504
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Advances in the control of lipid peroxidation in oil-in-water emulsions: kinetic approaches

ORCID Icon

References

  • Aliaga, C., F. Bravo-Moraga, D. Gonzalez-Nilo, S. Márquez, S. Lühr, G. Mena, and M. C. Rezende. 2016. Location of TEMPO derivatives in micelles: Subtle effect of the probe orientation. Food Chemistry 192:395–401. doi: 10.1016/j.foodchem.2015.07.036.
  • Aliaga, C., F. Celis, S. Lühr, and R. Oñate. 2015. TEMPO-attached pre-fluorescent probes based on pyridinium fluorophores. Journal of Fluorescence 25 (4):979–83. doi: 10.1007/s10895-015-1579-0.
  • Aliaga, C., and M. C. Rezende. 2014. EPR spectrum of a radical from a non typical antioxidant. Magnetic Resonance in Chemistry 52 (7):409–11. doi: 10.1002/mrc.4070.
  • Aliaga, C., P. Torres, and F. Silva. 2012. A simple method for the determination of the partitioning of nitroxide probes in microheterogeneous media. Magnetic Resonance in Chemistry: MRC 50 (12):779–83. doi: 10.1002/mrc.3871.
  • Almeida, J., S. Losada-Barreiro, M. Costa, F. Paiva-Martins, C. Bravo-Díaz, and L. S. Romsted. 2016. Interfacial concentrations of hydroxytyrosol and its lipophilic esters in intact olive oil-in-water emulsions: Effects of antioxidant hydrophobicity, surfactant concentration, and the oil-to-water ratio on the oxidative stability of the emulsions. Journal of Agricultural and Food Chemistry 64 (25):5274–83. doi: 10.1021/acs.jafc.6b01468.
  • Amézqueta, S., X. Subirats, E. Fuguet, M. Rosés, and C. Ràfols. 2020. Chapter 6 - Octanol-Water Partition Constant. In Liquid-phase extraction, ed C. F. Poole, 183–208. Amsterdam, Netherlands: Elsevier.
  • Amorati, R., M. C. Foti, and L. Valgimigli. 2013. Antioxidant activity of essential oils. Journal of Agricultural and Food Chemistry 61 (46):10835–47. doi: 10.1021/jf403496k.
  • Amorati, R., and L. Valgimigli. 2012. Modulation of the antioxidant activity of phenols by non-covalent interactions. Organic & Biomolecular Chemistry 10 (21):4147–58. doi: 10.1039/C2OB25174D.
  • Amorati, R., and L. Valgimigli. 2015. Advantages and limitations of common testing methods for antioxidants. Free Radical Research 49 (5):633–49. doi: 10.3109/10715762.2014.996146.
  • Andraos, J. 2008. The contributions of Solomon F. Acree (1875–1957) and the Centennial Anniversary of the discovery of the Acree–Curtin–Hammett Principle. Chemical Educator 13:170–8.
  • Aydin, I., and N. Gokoglu. 2014. Effects of temperature and time of freezing on lipid oxidation in anchovy (Engraulis encrasicholus) during frozen storage. European Journal of Lipid Science and Technology 116 (8):996–1001. doi: 10.1002/ejlt.201300450.
  • Badhani, B., N. Sharma, and R. Kakkar. 2015. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Advances 5 (35):27540–57. doi: 10.1039/C5RA01911G.
  • Balgavý, P., and F. Devínsky. 1996. Cut-off effects in biological activities of surfactants. Advances in Colloid and Interface Science 66:23–63. doi: 10.1016/0001-8686(96)00295-3.
  • Barclay, L. R. C., K. A. Baskin, K. A. Dakin, S. J. Locke, and M. R. Vinqvist. 1990. The antioxidant activities of phenolic antioxidants in free radical peroxidation of phospholipid membranes. Canadian Journal of Chemistry 68 (12):2258–69. doi: 10.1139/v90-348.
  • Barclay, L. R., and M. R. Vinqvist. 1994. Membrane peroxidation: Inhibition effects of water-soluble antioxidants on phospolipids of different charge types. Free Radical Biology and Medicine 16 (6):779–88. doi: 10.1016/0891-5849(94)90193-7.
  • Berthod, A., and S. Carda-Broch. 2004. Determination of liquid-liquid partition coefficients by separation methods. Journal of Chromatography A 1037 (1–2):3–14. doi: 10.1016/j.chroma.2004.01.001.
  • Berton, C., M. H. Ropers, M. Viau, and C. Genot. 2011. Contribution of the interfacial layer to the protection of emulsified lipids against oxidation. Journal of Agricultural and Food Chemistry 59 (9):5052–61. doi: 10.1021/jf200086n.
  • Berton-Carabin, C. C., M.-H. Ropers, and C. Genot. 2014. Lipid oxidation in oil-in-water emulsions: Involvement of the interfacial layer. Comprehensive Reviews in Food Science and Food Safety 13 (5):945–77. doi: 10.1111/1541-4337.12097.
  • Berton-Carabin, C. C., L. Sagis, and K. Schroën. 2018. Formation, structure, and functionality of interfacial layers in food emulsions. Annual Review of Food Science and Technology 9 (1):551–87. doi: 10.1146/annurev-food-030117-012405.
  • Bibette, J., F. Leal Calderon, and P. Poulin. 1999. Emulsions: Basic principles. Reports on Progress in Physics 62 (6):969–1033. doi: 10.1088/0034-4885/62/6/203.
  • Bondar, A.-N., and M. Joanne Lemieux. 2019. Reactions at Biomembrane Interfaces. Chemical Reviews 119 (9):6162–83. doi: 10.1021/acs.chemrev.8b00596.
  • Boyd, S. L., R. J. Boyd, and L. R. C. Barclay. 1990. A theoretical investigation of the structures and properties of peroxyl radicals. Journal of the American Chemical Society 112 (15):5724–30. doi: 10.1021/ja00171a008.
