899
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Mycotoxins detection: view in the lens of molecularly imprinted polymer and nanoparticles

, , & ORCID Icon

References

  • Afsah‐Hejri, L., P. Hajeb, and R. J. Ehsani. 2020. Application of ozone for degradation of mycotoxins in food: A review. Comprehensive Reviews in Food Science and Food Safety 19 (4):1777–808. doi: 10.1111/1541-4337.12594.
  • Agriopoulou, S., E. Stamatelopoulou, and T. Varzakas. 2020a. Advances in analysis and detection of major mycotoxins in foods. Foods 9 (4):518. doi: 10.3390/foods9040518.
  • Agriopoulou, S., E. Stamatelopoulou, and T. Varzakas. 2020b. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 9 (2):137. doi: 10.3390/foods9020137.
  • Ahmed, A., and W. Christopher. 2017. Synthesis characterisation series of newly fabricated type II CdSe CdSe/CdTe nanocrystals and their optical properties. Paper presented at the third International Conference on Chemical Engineering Sciences and Applications: 3rd ICChESA 2017: Banda Aceh, Indonesia, September 20–21.
  • Akgönüllü, S., H. Yavuz, and A. Denizli. 2020. SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1. Talanta 219:121219.
  • Alarcon-Angeles, G., G. A. Álvarez-Romero, and A. Merkoçi. 2018. Electrochemical biosensors: Enzyme kinetics and role of nanomaterials. In Encyclopedia of interfacial chemistry, ed. K. Wandelt, 140–55. Oxford: Elsevier.
  • Ali, N., and G. H. Degen. 2019. Citrinin biomarkers: A review of recent data and application to human exposure assessment. Archives of Toxicology 93 (11):3057–66. doi: 10.1007/s00204-019-02570-y.
  • Ali, W. H., D. Derrien, F. Alix, C. Pérollier, O. Lépine, S. Bayoudh, F. Chapuis-Hugon, and V. Pichon. 2010. Solid-phase extraction using molecularly imprinted polymers for selective extraction of a mycotoxin in cereals. Journal of Chromatography A 1217 (43):6668–73. doi: 10.1016/j.chroma.2010.04.071.
  • Al-Jaal, B., S. Salama, N. Al-Qasmi, and M. Jaganjac. 2019. Mycotoxin contamination of food and feed in the gulf cooperation council countries and its detection. Toxicon: Official Journal of the International Society on Toxinology 171:43–50.
  • Almeida, S., A. Raposo, M. Almeida‐González, and C. Carrascosa. 2018. Bisphenol A: Food exposure and impact on human health. Comprehensive Reviews in Food Science and Food Safety 17 (6):1503–17. doi: 10.1111/1541-4337.12388.
  • Almohammed, S., S. Tade Barwich, A. K. Mitchell, B. J. Rodriguez, and J. H. Rice. 2019. Enhanced photocatalysis and biomolecular sensing with field-activated nanotube-nanoparticle templates. Nature Communications 10 (1):2496. doi: 10.1038/s41467-019-10393-9.
  • Ammam, M. 2013. Polyoxometalates: Formation, structures, principal properties, main deposition methods and application in sensing. Journal of Materials Chemistry A 1 (21):6291–312. doi: 10.1039/c3ta01663c.
  • Anene, A., K. Hosni, Y. Chevalier, R. Kalfat, and S. Hbaieb. 2016. Molecularly imprinted polymer for extraction of patulin in apple juice samples. Food Control. 70:90–5. doi: 10.1016/j.foodcont.2016.05.042.
  • Ansari, S., and S. Masoum. 2019. Molecularly imprinted polymers for capturing and sensing proteins: Current progress and future implications. TrAC Trends in Analytical Chemistry 114:29–47. doi: 10.1016/j.trac.2019.02.008.
  • Ansari, S., and S. Masoum. 2021. Recent advances and future trends on molecularly imprinted polymer-based fluorescence sensors with luminescent carbon dots. Talanta 223 (Pt 1):121411.
  • Arabi, M., A. Ostovan, A. R. Bagheri, X. Guo, L. Wang, J. Li, X. Wang, B. Li, and L. Chen. 2020. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC Trends in Analytical Chemistry 128:115923. doi: 10.1016/j.trac.2020.115923.
  • Asam, S., K. Habler, and M. Rychlik. 2017. Fusarium mycotoxins in food. In Chemical contaminants and residues in food, ed. D. Schrenk and A. Cartus, 2nd ed., 295–336. Elsevier: Woodhead Publishing.
  • Atar, N., M. L. Yola, and T. Eren. 2016. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor. Applied Surface Science 362:315–22. doi: 10.1016/j.apsusc.2015.11.222.
  • Bagheri, N., A. Khataee, B. Habibi, and J. Hassanzadeh. 2018. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 179:710–8. doi: 10.1016/j.talanta.2017.12.009.
  • Bakker, E., and Y. Qin. 2006. Electrochemical sensors. Analytical Chemistry 78 (12):3965–84. doi: 10.1021/ac060637m.
  • Bertorelle, F., C. Wilhelm, J. Roger, F. Gazeau, C. Ménager, and V. Cabuil. 2006. Fluorescence-modified superparamagnetic nanoparticles: Intracellular uptake and use in cellular imaging. Langmuir: The ACS Journal of Surfaces and Colloids 22 (12):5385–91. doi: 10.1021/la052710u.
  • Bilici, M., M. U. Badak, A. Zengin, Z. Suludere, and N. Aktas. 2020. Synthesis of magnetic halloysite nanotube-based molecularly imprinted polymers for sensitive spectrophotometric detection of metoclopramide in urine samples. Materials Science and Engineering: C 106:110223. doi: 10.1016/j.msec.2019.110223.
  • Bouffier, L., and N. Sojic. 2020. Introduction and overview of electrogenerated chemiluminescence. In Analytical electrogenerated chemiluminescence: From fundamentals to bioassays, 1–28. Venice, Italy: The Royal Society of Chemistry.
  • Cai, G., Z. Yu, and D. Tang. 2020. Actuating photoelectrochemical sensing sensitivity coupling core-core-shell Fe3O4@C@TiO2 with molecularly imprinted polypyrrole. Talanta 219:121341. doi: 10.1016/j.talanta.2020.121341.
  • Cao, J., S. Zhou, W. Kong, M. Yang, L. Wan, and S. Yang. 2013. Molecularly imprinted polymer-based solid phase clean-up for analysis of ochratoxin A in ginger and LC-MS/MS confirmation. Food Control 33 (2):337–43. doi: 10.1016/j.foodcont.2013.03.023.
  • Carballo, D., G. Font, E. Ferrer, and H. Berrada. 2018. Evaluation of mycotoxin residues on ready-to-eat food by chromatographic methods coupled to mass spectrometry in tandem. Toxins 10 (6):243. doi: 10.3390/toxins10060243.
  • Channaiah, L. H. 2019. An overview of mycotoxicosis and human’s health concerns: A mini-review. Health Perspectives 107 (3):469–72.
  • Cheong, W. J., S. H. Yang, and F. Ali. 2013. Molecular imprinted polymers for separation science: A review of reviews. Journal of Separation Science 36 (3):609–28. doi: 10.1002/jssc.201200784.
  • Chmangui, A., M. R. Driss, S. Touil, P. Bermejo-Barrera, S. Bouabdallah, and A. Moreda-Piñeiro. 2019. Aflatoxins screening in non-dairy beverages by Mn-doped ZnS quantum dots – Molecularly imprinted polymer fluorescent probe. Talanta 199:65–71. doi: 10.1016/j.talanta.2019.02.057.
