholesterol metabolism in rats fed diets supplemented with cholestyramine or high amounts of bile acid. Journal of Nutritional Science and Vitaminology 49 (1):21–6. doi: 10.3177/jnsv.49.21.
  • Nonaka, H., T. Tsujino, Y. Watari, N. Emoto, and M. Yokoyama. 2001. Taurine prevents the decrease in expression and secretion of extracellular superoxide dismutase induced by homocysteine: Amelioration of homocysteine-induced endoplasmic reticulum stress by taurine. Circulation 104 (10):1165–70. doi: 10.1161/hc3601.093976.
  • Oharomari, L. K., N. F. Garcia, E. C. de Freitas, A. A. J. Júnior, P. P. Ovídio, A. R. Maia, A. P. Davel, and C. de Moraes. 2015. Exercise training and taurine supplementation reduce oxidative stress and prevent endothelium dysfunction in rats fed a highly palatable diet. Life Sciences 139:91–6. doi: 10.1016/j.lfs.2015.08.015.
  • Park, H. Y., H. S. Kang, and S. S. Im. 2018. Recent insight into the correlation of SREBP-mediated lipid metabolism and innate immune response. Journal of Molecular Endocrinology 61 (3):R123–31. doi: 10.1530/JME-17-0289.
  • Ribeiro, R. A., J. C. Santos-Silva, J. F. Vettorazzi, B. B. Cotrim, D. D. Mobiolli, A. C. Boschero, and E. M. A. C. Carneiro. 2012. Taurine supplementation prevents morpho-physiological alterations in high-fat diet mice pancreatic β-cells. Amino Acids 43 (4):1791–801. doi: 10.1007/s00726-012-1263-5.
  • Ripps, H., and W. Shen. 2012. Taurine: A “very essential” amino acid. Molecular Vision 18 (2673):2673–86.
  • Roig-Pérez, S., F. Guardiola, M. Moretó, and R. Ferrer. 2004. Lipid peroxidation induced by DHA enrichment modifies paracellular permeability in Caco-2 cells: Protective role of taurine. Journal of Lipid Research 45 (8):1418–28. doi: 10.1194/jlr.M300513-JLR200.
  • Rosa, F. T., E. C. Freitas, R. Deminice, A. A. Jordao, and J. S. Marchini. 2014. Oxidative stress and inflammation in obesity after taurine supplementation: A double-blind, placebo-controlled study. European Journal of Nutrition53 (3):823–30.
  • Sanders, F. W., and J. L. Griffin. 2016. De novo lipogenesis in the liver in health and disease: More than just a shunting yard for glucose. Biological Reviews of the Cambridge Philosophical Society 91 (2):452–68. doi: 10.1111/brv.12178.
  • Santos-Silva, J. C., R. A. Ribeiro, J. F. Vettorazzi, E. Irles, S. Rickli, P. C. Borck, P. M. Porciuncula, I. Quesada, A. Nadal, A. C. Boschero, et al. 2015. Taurine supplementation ameliorates glucose homeostasis, prevents insulin and glucagon hypersecretion, and controls β, α, and δ-cell masses in genetic obese mice. Amino Acids 47 (8):1533–48. doi: 10.1007/s00726-015-1988-z.
  • Schaffer, S. W., K. Shimada, C. J. Jong, T. Ito, J. Azuma, and K. Takahashi. 2014. Effect of taurine and potential interactions with caffeine on cardiovascular function. Amino Acids 46 (5):1147–57. doi: 10.1007/s00726-014-1708-0.
  • Schaffer, S. W., T. Ito, and J. Azuma. 2014. Clinical significance of taurine. Amino Acids 46 (1):1–5. doi: 10.1007/s00726-013-1632-8.
  • Schaffer, S. W., J. Azuma, and M. Mozaffari. 2009. Role of antioxidant activity of taurine in diabetes. Canadian Journal of Physiology and Pharmacology 87 (2):91–9. doi: 10.1139/Y08-110.
  • Schuller-Levis, G. B., and E. Park. 2003. Taurine: New implications for an old amino acid. FEMS Microbiology Letters 226 (2):195–202. doi: 10.1016/S0378-1097(03)00611-6.
  • Shao, A., and J. N. Hathcock. 2008. Risk assessment for the amino acids taurine, L-glutamine and L-arginine. Regulatory Toxicology and Pharmacology: RTP 50 (3):376–99. doi: 10.1016/j.yrtph.2008.01.004.
  • Shimada, K., C. J. Jong, K. Takahashi, and S. W. Schaffer. 2015. Role of ROS production and turnover in the antioxidant activity of taurine. Advances in Experimental Medicine and Biological Sciences 803:581–96.
  • Sjövall, J. 2004. Fifty years with bile acids and steroids in health and disease. Lipids 39 (8):703–22. doi: 10.1007/s11745-004-1288-1.
  • Solon, C. S., D. Franci, L. M. Ignacio-Souza, T. Romanatto, E. A. Roman, A. P. Arruda, J. Morari, A. S. Torsoni, E. M. Carneiro, and L. A. Velloso. 2012. Taurine enhances the anorexigenic effects of insulin in the hypothalamus of rats. Amino Acids 42 (6):2403–10. doi: 10.1007/s00726-011-1045-5.
  • Song, M. K., N. K. Salam, B. D. Roufogalis, and T. H. Huang. 2011. Lycium barbarum (Goji Berry) extracts and its taurine component inhibit PPAR-γ-dependent gene transcription in human retinal pigment epithelial cells: Possible implications for diabetic retinopathy treatment. Biochemical Pharmacology 82 (9):1209–18. doi: 10.1016/j.bcp.2011.07.089.