  • Bravo Díaz, C. 2011. Diazohydroxides, diazoethers and related species. In The chemistry of hydroxylamines, oximes and hydroxamic acids, ed. Zvi Rappoport and J. F. Liebman, 853. Chichester, UK: J. Wiley & Sons.
  • Bravo-Díaz, C., L. S. Romsted, C. Liu, S. Losada-Barreiro, M. J. Pastoriza-Gallego, X. Gao, Q. Gu, G. Krishnan, V. Sánchez-Paz, Y. Zhang, et al. 2015. To model chemical reactivity in heterogeneous emulsions, think homogeneous microemulsions. Langmuir: The ACS Journal of Surfaces and Colloids 31 (33):8961–79. doi: 10.1021/acs.langmuir.5b00112.
  • Bravo-Díaz, C., L. S. Romsted, S. Losada-Barreiro, and F. Paiva-Martins. 2017. Using a pseudophase model to determine AO distributions in emulsions: Why dynamic equilibrium matters. European Journal of Lipid Science and Technology 119 (12):1600277. doi: 10.1002/ejlt.201600277.
  • Bunton, C. A. 2006. The dependence of micellar rate effects upon reaction mechanism. Advances in Colloid and Interface Science 123–126:333–43.
  • Bunton, C. A., F. Nome, F. H. Quina, and L. S. Romsted. 1991. Ion binding and reactivity at charged aqueous interfaces. Accounts of Chemical Research 24 (12):357–64. doi: 10.1021/ar00012a001.
  • Bunton, C. A., and L. S. Romsted. 1999. Handbook of microemulsion science and technology, ed. P. Kumar, and K. L. Mittal. NY: Marcel-Dekker.
  • Bunton, C., J. Yao, and L. S. Romsted. 1997. Micellar Catalysis: A useful misnomer. Current Opinion in Colloid and Interface Science 2:622–8.
  • Calabrese, V., M. Perluigi, C. Cornelius, R. Coccia, F. D. Domenico, G. Pennisi, C. Cini, and A. T. Dinkova-Kostova. 2009. Phenolics in aging and neurodegenerative disorders. In Plant phenolics and human health, 427–51. Hoboken, NJ, USA: John Wiley & Sons, Inc.
  • Calder, P. C. 2015. Intravenous lipid emulsions. In World revies of nutrition and dietetics, ed. P. C. Calder, D. L. Waitzberg, and B. Koletzko, Vol. 112. Basel, Switzerland: Karger.
  • Calder, P. C., and G. C. Burdge. 2012. Chapter 1 - Fatty acids. In Bioactive lipids, ed A. Nicolaou and G. Kokotos, 1–36. Cambridge, UK: Woodhead Publishing.
  • Calder, P. C., D. L. Waitzberg, S. Klek, and R. G. Martindale. 2020. Lipids in parenteral nutrition: Biological aspects. Journal of Parenteral and Enteral Nutrition 44 (S1):21. doi: 10.1002/jpen.1756.
  • Castañeda-Arriaga, R., A. Pérez-González, M. Reina, J. R. Alvarez-Idaboy, and A. Galano. 2018. Comprehensive investigation of the antioxidant and pro-oxidant effects of phenolic compounds: A double-edged sword in the context of oxidative stress? The Journal of Physical Chemistry. B 122 (23):6198–214. doi: 10.1021/acs.jpcb.8b03500.
  • Cosgrove, J. P., D. F. Church, and W. A. Pryor. 1987. The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids 22 (5):299–304. doi: 10.1007/BF02533996.
  • Costa, M., J. Freiría-Gándara, S. Losada-Barreiro, F. Paiva-Martins, C. Aliaga, and C. Bravo-Díaz. 2021. Interfacial kinetics in olive oil-in-water nanoemulsions: Relationships between rates of initiation of lipid peroxidation, induction times and effective interfacial antioxidant concentrations. Journal of Colloid and Interface Science 604:248–59. doi: 10.1016/j.jcis.2021.06.101.
  • Costa, M., J. Freiría-Gándara, S. Losada-Barreiro, F. Paiva-Martins, and C. Bravo-Díaz. 2020. Effects of droplet size on the interfacial concentrations of antioxidants in fish and olive oil-in-water emulsions and nanoemulsions and on their oxidative stability. Journal of Colloid and Interface Science 562:352–62. doi: 10.1016/j.jcis.2019.12.011.
  • Costa, M., S. Losada-Barreiro, C. Bravo-Díaz, A. A. Vicente, L. S. Monteiro, and F. Paiva-Martins. 2020. Influence of AO chain length, droplet size and oil to water ratio on the distribution and on the activity of gallates in fish oil-in-water emulsified systems: Emulsion and nanoemulsion comparison. Food Chemistry 310 (125716):125716. doi: 10.1016/j.foodchem.2019.125716.
  • Costa, M., S. Losada-Barreiro, F. Paiva-Martins, and C. Bravo-Diaz. 2016. Optimizing the efficiency of antioxidants in emulsions by lipophilization: Tuning interfacial concentrations. RSC Advances 6 (94):91483–93. doi: 10.1039/C6RA18282H.
  • Costa, M., S. Losada-Barreiro, F. Paiva-Martins, and C. Bravo-Díaz. 2017. Physical evidence that the variations in the efficiency of homologous series of antioxidants in emulsions are a result of differences in their distribution. Journal of the Science of Food and Agriculture 97 (2):564–71. doi: 10.1002/jsfa.7765.
  • Costa, M., S. Losada-Barreiro, F. Paiva-Martins, and C. Bravo-Díaz. 2021. Unpublished results.