  • Choudhury, S. 2020. Molecular tools for the detection of waterborne pathogens. In Waterborne pathogens, ed. M. N. Vara Prasad and A. Grobelak, 219–35. Butterworth-Heinemann: Elsevier.
  • Conte, G., M. Fontanelli, F. Galli, L. Cotrozzi, L. Pagni, and E. Pellegrini. 2020. Mycotoxins in feed and food and the role of ozone in their detoxification and degradation: An update. Toxins 12 (8):486. doi: 10.3390/toxins12080486.
  • Cui, Z., Z. Li, Y. Jin, T. Ren, J. Chen, X. Wang, K. Zhong, L. Tang, Y. Tang, and M. Cao. 2020. Novel magnetic fluorescence probe based on carbon quantum dots-doped molecularly imprinted polymer for AHLs signaling molecules sensing in fish juice and milk. Food Chemistry 328:127063. doi: 10.1016/j.foodchem.2020.127063.
  • Das, R., R. Bandyopadhyay, and P. Pramanik. 2018. Carbon quantum dots from natural resource: A review. Materials Today Chemistry 8:96–109. doi: 10.1016/j.mtchem.2018.03.003.
  • Dashtian, K., S. Hajati, and M. Ghaedi. 2021. Ti-based solid-state imprinted-Cu2O/CuInSe2 heterojunction photoelectrochemical platform for highly selective dopamine monitoring. Sensors and Actuators B: Chemical 326:128824. doi: 10.1016/j.snb.2020.128824.
  • De Rycke, E., A. Foubert, P. Dubruel, O. I. Bol’hakov, S. De Saeger, and N. Beloglazova. 2021. Recent advances in electrochemical monitoring of zearalenone in diverse matrices. Food Chemistry 353:129342. doi: 10.1016/j.foodchem.2021.129342.
  • Drbohlavova, J., V. Adam, R. Kizek, and J. Hubalek. 2009. Quantum dots – Characterization, preparation and usage in biological systems. International Journal of Molecular Sciences 10 (2):656–73. doi: 10.3390/ijms10020656.
  • Duarte, S. C., A. Pena, and C. M. Lino. 2009. Ochratoxin A non-conventional exposure sources — A review. Microchemical Journal 93 (2):115–20. doi: 10.1016/j.microc.2009.06.002.
  • Engin, A. B., and A. Engin. 2019. DNA damage checkpoint response to aflatoxin B1. Environmental Toxicology and Pharmacology 65:90–6.
  • Fang, G., C. Fan, H. Liu, M. Pan, H. Zhu, and S. Wang. 2014. A novel molecularly imprinted polymer on CdSe/ZnS quantum dots for highly selective optosensing of mycotoxin zearalenone in cereal samples. RSC Advances 4 (6):2764–71. doi: 10.1039/C3RA45172K.
  • Fang, G., G. Liu, Y. Yang, and S. Wang. 2016. Quartz crystal microbalance sensor based on molecularly imprinted polymer membrane and three-dimensional Au nanoparticles@mesoporous carbon CMK-3 functional composite for ultrasensitive and specific determination of citrinin. Sensors and Actuators B: Chemical 230:272–80. doi: 10.1016/j.snb.2016.02.053.
  • Fink-Gremmels, J., and D. van der Merwe. 2019. Mycotoxins in the food chain: Contamination of foods of animal origin. In Chemical hazards in foods of animal origin, Vol. 7, 241–61. Wageningen: ECVPH Food Safety Assurance and Veterinary Public Health. doi: 10.3920/978-90-8686-877-3_10.
  • Fleger, Y., and M. Rosenbluh. 2009. Surface plasmons and surface enhanced Raman spectra of aggregated and alloyed gold-silver nanoparticles. Research Letters in Optics 2009:1–5. doi: 10.1155/2009/475941.
  • Freire, L., and A. S. Sant’Ana. 2018. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 111:189–205. doi: 10.1016/j.fct.2017.11.021.
  • Fresco-Cala, B., and B. Mizaikoff. 2020. Surrogate imprinting strategies: Molecular imprints via fragments and dummies. ACS Applied Polymer Materials 2 (9):3714–41. doi: 10.1021/acsapm.0c00555.
  • Fu, H., W. Xu, H. Wang, S. Liao, and G. Chen. 2020. Preparation of magnetic molecularly imprinted polymers for the identification of zearalenone in grains. Analytical and Bioanalytical Chemistry 412 (19):4725–37.
  • Ghanam, A., H. Mohammadi, A. Amine, N. Haddour, and F. Buret. 2021. Chemical sensors: Electrochemical sensors; voltammetry/amperometry. In Reference module in biomedical sciences. Manhattan, USA: Elsevier. doi: 10.1016/B978-0-12-822548-6.00032-7.
  • Gil-Serna, J., M. García-Díaz, M. T. González-Jaén, C. Vázquez, and B. Patiño. 2018. Description of an orthologous cluster of ochratoxin A biosynthetic genes in Aspergillus and Penicillium species. A comparative analysis. International Journal of Food Microbiology 268:35–43.
  • Gonzato, C., M. Courty, P. Pasetto, and K. Haupt. 2011. Magnetic molecularly imprinted polymer nanocomposites via surface‐initiated RAFT polymerization. Advanced Functional Materials 21 (20):3947–53. doi: 10.1002/adfm.201100466.
  • Goud, K. Y., S. K. Kailasa, V. Kumar, Y. F. Tsang, S. E. Lee, K. V. Gobi, and K.-H. Kim. 2018. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review. Biosensors & Bioelectronics 121:205–22.
  • Goud, K. Y., K. K. Reddy, M. Satyanarayana, S. Kummari, and K. V. Gobi. 2020. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Microchimica Acta 187 (1):1–32. doi: 10.1007/s00604-019-4034-0.
  • Gu, Y., Y. Wang, X. Wu, M. Pan, N. Hu, J. Wang, and S. Wang. 2019. Quartz crystal microbalance sensor based on covalent organic framework composite and molecularly imprinted polymer of poly (o-aminothiophenol) with gold nanoparticles for the determination of aflatoxin B1. Sensors and Actuators B: Chemical 291:293–7. doi: 10.1016/j.snb.2019.04.092.
  • Guan, J.-G., Y.-Q. Miao, and Q.-J. Zhang. 2004. Impedimetric biosensors. Journal of Bioscience and Bioengineering 97 (4):219–26. doi: 10.1016/S1389-1723(04)70195-4.
  • Guan, G., S. Wang, H. Zhou, K. Zhang, R. Liu, Q. Mei, S. Wang, and Z. Zhang. 2011. Molecularly imprinted polypyrrole nanonecklaces for detection of herbicide through molecular recognition-amplifying current response. Analytica Chimica Acta 702 (2):239–46. doi: 10.1016/j.aca.2011.06.047.
  • Guo, Z., A. Florea, M. Jiang, Y. Mei, W. Zhang, A. Zhang, R. Săndulescu, and N. Jaffrezic-Renault. 2016. Molecularly imprinted polymer/metal organic framework based chemical sensors. Coatings 6 (4):42. doi: 10.3390/coatings6040042.
  • Guo, W., F. Pi, H. Zhang, J. Sun, Y. Zhang, and X. Sun. 2017. A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosensors & Bioelectronics 98:299–304. doi: 10.1016/j.bios.2017.06.036.
  • Gupta, R. C., A. Srivastava, and R. Lall. 2018. Ochratoxins and citrinin. In Veterinary toxicology, 3rd ed., 1019–27. Academic Press: Elsevier.