  • Spady, D. K., and J. M. Dietschy. 1988. Interaction of dietary cholesterol and triglycerides in the regulation of hepatic low density lipoprotein transport in the hamster. The Journal of Clinical Investigation 81 (2):300–9. doi: 10.1172/JCI113321.
  • Sparks, J. D., and H. H. Dong. 2009. FoxO1 and hepatic lipid metabolism. Current Opinion in Lipidology 20 (3):217–26. doi: 10.1097/MOL.0b013e32832b3f4c.
  • Sturman, J. A., and J. M. Messing. 1992. High dietary taurine effects on feline tissue taurine concentrations and reproductive performance. The Journal of Nutrition 122 (1):82–8. doi: 10.1093/jn/122.1.82.
  • Suwanich, A., J. M. Wyss, and S. Roysommuti. 2013. Taurine supplementation in spontaneously hypertensive rats: Advantages and limitations for human applications. World Journal of Cardiology 5 (11):404–9. doi: 10.4330/wjc.v5.i11.404.
  • Tastesen, H. S., A. H. Keenan, L. Madsen, K. Kristiansen, and B. Liaset. 2014. Scallop protein with endogenous high taurine and glycine content prevents high-fat, high-sucrose-induced obesity and improves plasma lipid profile in male C57BL/6J mice. Amino Acids 46 (7):1659–71. doi: 10.1007/s00726-014-1715-1.
  • Tochitani, S. 2017. Functions of maternally-derived taurine in fetal and neonatal brain development. Taurine 10:17–25.
  • Turner, N., G. J. Cooney, E. W. Kraegen, and C. R. Bruce. 2014. Fatty acid metabolism, energy expenditure and insulin resistance in muscle. Journal of Endocrinology 220 (2):T61–79. doi: 10.1530/JOE-13-0397.
  • Wan, Q. L., X. Fu, X. Meng, Z. Luo, W. Dai, J. Yang, C. Wang, C. Wang, and Q. Zhou, Q. 2020. Hypotaurine promotes longevity and stress tolerance via the stress response factors DAF-16/FOXO and SKN-1/NRF2 in Caenorhabditis elegans. Food & Function 11 (1):347–57. doi: 10.1039/c9fo02000d.
  • Wang, T., C. Xue, T. Zhang, and Y. Wang. 2018. The improvements of functional ingredients from marine foods in lipid metabolism. Trends in Food Science & Technology 81:74–89. doi: 10.1016/j.tifs.2018.09.004.
  • Wang, Z., Y. Ohata, Y. Watanabe, Y. Yuan, Y. Yoshii, Y. Kondo, S. Nishizono, and T. Chiba. 2020. Taurine improves lipid metabolism and increases resistance to oxidative stress. Journal of Nutritional Science and Vitaminology 66 (4):347–56. doi: 10.3177/jnsv.66.347.
  • Wen, C., F. Li, L. Zhang, Y. Duan, Q. Guo, W. Wang, S. He, J. Li, and Y. Yin. 2019. Taurine is involved in energy metabolism in muscles, adipose tissue, and the liver. Molecular Nutrition & Food Research 63 (2):1800536. doi: 10.1002/mnfr.201800536.
  • Wu, G. 2020. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 52 (3):329–60. doi: 10.1007/s00726-020-02823-6.
  • Xu, X.,. J. S. So, J. G. Park, and A. H. Lee. 2013. Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Seminars in Liver Disease 33 (4):301–11. doi: 10.1055/s-0033-1358523.
  • Xu, Y., J. A. S. Arneja, P. S. Tappia, and N. S. Dhalla. 2008. The potential health benefits of taurine in cardiovascular disease. Experimental and Clinical Cardiology 13 (2):57–65.
  • Yamamoto, K., A. Yoshitama, M. Sakono, T. Nasu, S. Murakami, and N. Fukuda. 2000. Dietary taurine decreases hepatic secretion of cholesterol ester in rats fed a high-cholesterol diet. Pharmacology 60 (1):27–33. doi: 10.1159/000028343.
  • Yang, S. F., B. S. Tzang, K. T. Yang, Y. C. Hsiao, Y. Y. Chang, C. H. Chan, S. G. Fu, and Y. G. Chen. 2010. Taurine alleviates dyslipidemia and liver damage induced by a high-fat/cholesterol-dietary habit. Food Chemistry 120 (1):156–62. doi: 10.1016/j.foodchem.2009.10.001.
  • Zhang, B. B., G. Zhou, and C. Li. 2009. AMPK: An emerging drug target for diabetes and the metabolic syndrome. Cell Metabolism 9 (5):407–16. doi: 10.1016/j.cmet.2009.03.012.
  • Zhang, M., L. F. Bi, J. H. Fang, X. L. Su, G. L. Da, T. Kuwamori, and S. Kagamimori. 2004. Beneficial effects of taurine on serum lipids in overweight or obese non-diabetic subjects. Amino Acids 26 (3):267–72. doi: 10.1007/s00726-003-0059-z.
  • Zhao, D., Q. Lv, J. Yang, G. Wu, M. Liu, Q. Yang, J. Han, Y. Feng, S. Lin, and J. Hu. 2019. Taurine improves lipid metabolism and skeletal muscle sensitivity to insulin in rats fed with high sugar and high fat diet. Advances in Experimental Medicine and Biology 1155:133–46.
  • Zulli, A. 2011. Taurine in cardiovascular disease. Current Opinion in Clinical Nutrition and Metabolic Care 14 (1):57–60. doi: 10.1097/MCO.0b013e328340d863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.