  • Costa, M., S. Losada-Barreiro, F. Paiva-Martins, and C. Bravo-Díaz. 2013. Effects of acidity, temperature and emulsifier concentration on the distribution of caffeic acid in stripped corn and olive oil-in-water emulsions. Journal of the American Oil Chemists’ Society 90 (11):1629–36. doi: 10.1007/s11746-013-2309-x.
  • Costa, M., S. Losada-Barreiro, F. Paiva-Martins, and C. Bravo-Díaz. 2021. Polyphenolic antioxidants in lipid emulsions: Partitioning effects and interfacial phenomena. Foods 10 (3):539. doi: 10.3390/foods10030539.
  • Costa, M., S. Losada-Barreiro, F. Paiva-Martins, C. Bravo-Díaz, and L. S. Romsted. 2015. A direct correlation between the antioxidant efficiencies of caffeic acid and its alkyl esters and their concentrations in the interfacial region of olive oil emulsions. The pseudophase model interpretation of the ‘‘cut-off’’ effect. Food Chemistry 175:233–42.
  • Costa, M., F. Paiva-Martins, S. Losada-Barreiro, and C. Bravo-Díaz. 2021. Modeling Chemical reactivity at the interfaces of emulsions: Effects of partitioning and temperature. Molecules 26 (15):4703. doi: 10.3390/molecules26154703.
  • Costa, M., Z. Sezgin-Bayindir, S. Losada-Barreiro, F. Paiva-Martins, L. Saso, and C. Bravo-Díaz. 2021. Polyphenols as antioxidants for extending food shelf-life and in the prevention of health diseases: Encapsulation and interfacial phenomena. Biomedicines 9 (12):1909. doi: 10.3390/biomedicines9121909.
  • Culler, M. D., R. Inchingolo, D. J. McClements, and E. A. Decker. 2021. Impact of polyunsaturated fatty acid dilution and antioxidant addition on lipid oxidation kinetics in oil/water emulsions. Journal of Agricultural and Food Chemistry 69 (2):750–5. doi: 10.1021/acs.jafc.0c06209.
  • da Rocha Pereira, R.,. D. Zanette, and F. Nome. 1990. Application of the pseudophase ion-exchange model to kinetics in microemulsions of anionic detergents. The Journal of Physical Chemistry 94 (1):356–61. doi: 10.1021/j100364a061.
  • Dai, F., W.-F. Chen, and B. Zhou. 2008. Antioxidant synergism of green tea polyphenols with α-tocopherol and l-ascorbic acid in SDS micelles. Biochimie 90 (10):1499–505. doi: 10.1016/j.biochi.2008.05.007.
  • Dar, A., Ahmad, C. Bravo-Diaz, N. Nazir, and L. S. Romsted. 2017. Chemical kinetic and chemical trapping methods: Unique approaches for determining respectively the antioxidant distributions and interfacial molarities of water, counter-anions, and other weakly basic nucleophiles in association colloids. Current Opinion in Colloid & Interface Science 32:84–93. doi: 10.1016/j.cocis.2017.09.001.
  • Das, P. K., and A. Chaudhuri. 1999. Are the interfacial basicities of aqueous cationic micelles and cationic reverse microemulsions different by orders of magnitude? Langmuir 15 (26):8771–5. doi: 10.1021/la990150r.
  • Decker, E. A., D. J. McClements, C. Bourlieu-Lacanal, E. Durand, M. C. Figueroa-Espinoza, J. Lecomte, and P. Villeneuve. 2017. Hurdles in predicting antioxidant efficacy in oil-in-water emulsions. Trends in Food Science & Technology 67 (Supplement C):183–94. doi: 10.1016/j.tifs.2017.07.001.
  • Denisov, E. T., and I. B. Afanasév. 2005. Oxidation and antioxidants in organic chemistry and biology. Boca Raton, FL: CRC Press.
  • Donkers, R. L., and D. G. Leaist. 1997. Diffusion of free radicals in solution. TEMPO, diphenylpicrylhydrazyl, and nitrosodisulfonate. The Journal of Physical Chemistry B 101 (3):304–8. doi: 10.1021/jp961957k.
  • Dziza, K., E. Santini, L. Liggieri, E. Jarek, M. Krzan, T. Fischer, and F. Ravera. 2020. Interfacial properties and emulsification of biocompatible liquid-liquid systems. Coatings 10 (4):397. doi: 10.3390/coatings10040397.
  • Elias, R. J., S. S. Kellerby, and E. A. Decker. 2008. Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition 48 (5):430–41. doi: 10.1080/10408390701425615.
  • Embuscado, M. E. 2015. Spices and herbs: Natural sources of antioxidants – a mini review. Journal of Functional Foods 18:811–9. doi: 10.1016/j.jff.2015.03.005.
  • Estévez, M., Z. Li, O. P. Soladoye, and T. Van-Hecke. 2017. Chapter two - Health risks of food oxidation. In Advances in food and nutrition research, ed F. Toldrá, 45–81. Cambridge, MA, USA: Academic Press.
  • Estévez, M., and Y. L. Xiong. 2021. Protein oxidation in foods: Mechanisms, consequences, and antioxidant solutions. Foods 10 (10):2346. doi: 10.3390/foods10102346.
  • Estévez, M., and Y. Xiong. 2019. Intake of oxidized proteins and amino acids and causative oxidative stress and disease: Recent scientific evidences and hypotheses. Journal of Food Science 84 (3):387–96. doi: 10.1111/1750-3841.14460.
  • Farhoosh, R. 2021. Critical kinetic parameters and rate constants representing lipid peroxidation as affected by temperature. Food Chemistry 340 (128137-128145). doi: 10.1016/j.foodchem.2020.128137.
  • Farhoosh, R. 2020. A reconsidered approach providing kinetic parameters and rate constants to analyze the oxidative stability of bulk lipid systems. Food Chemistry 327:127088. doi: 10.1016/j.foodchem.2020.127088.