  • Gurban, A.-M., P. Epure, F. Oancea, and M. Doni. 2017. Achievements and prospects in electrochemical-based biosensing platforms for aflatoxin M1 detection in milk and dairy products. Sensors 17 (12):2951. doi: 10.3390/s17122951.
  • Habimana, J. d D., J. Ji, F. Pi, E. Karangwa, J. Sun, W. Guo, F. Cui, J. Shao, C. Ntakirutimana, and X. Sun. 2018b. A class-specific artificial receptor-based on molecularly imprinted polymer-coated quantum dot centers for the detection of signaling molecules, N-acyl-homoserine lactones present in gram-negative bacteria. Analytica Chimica Acta 1031:134–44. doi: 10.1016/j.aca.2018.05.018.
  • Habimana, J. d D., J. Ji, and X. Sun. 2018a. Minireview: Trends in optical-based biosensors for point-of-care bacterial pathogen detection for food safety and clinical diagnostics. Analytical Letters 51 (18):2933–66. doi: 10.1080/00032719.2018.1458104.
  • Han, S., X. Li, Y. Wang, and C. Su. 2014. A core–shell Fe3O4 nanoparticle–CdTe quantum dot–molecularly imprinted polymer composite for recognition and separation of 4-nonylphenol. Analytical Methods 6 (9):2855–61. doi: 10.1039/c3ay41924j.
  • Haque, M. A., Y. Wang, Z. Shen, X. Li, M. K. Saleemi, and C. He. 2020. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microbial Pathogenesis 142:104095. doi: 10.1016/j.micpath.2020.104095.
  • Hatamluyi, B., M. Rezayi, H. R. Beheshti, and M. T. Boroushaki. 2020. Ultra-sensitive molecularly imprinted electrochemical sensor for patulin detection based on a novel assembling strategy using Au@ Cu-MOF/N-GQDs. Sensors and Actuators B: Chemical 318:128219. doi: 10.1016/j.snb.2020.128219.
  • He, Y., D. Tan, W. Zhang, A. Ren, L. Zhang, X. Zhang, N. Jaffrezic-Renault, and Z. Guo. 2019. Molecularly imprinted polymer sensor based on microporous metal-organic framework for detection of doxorubicin hydrochloride. Sensor Letters 17 (4):262–8. doi: 10.1166/sl.2019.4047.
  • Herlem, G., F. Picaud, C. Girardet, and O. Micheau. 2019. Chapter 16 – Carbon nanotubes: Synthesis, characterization, and applications in drug-delivery systems. In Nanocarriers for drug delivery, ed. S. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra, and S. Thomas, 469–529. Elsevier.
  • Huang, X., and M. A. El-Sayed. 2010. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research 1 (1):13–28. doi: 10.1016/j.jare.2010.02.002.
  • Huang, L., X. Yan, and M. Kruk. 2010. Synthesis of ultralarge-pore FDU-12 silica with face-centered cubic structure. Langmuir: The ACS Journal of Surfaces and Colloids 26 (18):14871–8. doi: 10.1021/la102228u.
  • Huang, Q., Z. Zhao, D. Nie, K. Jiang, W. Guo, K. Fan, Z. Zhang, J. Meng, Y. Wu, and Z. Han. 2019. Molecularly imprinted poly(thionine)-based electrochemical sensing platform for fast and selective ultratrace determination of patulin. Analytical Chemistry 91 (6):4116–23. doi: 10.1021/acs.analchem.8b05791.
  • Hu, R., R. Tang, J. Xu, and F. Lu. 2018. Chemical nanosensors based on molecularly-imprinted polymers doped with silver nanoparticles for the rapid detection of caffeine in wastewater. Analytica Chimica Acta 1034:176–83. doi: 10.1016/j.aca.2018.06.012.
  • Hu, J., Z-y Wang, C-c Li, and C. Zhang. y. 2017. Advances in single quantum dot-based nanosensors. Chemical Communications (Cambridge, England) 53 (100):13284–95. doi: 10.1039/c7cc07752a.
  • IARC. 2021. List of classifications by cancer sites with sufficient or limited evidence in humans, IARC Monographs Volumes 1–130a. Accessed January 2, 2022. https://monographs.iarc.who.int/wpcontent/uploads/2019/07/Classifications_by_cancer_site.pdf.
  • Imran, M., S. Cao, S. Wan, Z. Chen, M. K. Saleemi, N. W. M. N. Naseem, and J. Munawar10. 2020. Mycotoxins–A global one health concern: A review. Agrobiological Records 2:1–16.
  • Insight, F. 2020. Aflatoxins in the U.S. Food Supply. Last Modified August 12, 2020. Accessed January 2, 2022. https://foodinsight.org/all-about-aflatoxins/
  • Jayan, H., H. Pu, and D.-W. Sun. 2020. Recent development in rapid detection techniques for microorganism activities in food matrices using bio-recognition: A review. Trends in Food Science & Technology 95:233–46. doi: 10.1016/j.tifs.2019.11.007.
  • Jayasinghe, G. D. T. M., R. Domínguez-González, P. Bermejo-Barrera, and A. Moreda-Piñeiro. 2020b. Ultrasound assisted combined molecularly imprinted polymer for the selective micro-solid phase extraction and determination of aflatoxins in fish feed using liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1609:460431. doi: 10.1016/j.chroma.2019.460431.
  • Jayasinghe, G. T. M., R. Domínguez-González, P. Bermejo-Barrera, and A. Moreda-Piñeiro. 2020a. Room temperature phosphorescent determination of aflatoxins in fish feed based on molecularly imprinted polymer-Mn-doped ZnS quantum dots. Analytica Chimica Acta 1103:183–91. doi: 10.1016/j.aca.2019.12.060.
  • Jethi, L., T. G. Mack, and P. Kambhampati. 2017. Extending semiconductor nanocrystals from the quantum dot regime to the molecular cluster regime. The Journal of Physical Chemistry C 121 (46):26102–7. doi: 10.1021/acs.jpcc.7b08439.
  • Jha, S. N. 2016. Chapter 2—Common Adulterants and Contaminants. In Rapid detection of food adulterants and contaminants, ed. S. N. Jha, 25–61. San Diego: Academic Press.
  • K, A., A. Sultana, and K. Rahman. 2017. A single-blind randomized comparative study of Asafoetida vs Mefenamic acid in dysmenorrhea, associated symptoms and health-related quality of life. Journal of Herbal Medicine 9:21–31. doi: 10.1016/j.hermed.2017.06.003.
  • Kang, Y., L. Zhang, Q. Lai, C. Lin, K. Wu, L. Dang, and L. Li. 2021. Molecularly imprinted polymer based on metal-organic frameworks: Synthesis and application on determination of dibutyl phthalate. Polymer-Plastics Technology and Materials 60 (1):60–9. doi: 10.1080/25740881.2020.1786582.
  • Kebede, H., X. Liu, J. Jin, and F. Xing. 2020. Current status of major mycotoxins contamination in food and feed in Africa. Food Control 110:106975. doi: 10.1016/j.foodcont.2019.106975.
  • Khan, I., K. Saeed, and I. Khan. 2019. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 12 (7):908–31. doi: 10.1016/j.arabjc.2017.05.011.
  • Khodaei, D., F. Javanmardi, and A. M. Khaneghah. 2021. The global overview of the occurrence of mycotoxins in cereals: A three-year survey. Current Opinion in Food Science 39:36–42. doi: 10.1016/j.cofs.2020.12.012.
  • Kim, D.-H., S.-Y. Hong, J. Kang, S. Cho, K. Lee, T. An, C. Lee, and S. Chung. 2017. Simultaneous determination of multi-mycotoxins in cereal grains collected from South Korea by LC/MS/MS. Toxins 9 (3):106. doi: 10.3390/toxins9030106.
  • Kim, H.-M., D.-M. Kim, C. Jeong, S. Y. Park, M. G. Cha, Y. Ha, D. Jang, S. Kyeong, X.-H. Pham, E. Hahm, et al. 2018. Assembly of plasmonic and magnetic nanoparticles with fluorescent silica shell layer for tri-functional SERS-magnetic-fluorescence probes and its bioapplications. Scientific Reports 8 (1):13938. doi: 10.1038/s41598-018-32044-7.
  • Kishikawa, N., M. H. El-Maghrabey, and N. Kuroda. 2019. Chromatographic methods and sample pretreatment techniques for aldehydes determination in biological, food, and environmental samples. Journal of Pharmaceutical and Biomedical Analysis 175:112782. doi: 10.1016/j.jpba.2019.112782.
  • Kocić-Tanackov, S., G. Dimić, L. Mojović, and J. Pejin. 2021. Role of mycotoxins in human food and inhibition of their producers by plant-derived products. In Comprehensive foodomics, ed. A. Cifuentes, 62–86. Oxford: Elsevier. doi: 10.1016/B978-0-08-100596-5.22831-X.
  • Kong, F.-Y., L. Yao, R.-F. Li, H.-Y. Li, Z.-X. Wang, W.-X. Lv, and W. Wang. 2019. Synthesis of nitrogen-doped reduced graphene oxide loading with Au-Ag bimetallic nanoparticles for electrochemical detection of daunorubicin. Journal of Alloys and Compounds 797:413–20. doi: 10.1016/j.jallcom.2019.04.276.
  • Kosheleva, R. I., A. C. Mitropoulos, and G. Z. Kyzas. 2019. New trends in molecular imprinting techniques. In Interface science and technology, ed. G. Z. Kyzas and A. C. Mitropoulos, vol. 30, 151–72. Kavala, Greece: Elsevier.
  • Lhotská, I., A. Kholová, A. Machyňáková, K. Hroboňová, P. Solich, F. Švec, and D. Šatínský. 2019. Preparation of citrinin-selective molecularly imprinted polymer and its use for on-line solid-phase extraction coupled to liquid chromatography. Analytical and Bioanalytical Chemistry 411 (11):2395–404. doi: 10.1007/s00216-019-01682-9.
  • Liang, G., H. Zhai, L. Huang, X. Tan, Q. Zhou, X. Yu, and H. Lin. 2018. Synthesis of carbon quantum dots-doped dummy molecularly imprinted polymer monolithic column for selective enrichment and analysis of aflatoxin B1 in peanut. Journal of Pharmaceutical and Biomedical Analysis 149:258–64. doi: 10.1016/j.jpba.2017.11.012.
  • Li, W., K. Diao, D. Qiu, Y. Zeng, K. Tang, Y. Zhu, Y. Sheng, Y. Wen, and M. Li. 2021. A highly-sensitive and selective antibody-like sensor based on molecularly imprinted poly(L-arginine) on COOH-MWCNTs for electrochemical recognition and detection of deoxynivalenol. Food Chemistry 350:129229. doi: 10.1016/j.foodchem.2021.129229.
  • Li, J., M. Ma, C. Zhang, R. Lu, L. Zhang, and W. Zhang. 2020. Synthesis of a molecularly imprinted polymer using MOF-74(Ni) as matrix for selective recognition of lysozyme. Analytical and Bioanalytical Chemistry 412 (26):7227–36. doi: 10.1007/s00216-020-02855-7.
  • Lim, K. F., and C. I. Holdsworth. 2018. Effect of formulation on the binding efficiency and selectivity of precipitation molecularly imprinted polymers. Molecules 23 (11):2996. doi: 10.3390/molecules23112996.
  • Liu, J.-M., F.-Z. Cao, G.-Z. Fang, and S. Wang. 2017. Upconversion nanophosphor-involved molecularly imprinted fluorescent polymers for sensitive and specific recognition of sterigmatocystin. Polymers 9 (12):299. doi: 10.3390/polym9070299.
  • Liu, C., Z. Song, J. Pan, Y. Yan, Z. Cao, X. Wei, L. Gao, J. Wang, J. Dai, M. Meng, et al. 2014. A simple and sensitive surface molecularly imprinted polymers based fluorescence sensor for detection of λ-Cyhalothrin. Talanta 125:14–23. doi: 10.1016/j.talanta.2014.02.062.
  • Liu, Y., Y. Zhang, J. Chen, and H. Pang. 2014. Copper metal-organic framework nanocrystal for plane effect nonenzymatic electro-catalytic activity of glucose . Nanoscale 6 (19):10989–94. doi: 10.1039/c4nr03396e.
  • Liu, Y., L. Zhu, Y. Zhang, and H. Tang. 2012. Electrochemical sensoring of 2, 4-dinitrophenol by using composites of graphene oxide with surface molecular imprinted polymer. Sensors and Actuators B: Chemical 171:1151–8.
  • Li, Y., X. Zhang, J. Nie, S. A. S. Bacha, Z. Yan, and G. Gao. 2020. Occurrence and co-occurrence of mycotoxins in apple and apple products from China. Food Control 118:107354. doi: 10.1016/j.foodcont.2020.107354.
  • Lofgreen, J. E., and G. A. Ozin. 2014. Controlling morphology and porosity to improve performance of molecularly imprinted sol-gel silica. Chemical Society Reviews 43 (3):911–33. doi: 10.1039/C3CS60276A.
  • Lok, C., and R. Son. 2009. Application of molecularly imprinted polymers in food sample analysis—A perspective. International Food Research Journal 16 (2):127–40
  • López-Puertollano, D., T. Cowen, Á. García-Cruz, E. Piletska, A. Abad-Somovilla, A. Abad-Fuentes, and S. Piletsky. 2019. Study of epitope imprinting for small templates: Preparation of NanoMIPs for Ochratoxin A. ChemNanoMat 5 (5):651–7. doi: 10.1002/cnma.201900050.
  • Lu, A.-H., E. L. Salabas, and F. Schüth. 2007. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie (International ed. in English) 46 (8):1222–44. doi: 10.1002/anie.200602866.
  • Lucci, P., S. David, C. Conchione, A. Milani, S. Moret, D. Pacetti, and L. Conte. 2020. Molecularly imprinted polymer as selective sorbent for the extraction of zearalenone in edible vegetable oils. Foods 9 (10):1439. doi: 10.3390/foods9101439.
  • Ma, X., Y. Chai, P. Li, and B. Wang. 2019. Metal-organic framework films and their potential applications in environmental pollution control. Accounts of Chemical Research 52 (5):1461–70. doi: 10.1021/acs.accounts.9b00113.
  • Madrakian, T., E. Haghshenas, M. Ahmadi, and A. Afkhami. 2015. Construction a magneto carbon paste electrode using synthesized molecularly imprinted magnetic nanospheres for selective and sensitive determination of mefenamic acid in some real samples. Biosensors & Bioelectronics 68:712–8. doi: 10.1016/j.bios.2015.02.001.
  • Ma, N., C. Feng, P. Qu, G. Wang, J. Liu, J. X. Liu, and J. P. Wang. 2020. Determination of tetracyclines in chicken by dispersive solid phase microextraction based on metal-organic frameworks/molecularly imprinted nano-polymer and ultra performance liquid chromatography. Food Analytical Methods 13 (5):1211–9. doi: 10.1007/s12161-020-01744-0.