  • Farooq, S., H. Z. Abdullah, and J. Weiss. 2021. A comprehensive review on polarity, partitioning, and interactions of phenolic antioxidants at oil–water interface of food emulsions. Comprehensive Reviews in Food Science and Food Safety, 20:1–28. doi: 10.1111/1541-4337.12792.
  • Fazary, A. E., and Y. Ju. 2008. Nonaqueous solution studies on the protonation equilibria of some phenolic acids. Journal of Solution Chemistry 37 (9):1305–19. doi: 10.1007/s10953-008-9305-z.
  • Ferguson, J. 1939. The use of chemical potentials as indices of toxicity. Proceedings of the Royal Society of London. Series B, Biological Sciences 127 (848):387–404.
  • Ferreira, I., M. Costa, S. Losada-Barreiro, F. Paiva-Martins, and C. Bravo-Díaz. 2018. Modulating the interfacial concentration of gallates to improve the oxidative stability of fish oil-in-water emulsions. Food Research International (Ottawa, ON) 112:192–8. doi: 10.1016/j.foodres.2018.06.007.
  • Fleming, E., and Y. Luo. 2021. Co-delivery of synergistic antioxidants from food sources for the prevention of oxidative stress. Journal of Agriculture and Food Research 3:100107. doi: 10.1016/j.jafr.2021.100107.
  • Foti, M. C. 2007. Antioxidant properties of phenols. The Journal of Pharmacy and Pharmacology 59 (12):1673–85. doi: 10.1211/jpp.59.12.0010.
  • Foti, M. C., C. Daquino, G. A. DiLabio, and K. U. Ingold. 2011. Kinetics of the oxidation of quercetin by 2,2-diphenyl-1-picrylhydrazyl (dpph•). Organic Letters 13 (18):4826–9. doi: 10.1021/ol2019086.
  • Frankel, E. 2005. Lipid oxidation. Bridgwater, England: The Oily Press, PJ Barnes & Associates.
  • Frankel, E. N. 1989. The antioxidant and nutritional effects of tocopherols, ascorbic acid and beta-carotene in relation to processing of edible oils. Bibliotheca Nutritio et Dieta (43):297–312. doi: 10.1159/000416714.
  • Frankel, E. N. 2001. Interfacial lipid oxidation and antioxidation. Journal of Oleo Science 50 (5):387–91. doi: 10.5650/jos.50.387.
  • Frankel, E. N., and J. W. Finley. 2008. How to standardize the multiplicity of methods to evaluate natural antioxidants. Journal of Agricultural and Food Chemistry 56 (13):4901–8. doi: 10.1021/jf800336p.
  • Frankel, E. N., S. W. Huang, J. Kanner, and J. B. German. 1994. Interfacial phenomena in the evaluation of antioxidants: Bulk oils vs emulsions. Journal of Agricultural and Food Chemistry 42 (5):1054–9. doi: 10.1021/jf00041a001.
  • Frankel, E. N., and A. S. Meyer. 2000. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. Journal of the Science of Food and Agriculture 80 (13):1925–41. doi: 10.1002/1097-0010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-4.
  • Freiría-Gándara, J., S. Losada-Barreiro, F. Paiva-Martins, and C. Bravo-Díaz. 2018a. Differential partitioning of bioantioxidants in edible oil–water and octanol–water systems: Linear free energy relationships. Journal of Chemical & Engineering Data 63 (8):2999–3007. doi: 10.1021/acs.jced.8b00258.
  • Freiría-Gándara, J., S. Losada-Barreiro, F. Paiva-Martins, and C. Bravo-Díaz. 2018b. Enhancement of the antioxidant efficiency of gallic acid derivatives in intact fish oil-in-water emulsions through optimization of their interfacial concentrations. Food & Function 9 (8):4429–42. doi: 10.1039/c8fo00977e.
  • Friberg, S. E., and K. Larsson. 1997. Food Emulsions. NY: Marcel Dekker.
  • Galan, A., S. Losada-Barreiro, and C. Bravo-Díaz. 2016. A physicochemical study of the effects of acidity on the distribution and antioxidant efficiency of trolox in olive oil-in-water emulsions. Chemphyschem : a European Journal of Chemical Physics and Physical Chemistry 17 (2):296–304. doi: 10.1002/cphc.201500882.
  • Gao, X., C. Bravo-Díaz, and L. S. Romsted. 2013. Interpreting ion-specific effects on the reduction of an arenediazonium Ion by t-butylhydroquinone (TBHQ) using the pseudophase kinetic model in emulsions prepared with a zwitterionic sulfobetaine surfactant. Langmuir 29 (16):4928–33. doi: 10.1021/la400793g.
  • Garcia-Rio, L., J. R. Leis, J. C. Mejuto, and M. Perez-Lorenzo. 2007. Microemulsions as microreactors in physical organic chemistry. Pure and Applied Chemistry 79 (6):1111–23. doi: 10.1351/pac200779061111.
  • Garti, N. 2003. Microemulsions as microreactors for food applications. Current Opinion in Colloid and Interface Science 8 (2):197–211. doi: 10.1016/S1359-0294(03)00022-0.
  • Ghosh, N., A. Das, S. Chaffee, S. Roy, and C. K. Sen. 2018. Chapter 4 - Reactive oxygen species, oxidative damage and cell death. In Immunity and inflammation in health and disease, ed S. Chatterjee, W. Jungraithmayr and D. Bagchi, 45–55. Academic Press.
  • Goddard, J. M., D. J. McClements, and E. A. Decker. 2012. Innovative technologies in the control of lipid oxidation. Lipid Technology 24 (12):275–7. doi: 10.1002/lite.201200242.
  • Gu, Q., C. Bravo-Díaz, and L. S. Romsted. 2013. Using the pseudophase kinetic model to interpret chemical reactivity in ionic emulsions: Determining antioxidant partition constants and interfacial rate constants. Journal of Colloid and Interface Science 400:41–8. doi: 10.1016/j.jcis.2013.02.024.
  • Gülçin, İ. 2012. Antioxidant activity of food constituents: An overview. Archives of Toxicology 86 (3):345–91. doi: 10.1007/s00204-011-0774-2.
  • Gunaseelan, K., L. S. Romsted, E. González-Romero, and C. Bravo-Díaz. 2004. Determining partition constants of polar organic molecules between the oil/interfacial and water/interfacial regions in emulsions: A combined electrochemical and spectrometric method. Langmuir: The ACS Journal of Surfaces and Colloids 20 (8):3047–55. doi: 10.1021/la0354279.
  • Gunaseelan, K., L. S. Romsted, M. J. Pastoriza-Gallego, E. González-Romero, and C. Bravo-Díaz. 2006. Determining alpha-tocopherol distributions between the oil, water, and interfacial regions of macroemulsions: novel applications of electroanalytical chemistry and the pseudophase kinetic model. Advances in Colloid and Interface Science 123–126:303–11. doi: 10.1016/j.cis.2006.05.007.
  • Haahr, A.-M., and C. Jacobsen. 2008. Emulsifier type, metal chelation and pH affect oxidative stability of n-3-enriched emulsions. European Journal of Lipid Science and Technology 110 (10):949–61. doi: 10.1002/ejlt.200800035.
  • Hendry, D. G., and G. A. Russell. 1964. Solvent effects in the reactions of free radicals and atoms. IX. Effect of solvent polarity on the reactions of peroxy radicals. Journal of the American Chemical Society 86 (12):2368–71. doi: 10.1021/ja01066a014.
  • Hidalgo, F. J., and R. Zamora. 2016. Amino acid degradations produced by lipid oxidation products. Critical Reviews in Food Science and Nutrition 56 (8):1242–52. doi: 10.1080/10408398.2012.761173.
  • Horn, A. F., N. S. Nielsen, and C. Jacobsen. 2012. Iron-mediated lipid oxidation in 70% fish oil-in-water emulsions: Effect of emulsifier type and pH. International Journal of Food Science & Technology 47 (5):1097. doi: 10.1111/j.1365-2621.2012.02946.x.
  • Huang, S. W., E. N. Frankel, R. Aeschbach, and J. B. German. 1997. Partition of selected antioxidants in corn oil-water model systems. Journal of Agricultural and Food Chemistry 45 (6):1991–4. doi: 10.1021/jf9701695.
  • Ingold, K. U. 1961. Inhibition of the autoxidation of organic substances in the liquid phase. Chemical Reviews 61 (6):563–89. doi: 10.1021/cr60214a002.
  • Ingold, K. U., and D. A. Pratt. 2014. Advances in radical-trapping antioxidant chemistry in the 21st Century: A kinetics and mechanisms perspective. Chemical Reviews 114 (18):9022–46. doi: 10.1021/cr500226n.
  • Jacobsen, C. 2016. Chapter 8 - Oxidative stability and shelf life of food emulsions. In Oxidative stability and shelf life of foods containing oils and fats, ed M. Hu and C. Jacobsen, 287–312. London, UK: AOCS Press.
  • Jacobsen, C., K. Schwarz, H. Stöckmann, A. S. Meyer, and J. Adler-Nissen. 1999. Partitioning of selected antioxidants in mayonnaise. Journal of Agricultural and Food Chemistry 47 (9):3601–10. doi: 10.1021/jf990097c.
  • Jadhav, S. J., S. S. Nimbalkar, A. D. Kulkarni, and D. L. Madhavi. 1996. Lipid oxidation in biological and food systems. In Food antioxidants, technological, toxicological and health perspectives, ed. S. S. Deshpande, D. L. Madhavi, and D. K. Salunkhe. New York: Marcell Dekker, Inc.
  • Jakobtorweihen, S., A. C. Zuniga, T. Ingram, T. Gerlach, F. J. Keil, and I. Smirnova. 2014. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic. The Journal of Chemical Physics 141 (4):045102. doi: 10.1063/1.4890877.
  • Jodko-Piórecka, J., J. Cedrowski, and G. Litwinienko. 2018. Physico-chemical principles of antioxidant action, including solvent and matrix dependence and interfacial phenomena. In Measurement of antioxidant activity & capacity: Recent trends and Applications, ed. R. Apak, E. Capanoglu, and F. Shahidi, 225–72. Oxford, UK: John Wiley & Sons.
  • Kamal-Eldin, A., and D. B. Min. 2008. Lipid oxidation pathways; V. 2. Translated by Afaf By: Kamal-Eldin, David B. Min, Editors, Publisher, AOCS Press and Ill. Champaign. Edited by A. Kamal-Eldin and D. B. Min. Champaign, IL: AOCS Press.
  • Kancheva, V., and S. Angelova. 2017. Synergistic effects of antioxidant composition during inhibited lipid autooxidation. In Lipid peroxidation: Inhibition, effects and mechanisms, ed. A. Catalá. USA, NY: Nova Science Pub.
  • Kancheva, V. D., and O. T. Kasaikina. 2012. Lipid oxidation in homogeneous and micro-heterogeneous media in presence of prooxidants, antioxidants and surfactants. In Lipid peroxidation, ed. A. Catala, Ch. 02. Rijeka: InTech.
  • Kancheva, V. D., A. K. Slavova-Kazakova, S. E. Angelova, P. Kumar, S. Malhotra, B. K. Singh, L. Saso, A. K. Prasad, and V. S. Parmar. 2018. Protective effects of new antioxidant compositions of 4-methylcoumarins and related compounds with dl-α-tocopherol and l-ascorbic acid. Journal of the Science of Food and Agriculture 98 (10):3784–94. doi: 10.1002/jsfa.8892.