  • Mahmoudpour, M., J. Ezzati Nazhad Dolatabadi, M. Torbati, A. Pirpour Tazehkand, A. Homayouni-Rad, and M. de la Guardia. 2019. Nanomaterials and new biorecognition molecules based surface plasmon resonance biosensors for mycotoxin detection. Biosensors & Bioelectronics 143:111603. doi: 10.1016/j.bios.2019.111603.
  • Majdinasab, M., S. Ben Aissa, and J. L. Marty. 2020. Advances in colorimetric strategies for mycotoxins detection: Toward rapid industrial monitoring. Toxins 13 (1):13. doi: 10.3390/toxins13010013.
  • Mao, L., K. Ji, L. Yao, X. Xue, W. Wen, X. Zhang, and S. Wang. 2019. Molecularly imprinted photoelectrochemical sensor for fumonisin B1 based on GO-CdS heterojunction. Biosensors & Bioelectronics 127:57–63.
  • Mao, L., X. Xue, X. Xu, W. Wen, M.-M. Chen, X. Zhang, and S. Wang. 2021. Heterostructured CuO-g-C3N4 nanocomposites as a highly efficient photocathode for photoelectrochemical aflatoxin B1 sensing. Sensors and Actuators B: Chemical 329:129146. doi: 10.1016/j.snb.2020.129146.
  • Mateos, I., S. Combes, G. Pascal, L. Cauquil, C. Barilly, A.-M. Cossalter, J. Laffitte, S. Botti, P. Pinton, and I. Oswald. 2018. Fumonisin-exposure impairs age-related ecological succession of bacterial species in weaned pig gut microbiota. Toxins 10 (6):230. doi: 10.3390/toxins10060230.
  • Matsui, J., K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, and N. Sugimoto. 2005. SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. Analytical Chemistry 77 (13):4282–5. doi: 10.1021/ac050227i.
  • Ma, S., M. Wang, T. You, and K. Wang. 2019. Using magnetic multiwalled carbon nanotubes as modified QuEChERS adsorbent for simultaneous determination of multiple mycotoxins in grains by UPLC-MS/MS. Journal of Agricultural and Food Chemistry 67 (28):8035–44. doi: 10.1021/acs.jafc.9b00090.
  • Meydan, İ., M. Bilici, E. Turan, and A. Zengin. 2021. Selective extraction and determination of citrinin in rye samples by a molecularly imprinted polymer (MIP) using reversible addition fragmentation chain transfer precipitation polymerization (RAFTPP) with high-performance liquid chromatography (HPLC) detection. Analytical Letters 54 (10):1697–12. doi: 10.1080/00032719.2021.1892125.
  • Mohamad, A. T., J. Kaur, N. A. C. Sidik, and S. Rahman. 2018. Nanoparticles: A review on their synthesis, characterization and physicochemical properties for energy technology industry. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 46 (1):1–10.
  • Moradnia, F., S. T. Fardood, A. Ramazani, B-k Min, S. W. Joo, and R. S. Varma. 2021. Magnetic Mg0. 5Zn0. 5FeMnO4 nanoparticles: Green sol-gel synthesis, characterization, and photocatalytic applications. Journal of Cleaner Production 288:125632. doi: 10.1016/j.jclepro.2020.125632.
  • Moreno-González, D., P. Jáč, P. Riasová, and L. Nováková. 2021. In-line molecularly imprinted polymer solid phase extraction-capillary electrophoresis coupled with tandem mass spectrometry for the determination of patulin in apple-based food. Food Chemistry 334:127607. doi: 10.1016/j.foodchem.2020.127607.
  • Mousavi Khaneghah, A., Y. Fakhri, H. H. Gahruie, M. Niakousari, and A. S. Sant’Ana. 2019. Mycotoxins in cereal-based products during 24 years (1983–2017): A global systematic review. Trends in Food Science & Technology 91:95–105. doi: 10.1016/j.tifs.2019.06.007.
  • Munawar, H., A. Garcia-Cruz, M. Majewska, K. Karim, W. Kutner, and S. A. Piletsky. 2020. Electrochemical determination of fumonisin B1 using a chemosensor with a recognition unit comprising molecularly imprinted polymer nanoparticles. Sensors and Actuators B: Chemical 321:128552. doi: 10.1016/j.snb.2020.128552.
  • Munawar, H., A. H. M. Safaryan, A. De Girolamo, A. Garcia-Cruz, P. Marote, K. Karim, V. Lippolis, M. Pascale, and S. A. Piletsky. 2019. Determination of Fumonisin B1 in maize using molecularly imprinted polymer nanoparticles-based assay. Food Chemistry 298:125044. doi: 10.1016/j.foodchem.2019.125044.
  • Narváez, A., Y. Rodríguez-Carrasco, L. Castaldo, L. Izzo, and A. Ritieni. 2020. Ultra-high-performance liquid chromatography coupled with quadrupole orbitrap high-resolution mass spectrometry for multi-residue analysis of mycotoxins and pesticides in botanical nutraceuticals. Toxins 12 (2):114. doi: 10.3390/toxins12020114.
  • Ngolong Ngea, G. L., Q. Yang, R. Castoria, X. Zhang, M. N. Routledge, and H. Zhang. 2020. Recent trends in detecting, controlling, and detoxifying of patulin mycotoxin using biotechnology methods. Comprehensive Reviews in Food Science and Food Safety 19 (5):2447–72. doi: 10.1111/1541-4337.12599.
  • Norlia, M., S. Jinap, M. A. R. Nor-Khaizura, S. Radu, N. I. P. Samsudin, and F. A. Azri. 2019. Aspergillus section Flavi and Aflatoxins: Occurrence, detection, and identification in raw peanuts and peanut-based products along the supply chain. Frontiers in Microbiology 10 (2602):2602. doi: 10.3389/fmicb.2019.02602.
  • Oliveira, S. I., A. G. da Silva Junior, C. A. S. L. de Andrade, and M. D. Oliveira. 2019. Biosensors for early detection of fungi spoilage and toxigenic and mycotoxins in food. Current Opinion in Food Science 29:64–79. doi: 10.1016/j.cofs.2019.08.004.
  • Onyeke, C. C. 2020. Review of mycotoxins in foods in Nigeria. Food Control. 118:107376. doi: 10.1016/j.foodcont.2020.107376.
  • Ostry, V., F. Malir, J. Toman, and Y. Grosse. 2017. Mycotoxins as human carcinogens-the IARC Monographs classification. Mycotoxin Research 33 (1):65–73. doi: 10.1007/s12550-016-0265-7.
  • Ouakhssase, A., and A. E. Addi. 2020. Mycotoxins in food: A review on liquid chromatographic methods coupled to mass spectrometry and their experimental designs. Critical Reviews in Food Science and Nutrition:1–21. doi: 10.1080/10408398.2020.1856034.
  • Pacheco, J. G., M. Castro, S. Machado, M. F. Barroso, H. P. Nouws, and C. Delerue-Matos. 2015. Molecularly imprinted electrochemical sensor for ochratoxin A detection in food samples. Sensors and Actuators B: Chemical 215:107–12. doi: 10.1016/j.snb.2015.03.046.
  • Pardeshi, S., and S. K. Singh. 2016. Precipitation polymerization: A versatile tool for preparing molecularly imprinted polymer beads for chromatography applications. RSC Advances 6 (28):23525–36. doi: 10.1039/C6RA02784A.
  • Patriarca, A., and V. F. Pinto. 2017. Prevalence of mycotoxins in foods and decontamination. Current Opinion in Food Science 14:50–60. doi: 10.1016/j.cofs.2017.01.011.