  • Kehrer, J. P., J. D. Robertson, and C. V. Smith. 2010. 1.14 - Free radicals and reactive oxygen species. In Comprehensive toxicology, 2nd ed, ed. C. A. McQueen, 277–307. Oxford: Elsevier.
  • Khan, M. N. 2007. Micellar catalysis. In Surfactant science, ed A. T. Hubbard. Boca Raton, FL: CRC Press.
  • Kim, J. Y., B. Ra Yi, C. Lee, S.-Y. Gim, M.-J. Kim, and J. Lee. 2016. Effects of pH on the rates of lipid oxidation in oil–water system. Applied Biological Chemistry 59 (2):157–61. doi: 10.1007/s13765-015-0146-3.
  • Kiokias, S., M. H. Gordon, and V. Oreopoulou. 2017. Effects of composition and processing variables on the oxidative stability of protein-based and oil-in-water food emulsions. Critical Reviews in Food Science and Nutrition 57 (3):549–58. doi: 10.1080/10408398.2014.893503.
  • Konopko, A., J. Kusio, and G. Litwinienko. 2019. Antioxidant activity of metal nanoparticles coated with tocopherol-like residues—The importance of studies in homo- and heterogeneous systems. Antioxidants 9 (1):5. doi: 10.3390/antiox9010005.
  • Kumar, N., and A. Mandal. 2018. Thermodynamic and physicochemical properties evaluation for formation and characterization of oil-in-water nanoemulsion. Journal of Molecular Liquids 266:147–59. doi: 10.1016/j.molliq.2018.06.069.
  • Laguerre, M., C. Bayrasy, J. Lecomte, B. Chabi, E. A. Decker, C. Wrutniak-Cabello, G. Cabello, and P. Villeneuve. 2013. How to boost antioxidants by lipophilization? Biochimie 95 (1):20–7. doi: 10.1016/j.biochi.2012.07.018.
  • Laguerre, M., C. Bayrasy, A. Panya, J. Weiss, D. J. McClements, J. Lecomte, E. A. Decker, and P. Villeneuve. 2015. What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox. Critical Reviews in Food Science and Nutrition 55 (2):183–201. doi: 10.1080/10408398.2011.650335.
  • Laguerre, M., A. Bily, and S. Birtić. 2020. Chapter 7 - Lipid oxidation in food. In Lipids and edible oils, ed. C. M. Galanakis, 243–87. Academic Press.
  • Laguerre, M., A. Bily, M. Roller, and S. Birtić. 2017. Mass transport phenomena in lipid oxidation and antioxidation. Annual Review of Food Science and Technology 8 (1):391–411. doi: 10.1146/annurev-food-030216-025812.
  • Laguerre, M., E. A. Decker, J. Lecomte, and P. Villeneuve. 2010. Methods for evaluating the potency and efficacy of antioxidants. Current Opinion in Clinical Nutrition and Metabolic Care 13 (5):518–25. doi: 10.1097/MCO.0b013e32833aff12.
  • Laguerre, M. M., L. J. López-Giraldo, J. Lecomte, M. J. Figueroa-Espinoza, B. Baréa, J. Weiss, E. A. Decker, and P. Villeneuve. 2010. Relationship between hydrophobicity and antioxidant ability of “phenolipids” in emulsion: A parabolic effect of the chain length of rosmarinate esters. Journal of Agricultural and Food Chemistry 58 (5):2869–76. doi: 10.1021/jf904119v.
  • Laguerre, M., L. J. López-Giraldo, J. Lecomte, M. J. Figueroa-Espinoza, B. Baréa, J. Weiss, E. A. Decker, and P. Villeneuve. 2009. Chain length affects antioxidant properties of chlorogenate esters in emulsion: The cut-off theory behind the polar paradox. Journal of Agricultural and Food Chemistry 57 (23):11335–42. doi: 10.1021/jf9026266.
  • Laguerre, M., A.-D. M. Sørensen, C. Bayrasy, J. Lecomte, C. Jacobsen, E. A. Decker, and P. Villeneuve. 2013. CHAPTER 8 - Role of hydrophobicity on antioxidant activity in lipid dispersions: From the polar paradox to the cut-off theory. In Lipid oxidation, ed. A. Logan, U. Nienaber and X. Pan, 261–96. Urbana, IL, USA: AOCS Press.
  • Laguerre, M., M. Tenon, A. Bily, and S. Birtić. 2020. Toward a spatiotemporal model of oxidation in lipid dispersions: A hypothesis-driven review. European Journal of Lipid Science and Technology 122 (3):1900209. doi: 10.1002/ejlt.201900209.
  • Laidler, K. J. 1987. Chemical kinetics. 3rd ed. USA, NY: Harper Collins Pub.
  • Lei, X., Z. Qin, B. Ye, Y. Wu, and L. Liu. 2022. Effect of pH on lipid oxidation mediated by hemoglobin in washed chicken muscle. Food Chemistry 372:131253. doi: 10.1016/j.foodchem.2021.131253.
  • Leo, A. J. 2002. Octanol/water partition coefficients. In Encyclopedia of computational chemistry. USA, NY: John Wiley & Sons, Ltd.
  • Leo, A., C. Hansch, and D. Elkins. 1971. Partition coefficients and their uses. Chemical Reviews 71 (6):525–616. doi: 10.1021/cr60274a001.
  • Li, B., and D. A. Pratt. 2015. Methods for determining the efficacy of radical-trapping antioxidants. Free Radical Biology & Medicine 82:187–202. doi: 10.1016/j.freeradbiomed.2015.01.020.
  • Lisete-Torres, P., S. Losada-Barreiro, H. Albuquerque, V. Sánchez-Paz, F. Paiva-Martins, and C. Bravo-Díaz. 2012. Distribution of hydroxytyrosol and hydroxytyrosol acetate in olive oil emulsions and their antioxidant efficiency. Journal of Agricultural and Food Chemistry 60 (29):7318–25. doi: 10.1021/jf301998s.
  • Litwinienko, G., and K. U. Ingold. 2007. Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Accounts of Chemical Research 40 (3):222–30. doi: 10.1021/ar0682029.
  • Litwinienko. 2005. Analysis of lipid oxidation by differential scanning calorimetry. In Analysis of Lipid Oxidation, eds. G., A. Kamal-Eldin, and J. Pokorny. Champaiggn, IL, USA: Taylor & Francis.
  • Liu, X., B. Testa, and A. Fahr. 2011. Lipophilicity and its relationship with passive drug permeation. Pharmaceutical Research 28 (5):962–77. doi: 10.1007/s11095-010-0303-7.
  • López de Arbina, A., S. Losada-Barreiro, M. C. Rezende, M. Vidal, and C. Aliaga. 2019. The location of amphiphobic antioxidants in micellar systems: The diving-swan analogy. Food Chemistry 279:288–93. doi: 10.1016/j.foodchem.2018.12.020.
  • Losada-Barreiro, S., C. Bravo Díaz, F. P. Martins, and L. S. Romsted. 2013. Maxima in antioxidant distributions and efficiencies with increasing hydrophobicity of gallic acid and its alkyl esters. The pseudophase model interpretation of the “cut-off effect”. Journal of Agricultural and Food Chemistry 61 (26):6533–43. doi: 10.1021/jf400981x.
  • Losada-Barreiro, S., and C. Bravo-Díaz. 2017. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. European Journal of Medicinal Chemistry 133:379–402. doi: 10.1016/j.ejmech.2017.03.061.
  • Losada-Barreiro, S., C. Bravo-Díaz, and F. Paiva-Martins. 2021. Why encapsulate antioxidants in emulsion-based systems, where they are located, and how location affects their efficiency. In Emulsion-based encapsulation of antioxidants, ed. M. A. Aboudzadeh. Cham, Switzerland: Springer Nature.
  • Losada-Barreiro, S., V. Sánchez Paz, C. Bravo Díaz, F. P. Martins, and L. S. Romsted. 2012. Temperature and emulsifier concentration effects on gallic acid distribution in a model food emulsion. Journal of Colloid and Interface Science 370 (1):73–9. doi: 10.1016/j.jcis.2011.12.057.
  • Losada-Barreiro, S., V. Sánchez-Paz, and C. Bravo-Díaz. 2015. Transfer of antioxidants at the interfaces of model food emulsions: Distributions and thermodynamic parameters. Organic & Biomolecular Chemistry 13 (3):876–85. doi: 10.1039/c4ob02058h.
  • Losada-Barreiro, S. 2009. PhD. Thesis., Universidad de Vigo. Facultad de Química, 36310 Vigo, Spain.
  • Loureiro, D. R. P., J. X. Soares, D. Lopes, T. Macedo, D. Yordanova, S. Jakobtorweihen, C. Nunes, S. Reis, M. M. M. Pinto, and C. M. M. Afonso. 2018. Accessing lipophilicity of drugs with biomimetic models: A comparative study using liposomes and micelles. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 115:369–80. doi: 10.1016/j.ejps.2018.01.029.
  • Lu, F. S. H., N. S. Nielsen, C. P. Baron, and C. Jacobsen. 2017. Marine phospholipids: The current understanding of their oxidation mechanisms and potential uses for food fortification. Critical Reviews in Food Science and Nutrition 57 (10):2057–70. doi: 10.1080/10408398.2014.925422.
  • Lucarini, M., and G. F. Pedulli. 2010. Free radical intermediates in the inhibition of the autoxidation reaction. Chemical Society Reviews 39 (6):2106–19. doi: 10.1039/B901838G.
  • Lund, M. N., M. Heinonen, C. P. Baron, and M. Estévez. 2011. Protein oxidation in muscle foods: A review. Molecular Nutrition & Food Research 55 (1):83–95. doi: 10.1002/mnfr.201000453.
  • Malassagne-Bulgarelli, N., and K. M. McGrath. 2009. Dynamics of oil transfer in oil-in-water emulsions. Soft Matter 5 (23):4804–13. doi: 10.1039/b912742a.
  • Malassagne-Bulgarelli, N., and K. M. McGrath. 2013. Emulsion ageing: Effect on the dynamics of oil exchange in oil-in-water emulsions. Soft Matter 9:48–59.
  • Maldonado-Valderrama, J., T. del Castillo-Santaella, M. J. Gálvez-Ruiz, J. A. Holgado-Terriza, and M. Á. Cabrerizo-Vílchez. 2021. Chapter 1 - Structure and functionality of interfacial layers in food emulsions. In Food structure and functionality, ed. C. M. Galanakis, 1–22. London, UK: Academic Press.
  • Mancuso, J. R., D. J. McClements, and E. A. Decker. 1999. The effects of surfactant type, pH, and chelators on the oxidation of salmon oil-in-water emulsions. Journal of Agricultural and Food Chemistry 47 (10):4112–6. doi: 10.1021/jf990203a.
  • Martindale, R. G., D. Berlana, J. I. Boullata, W. Cai, P. C. Calder, G. H. Deshpande, D. Evans, A. Garcia‐de‐Lorenzo, O. J. Goulet, A. Li, et al. 2020. Summary of proceedings and expert consensus statements from the international summit “lipids in parenteral nutrition. Journal of Parenteral and Enteral Nutrition 44 (S1):S7–S20. doi: 10.1002/jpen.1746.