  • Pauletto, M., R. Tolosi, M. Giantin, G. Guerra, A. Barbarossa, A. Zaghini, and M. Dacasto. 2020. Insights into Aflatoxin B1 Toxicity in Cattle: An in vitro whole-transcriptomic approach. Toxins 12 (7):429. doi: 10.3390/toxins12070429.
  • Pereira, V., J. Fernandes, and S. Cunha. 2014. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends in Food Science & Technology 36 (2):96–136. doi: 10.1016/j.tifs.2014.01.005.
  • Pérez-Moral, N., and A. Mayes. 2004. Comparative study of imprinted polymer particles prepared by different polymerisation methods. Analytica Chimica Acta 504 (1):15–21. doi: 10.1016/S0003-2670(03)00533-6.
  • Priesterjahn, E.-M., R. Geisen, and M. Schmidt-Heydt. 2020. Influence of light and water activity on growth and mycotoxin formation of selected isolates of Aspergillus flavus and Aspergillus parasiticus. Microorganisms 8 (12):2000. doi: 10.3390/microorganisms8122000.
  • Ramalingam, S., A. Bahuguna, and M. Kim. 2019. The effects of mycotoxin patulin on cells and cellular components. Trends in Food Science & Technology 83:99–113. doi: 10.1016/j.tifs.2018.10.010.
  • Rausch, A.-K., R. Brockmeyer, and T. Schwerdtle. 2020. Development and validation of a QuEChERS-based liquid chromatography tandem mass spectrometry multi-method for the determination of 38 native and modified mycotoxins in cereals. Journal of Agricultural and Food Chemistry 68 (16):4657–69. doi: 10.1021/acs.jafc.9b07491.
  • Rebelo, T. S. C. R., R. Costa, A. T. S. C. Brandão, A. F. Silva, M. G. F. Sales, and C. M. Pereira. 2019. Molecularly imprinted polymer SPE sensor for analysis of CA-125 on serum. Analytica Chimica Acta 1082:126–35. doi: 10.1016/j.aca.2019.07.050.
  • Reddy, R. V., K. Mayura, A. W. Hayes, and W. O. Berndt. 1982. Embryocidal teratogenic and fetotoxic effects of citrinin in rats. Toxicology 25 (2–3):151–60. doi: 10.1016/0300-483X(82)90026-9.
  • Refaat, D., M. G. Aggour, A. A. Farghali, R. Mahajan, J. G. Wiklander, I. A. Nicholls, and S. A. Piletsky. 2019. Strategies for molecular imprinting and the evolution of MIP nanoparticles as plastic antibodies—Synthesis and applications. International Journal of Molecular Sciences 20 (24):6304. doi: 10.3390/ijms20246304.
  • Reinholds, I., I. Pugajeva, E. Bogdanova, J. Jaunbergs, and V. Bartkevics. 2019. Recent applications of carbonaceous nanosorbents for the analysis of mycotoxins in food by liquid chromatography: A short review. World Mycotoxin Journal 12 (1):31–43. doi: 10.3920/WMJ2018.2339.
  • Ren, X., and L. Chen. 2015. Quantum dots coated with molecularly imprinted polymer as fluorescence probe for detection of cyphenothrin. Biosensors & Bioelectronics 64:182–8.
  • Ren, X., E. C. Cheshari, J. Qi, and X. Li. 2018. Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A. Microchimica Acta 185 (4):1–8. doi: 10.1007/s00604-018-2772-z.
  • Rohr, J. R., C. B. Barrett, D. J. Civitello, M. E. Craft, B. Delius, G. A. DeLeo, P. J. Hudson, N. Jouanard, K. H. Nguyen, R. S. Ostfeld, et al. 2019. Emerging human infectious diseases and the links to global food production. Nature Sustainability 2 (6):445–56. doi: 10.1038/s41893-019-0293-3.
  • Roucou, A., C. Bergez, B. Méléard, and B. Orlando. 2021. A fumonisin prevention tool for targeting and ranking agroclimatic conditions favoring exposure in french maize-growing areas. Toxins 13 (3):214. doi: 10.3390/toxins13030214.
  • Rui, C., J. He, Y. Li, Y. Liang, L. You, L. He, K. Li, and S. Zhang. 2019. Selective extraction and enrichment of aflatoxins from food samples by mesoporous silica FDU-12 supported aflatoxins imprinted polymers based on surface molecularly imprinting technique. Talanta 201:342–9. doi: 10.1016/j.talanta.2019.04.019.
  • Sanadgol, N., and J. Wackerlig. 2020. Developments of smart drug-delivery systems based on magnetic molecularly imprinted polymers for targeted cancer therapy: A short review. Pharmaceutics 12 (9):831. doi: 10.3390/pharmaceutics12090831.
  • Scott, K. 2016. 2 - Electrochemical principles and characterization of bioelectrochemical systems. In Microbial Electrochemical and Fuel Cells, ed. K. Scott and E. H. Yu, 29–66. Boston: Woodhead Publishing.
  • Shahar, T., N. Tal, and D. Mandler. 2016. Molecularly imprinted polymer particles: Formation, characterization and application. Colloids and Surfaces A: Physicochemical and Engineering Aspects 495:11–9. doi: 10.1016/j.colsurfa.2016.01.027.
  • Shao, M., M. Yao, S. D. Saeger, L. Yan, and S. Song. 2018. Carbon quantum dots encapsulated molecularly imprinted fluorescence quenching particles for sensitive detection of zearalenone in corn sample. Toxins 10 (11):438. doi: 10.3390/toxins10110438.
  • Shi, J., G. Li, Y. Cui, Y. Zhang, D. Liu, Y. Shi, and H. He. 2019. Surface-imprinted β-cyclodextrin-functionalized carbon nitride nanosheets for fluorometric determination of sterigmatomycin. Microchimica Acta 186 (12):1–9. doi: 10.1007/s00604-019-3867-x.
  • Singh, J., and A. Mehta. 2020. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Science & Nutrition 8 (5):2183–204. doi: 10.1002/fsn3.1474.
  • Singh, P. K., R. P. Singh, P. Singh, and R. L. Singh. 2019. Food hazards: Physical, chemical, and biological. In Food safety and human health, ed. R. L. Singh and S. Mondal, 15–65. Faizabad, India: Academic Press.
  • Smith, M.-C., S. Madec, E. Coton, and N. Hymery. 2016. Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 8 (4):94. doi: 10.3390/toxins8040094.
  • Son, J., S. Ji, S. Kim, S. Kim, S. K. Kim, W. Song, S. S. Lee, J. Lim, K.-S. An, and S. Myung. 2021. GC-like graphene-coated quartz crystal microbalance sensor with microcolumns. ACS Applied Materials & Interfaces 13 (3):4703–4710. doi: 10.1021/acsami.0c19010.
  • Song, L., J. He, N. Chen, and Z. Huang. 2019. Combined biocompatible medium with molecularly imprinted polymers for determination of aflatoxins B1 in real sample. Journal of Separation Science 42 (24):3679–3687. doi: 10.1002/jssc.201900564.
  • Song, Y., M. Xu, C. Gong, Y. Shen, L. Wang, Y. Xie, and L. Wang. 2018. Ratiometric electrochemical glucose biosensor based on GOD/AuNPs/Cu-BTC MOFs/macroporous carbon integrated electrode. Sensors and Actuators B: Chemical 257:792–799. doi: 10.1016/j.snb.2017.11.004.
  • Sun, J., W. Guo, J. Ji, Z. Li, X. Yuan, F. Pi, Y. Zhang, and X. Sun. 2020. Removal of patulin in apple juice based on novel magnetic molecularly imprinted adsorbent Fe3O4@SiO2@CS-GO@MIP. LWT 118:108854. doi: 10.1016/j.lwt.2019.108854.
  • Sun, M., B. Sun, Y. Liu, Q.-D. Shen, and S. Jiang. 2016. Dual-color fluorescence imaging of magnetic nanoparticles in live cancer cells using conjugated polymer probes. Scientific Reports 6 (1):22368. doi: 10.1038/srep22368.
  • Tan, L., R. He, K. Chen, R. Peng, C. Huang, R. Yang, and Y. Tang. 2016. Ultra-high performance liquid chromatography combined with mass spectrometry for determination of aflatoxins using dummy molecularly imprinted polymers deposited on silica-coated magnetic nanoparticles. Microchimica Acta 183 (4):1469–1477. doi: 10.1007/s00604-016-1790-y.
  • Tan, L., C. Kang, S. Xu, and Y. Tang. 2013. Selective room temperature phosphorescence sensing of target protein using Mn-doped ZnS QDs-embedded molecularly imprinted polymer. Biosensors & Bioelectronics 48:216–223. doi: 10.1016/j.bios.2013.04.024.
  • Tao, Y., S. Xie, F. Xu, A. Liu, Y. Wang, D. Chen, Y. Pan, L. Huang, D. Peng, X. Wang, et al. 2018. Ochratoxin A: Toxicity, oxidative stress and metabolism. Food and Chemical Toxicology 112:320–331. doi: 10.1016/j.fct.2018.01.002.
  • Ting, W. E., C.-H. Chang, B. Szonyi, and D. Gizachew. 2020. Growth and aflatoxin B1, B2, G1, and G2 production by Aspergillus flavus and Aspergillus parasiticus on ground flax seeds (Linum usitatissimum). Journal of Food Protection 83 (6):975–983. doi: 10.4315/JFP-19-539.
  • Torad, N. L., S. Zhang, W. A. Amer, M. M. Ayad, M. Kim, J. Kim, B. Ding, X. Zhang, T. Kimura, and Y. Yamauchi. 2019. Advanced nanoporous material–based QCM devices: A new horizon of interfacial mass sensing technology. Advanced Materials Interfaces 6 (20):1900849. doi: 10.1002/admi.201900849.
  • Ülger, T. G., A. Uçar, F. P. Çakıroğlu, and S. Yilmaz. 2020. Genotoxic effects of mycotoxins. Toxicon: Official Journal of the International Society on Toxinology 185:104–113. doi: 10.1016/j.toxicon.2020.07.004.
  • Ünüsan, N. 2019. Systematic review of mycotoxins in food and feeds in Turkey. Food Control. 97:1–14. doi: 10.1016/j.foodcont.2018.10.015.
  • Villa, C. C., L. T. Sánchez, G. A. Valencia, S. Ahmed, and T. J. Gutiérrez. 2021. Molecularly imprinted polymers for food applications: A review. Trends in Food Science & Technology 111:642–669. doi: 10.1016/j.tifs.2021.03.003.
  • Wang, M., G. Abbineni, A. Clevenger, C. Mao, and S. Xu. 2011. Upconversion nanoparticles: Synthesis, surface modification and biological applications. Nanomedicine: Nanotechnology, Biology, and Medicine 7 (6):710–729. doi: 10.1016/j.nano.2011.02.013.
  • Wang, Y., J. Cheng, X. Liu, F. Ding, P. Zou, X. Wang, Q. Zhao, and H. Rao. 2018. C3N4 nanosheets/metal–organic framework wrapped with molecularly imprinted polymer sensor: Fabrication, characterization, and electrochemical detection of furosemide. ACS Sustainable Chemistry & Engineering 6 (12):16847–16858. doi: 10.1021/acssuschemeng.8b04179.
  • Wang, H.-F., Y. He, T.-R. Ji, and X.-P. Yan. 2009. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Analytical Chemistry 81 (4):1615–1621. doi: 10.1021/ac802375a.
  • Wang, Y., and A. Hu. 2014. Carbon quantum dots: Synthesis, properties and applications. Journal of Materials Chemistry C 2 (34):6921–6939. doi: 10.1039/C4TC00988F.
  • Wang, Y-f, M-m Pan, X. Yu, and L. Xu. 2020. The recent advances of fluorescent sensors based on molecularly imprinted fluorescent nanoparticles for pharmaceutical analysis. Current Medical Science 40 (3):407–421. doi: 10.1007/s11596-020-2195-z.
  • Wang, R., P. Wu, Y. Cui, M. Fizir, J. Shi, and H. He. 2020. Selective recognition and enrichment of sterigmatocystin in wheat by thermo-responsive imprinted polymer based on magnetic halloysite nanotubes. Journal of Chromatography. A 1619:460952.
  • Wang, H.-F., and X.-P. Yan. 2012. Molecularly imprinted room temperature phosphorescent optosensors for environmental. In Handbook of molecular imprinting: Advanced sensor applications, ed. Lee, S.-W., & Kunitake, T., 1st ed. Jenny Stanford Publishing, Taylor and Francis. doi: 10.1201/b13062.
  • Weaver, A. C., N. Adams, and A. Yiannikouris. 2020. Invited review: Use of technology to assess and monitor multimycotoxin and emerging mycotoxin challenges in feedstuffs. Applied Animal Science 36 (1):19–25. doi: 10.15232/aas.2019-01898.
  • Wei, X., M. Yu, C. Li, X. Gong, F. Qin, and Z. Wang. 2018. Magnetic nanoparticles coated with a molecularly imprinted polymer doped with manganese-doped ZnS quantum dots for the determination of 2, 4, 6-trichlorophenol. Microchimica Acta 185 (4):1–6. doi: 10.1007/s00604-018-2742-5.
  • Wei, C., L. Yu, N. Qiao, J. Zhao, H. Zhang, Q. Zhai, F. Tian, and W. Chen. 2020. Progress in the distribution, toxicity, control, and detoxification of patulin: A review. Toxicon: Official Journal of the International Society on Toxinology 184:83–93. doi: 10.1016/j.toxicon.2020.05.006.
  • Wei, Y.-S., M. Zhang, R. Zou, and Q. Xu. 2020. Metal-organic framework-based catalysts with single metal sites. Chemical Reviews 120 (21):12089–12174. doi: 10.1021/acs.chemrev.9b00757.
  • Wen, S., J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, and D. Jin. 2018. Advances in highly doped upconversion nanoparticles. Nature Communications 9 (1):2415. doi: 10.1038/s41467-018-04813-5.
  • WHO. 2018. Mycotoxins. Last Modified May 2, 2018. Accessed January 2, 2022. https://www.who.int/news-room/fact-sheets/detail/mycotoxins.
  • Wilhelm, S. 2017. Perspectives for upconverting nanoparticles. ACS Nano 11 (11):10644–10653. doi: 10.1021/acsnano.7b07120.
  • Włoch, M., and J. Datta. 2019. Synthesis and polymerisation techniques of molecularly imprinted polymers. In Comprehensive analytical chemistry, ed. M. Marć, vol. 86, 17–40. Elsevier.
  • Wu, X., J. Du, M. Li, L. Wu, C. Han, and F. Su. 2018. Recent advances in green reagents for molecularly imprinted polymers. RSC Advances 8 (1):311–327. doi: 10.1039/C7RA11047B.
  • Wu, L., H. Yan, G. Li, X. Xu, L. Zhu, X. Chen, and J. Wang. 2019. Surface-imprinted gold nanoparticle-based surface-enhanced raman scattering for sensitive and specific detection of patulin in food samples. Food Analytical Methods 12 (7):1648–1657. doi: 10.1007/s12161-019-01498-4.
  • Xia, Y., F. Zhao, and B. Zeng. 2020. A molecularly imprinted copolymer based electrochemical sensor for the highly sensitive detection of L-Tryptophan. Talanta 206:120245.
  • Xu, L., G. Fang, M. Pan, X. Wang, and S. Wang. 2016. One-pot synthesis of carbon dots-embedded molecularly imprinted polymer for specific recognition of sterigmatocystin in grains. Biosensors & Bioelectronics 77:950–956. doi: 10.1016/j.bios.2015.10.072.
  • Xue, H., Y. Chen, X. L. Xu, G. H. Zhang, H. Zhang, and S. Y. Ma. 2009. X-ray diffraction spectroscopy and X-ray photoelectron spectroscopy studies of Cu-doped ZnO films. Physica E: Low-Dimensional Systems and Nanostructures 41 (5):788–791. doi: 10.1016/j.physe.2008.12.017.
  • Yakubu, A., and A. Vyas. 2020. Aflatoxin: Occurrence, regulation, and detection in food and feed. In Microbial biotechnology: Basic research and applications, eds. J. Singh, A. Vyas, S. Wang, R. Prasad. 337–53. Singapore: Springer. doi: 10.1007/978-981-15-2817-0_15.
  • Yan, Z., and G-z Fang. 2019. Molecularly imprinted polymer based on upconversion nanoparticles for highly selective and sensitive determination of Ochratoxin A. Journal of Central South University 26 (3):515–523. doi: 10.1007/s11771-019-4023-9.
  • Yang, D., X. Jiang, J. Sun, X. Li, X. Li, R. Jiao, Z. Peng, Y. Li, and W. Bai. 2018. Toxic effects of zearalenone on gametogenesis and embryonic development: A molecular point of review. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 119:24–30.
  • Yang, Q., C. Li, J. Li, X. Wang, M. Arabi, H. Peng, H. Xiong, and L. Chen. 2020. Rational construction of a triple emission molecular imprinting sensor for accurate naked-eye detection of folic acid. Nanoscale 12 (11):6529–6536. doi: 10.1039/d0nr00765j.
  • Yang, W., X. Li, Y. Li, R. Zhu, and H. Pang. 2019. Applications of metal–organic‐framework‐derived carbon materials. Advanced Materials 31 (6):1804740.
  • Yang, Q., J. Li, X. Wang, H. Xiong, and L. Chen. 2019. Ternary emission of a blue-, green-, and red-based molecular imprinting fluorescence sensor for the multiplexed and visual detection of bovine hemoglobin. Analytical Chemistry 91 (10):6561–6568. doi: 10.1021/acs.analchem.9b00082.
  • Yang, Y., G. Li, D. Wu, J. Liu, X. Li, P. Luo, N. Hu, H. Wang, and Y. Wu. 2020. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends in Food Science & Technology 96:233–252. doi: 10.1016/j.tifs.2019.12.021.
  • Yang, C., G. Song, and W. Lim. 2020. Effects of mycotoxin-contaminated feed on farm animals. Journal of Hazardous Materials 389:122087. doi: 10.1016/j.jhazmat.2020.122087.
  • Yang, Y., W. Yan, C. Guo, J. Zhang, L. Yu, G. Zhang, X. Wang, G. Fang, and D. Sun. 2020. Magnetic molecularly imprinted electrochemical sensors: A review. Analytica Chimica Acta 1106:1–21.
  • Young, J. C., H. Zhu, and T. Zhou. 2006. Degradation of trichothecene mycotoxins by aqueous ozone. Food and Chemical Toxicology 44 (3):417–424. doi: 10.1016/j.fct.2005.08.015.
  • Yuan, Y., Y. Yang, and G. Zhu. 2020. Molecularly imprinted porous aromatic frameworks for molecular recognition. ACS Central Science 6 (7):1082–1094. doi: 10.1021/acscentsci.0c00311.
  • Yu, Q., C. He, Q. Li, Y. Zhou, N. Duan, and S. Wu. 2020. Fluorometric determination of acetamiprid using molecularly imprinted upconversion nanoparticles. Mikrochimica Acta 187 (4):222. doi: 10.1007/s00604-020-4204-0.
  • Yu, S., B. Jia, N. Liu, D. Yu, S. Zhang, and A. Wu. 2021. Fumonisin B1 triggers carcinogenesis via HDAC/PI3K/Akt signalling pathway in human esophageal epithelial cells. Science of the Total Environment 787:147405. doi: 10.1016/j.scitotenv.2021.147405.
  • Zhai, W., T. You, X. Ouyang, and M. Wang. 2021. Recent progress in mycotoxins detection based on surface-enhanced Raman spectroscopy. Comprehensive Reviews in Food Science and Food Safety 20 (2):1887–1909. doi: 10.1111/1541-4337.12686.
  • Zhang, H. 2020. Molecularly imprinted nanoparticles for biomedical applications. Advanced Materials 32 (3):1806328. doi: 10.1002/adma.201806328.
  • Zhang, L., X.-W. Dou, C. Zhang, A. F. Logrieco, and M.-H. Yang. 2018. A review of current methods for analysis of mycotoxins in herbal medicines. Toxins 10 (2):65. doi: 10.3390/toxins10020065.
  • Zhang, W., Y. Han, X. Chen, X. Luo, J. Wang, T. Yue, and Z. Li. 2017. Surface molecularly imprinted polymer capped Mn-doped ZnS quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice. Food Chemistry 232:145–154. doi: 10.1016/j.foodchem.2017.03.156.
  • Zhang, X., G. Li, D. Wu, J. Liu, and Y. Wu. 2020. Recent advances on emerging nanomaterials for controlling the mycotoxin contamination: From detection to elimination. Food Frontiers 1 (4):360–381. doi: 10.1002/fft2.42.
  • Zhang, Y., G. Li, D. Wu, X. Li, Y. Yu, P. Luo, J. Chen, C. Dai, and Y. Wu. 2019. Recent advances in emerging nanomaterials based food sample pretreatment methods for food safety screening. TrAC Trends in Analytical Chemistry 121:115669. doi: 10.1016/j.trac.2019.115669.
  • Zhang, W., H. Xiong, M. Chen, X. Zhang, and S. Wang. 2017. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@ SiO2 for ultrasensitive detection of fumonisin B1. Biosensors & Bioelectronics 96:55–61.
  • Zhao, X., W. Wang, Y. Zhang, S. Wu, F. Li, and J. P. Liu. 2014. Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for Congo Red. Chemical Engineering Journal 250:164–174. doi: 10.1016/j.cej.2014.03.113.
  • Zheng, M. Z., J. L. Richard, and J. Binder. 2006. A review of rapid methods for the analysis of mycotoxins. Mycopathologia 161 (5):261–273. doi: 10.1007/s11046-006-0215-6.
  • Zhou, T., L. Ding, G. Che, W. Jiang, and L. Sang. 2019. Recent advances and trends of molecularly imprinted polymers for specific recognition in aqueous matrix: Preparation and application in sample pretreatment. TrAC Trends in Analytical Chemistry 114:11–28. doi: 10.1016/j.trac.2019.02.028.
  • Zhou, Q., and D. Tang. 2020. Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. TrAC Trends in Analytical Chemistry 124:115814. doi: 10.1016/j.trac.2020.115814.
  • Zhu, Y., L. Wu, H. Yan, Z. Lu, W. Yin, and H. Han. 2020. Enzyme induced molecularly imprinted polymer on SERS substrate for ultrasensitive detection of patulin. Analytica Chimica Acta 1101:111–119. doi: 10.1016/j.aca.2019.12.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.