  • Martinez-Aranda, N., N. Losada-Barreiro, C. Bravo-Díaz, and L. S. Romsted. 2014. Influence of temperature on the distribution of catechin in corn oil-in-water emulsions and some relevant thermodynamic parameters. Food Biophysics: 47 (9):380–388. doi: 10.1007/s11483-014-9332-9.
  • McClements, D. J. 2005. Food emulsions. Boca Raton, FL: CRC Press.
  • McClements, D. J. 2007. Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition 47 (7):611–49. doi: 10.1080/10408390701289292.
  • McClements, D. J. 2015. Food emulsions, principles, practices and techniques. Boca Raton, FL: CRC Press.
  • McClements, D. J. 2018. Enhanced delivery of lipophilic bioactives using emulsions: A review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility. Food & Function 9 (1):22–41. doi: 10.1039/C7FO01515A.
  • McClements, D. J., and S. M. Jafari. 2018. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science 251:55–79. doi: 10.1016/j.cis.2017.12.001.
  • McClements, D. J., and J. Rao. 2011. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition 51 (4):285–330. doi: 10.1080/10408398.2011.559558.
  • Mei, L., D. J. McClements, J. Wu, and E. A. Decker. 1998. Iron-catalyzed lipid oxidation in emulsion as affected by surfactant, pH and NaCl. Food Chemistry 61 (3):307–12. doi: 10.1016/S0308-8146(97)00058-7.
  • Meireles, M., S. Losada-Barreiro, M. Costa, F. Paiva-Martins, C. Bravo-Díaz, and L. S. Monteiro. 2019. Control of antioxidant efficiency of chlorogenates in emulsions: Modulation of antioxidant interfacial concentrations. Journal of the Science of Food and Agriculture 99 (8):3917–25. doi: 10.1002/jsfa.9615.
  • Mitrus, O., M. Żuraw, S. Losada-Barreiro, C. Bravo-Díaz, and F. Paiva-Martins. 2019. Targeting antioxidants to interfaces: Control of the oxidative stability of lipid-based emulsions. Journal of Agricultural and Food Chemistry 67 (11):3266–74. doi: 10.1021/acs.jafc.8b06545.
  • Mollica, F., M. Lucarini, C. Passerini, C. Carati, S. Pavoni, L. Bonoldi, and R. Amorati. 2020. Effect of antioxidants on high-temperature stability of renewable bio-oils revealed by an innovative method for the determination of kinetic parameters of oxidative reactions. Antioxidants 9 (5):399. doi: 10.3390/antiox9050399.
  • Mozuraityte, R., V. Kristinova, and T. Rustad. 2016. Oxidation of food components. In Encyclopedia of food and health, 186–90. Oxford: Academic Press.
  • Muschiolik, G., and E. Dickinson. 2017. Double emulsions relevant to food systems: Preparation, stability, and applications. Comprehensive Reviews in Food Science and Food Safety 16 (3):532–55. doi: 10.1111/1541-4337.12261.
  • Neves, M. A., Z. Wang, I. Kobayashi, and M. Nakajima. 2017. Assessment of oxidative stability in fish oil-in-water emulsions: Effect of emulsification process, droplet size and storage temperature. Journal of Food Process Engineering 40 (1):e12316. doi: 10.1111/jfpe.12316.
  • Nieva-Echevarría, B., E. Goicoechea, and M. D. Guillén. 2020. Food lipid oxidation under gastrointestinal digestion conditions: A review. Critical Reviews in Food Science and Nutrition 60 (3):461–78. doi: 10.1080/10408398.2018.1538931.
  • ÓBrien, J., and C. Shortt. 2004. Handbook of dairy products. Boca Raton, FL: CRC Press.
  • Oehlke, K., V. Garamus, A. Heins, H. Stöckman, and K. Schwarz. 2008. The partitioning of emulsifiers in o/w emulsions: A comparative study of SANS, ultrafiltration and dialysis. Journal of Colloid and Interface Science 322 (1):294–303. doi: 10.1016/j.jcis.2008.02.042.
  • Oehlke, K., A. Heins, H. Stöckmann, and K. Schwarz. 2010. Impact of emulsifier microenvironments on acid-base equilibrium and activity of antioxidants. Food Chemistry 118 (1):48–55. doi: 10.1016/j.foodchem.2009.04.078.
  • Omata, Y., Y. Saito, Y. Yoshida, B. S. Jeong, R. Serwa, T. G. Nam, N. A. Porter, and E. Niki. 2010. Action of 6-amino-3-pyridinols as novel antioxidants against free radicals and oxidative stress in solution, plasma, and cultured cells. Free Radical Biology & Medicine 48 (10):1358–65. doi: 10.1016/j.freeradbiomed.2010.02.018.
  • Osborn, H. T., and C. C. Akoh. 2004. Effect of emulsifier type, droplet size, and oil concentration on lipid oxidation in structured lipid-based oil-in-water emulsions. Food Chemistry 84 (3):451–6. doi: 10.1016/S0308-8146(03)00270-X.
  • Ozkorucuklu, S. P., J. L. Beltrán, G. Fonrodona, D. Barrón, G. Alsancak, and J. Barbosa. 2009. Determination of dissociation constants of some hydroxylated benzoic and cinnamic acids in water from mobility and spectroscopic data obtained by CE-DAD. Journal of Chemical & Engineering Data 54 (3):807–11. doi: 10.1021/je800595x.
  • Panya, A., M. Laguerre, C. Bayrasy, J. Lecomte, P. Villeneuve, D. McClements, and E. A. Decker. 2012. An investigation of the versatile antioxidant mechanisms of action of rosmarinate alkyl esters in oil-in-water emulsions. Journal of Agricultural and Food Chemistry 60 (10):2692–700. doi: 10.1021/jf204848b.
  • Papuc, C., G. V. Goran, C. N. Predescu, V. Nicorescu, and G. Stefan. 2017. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Comprehensive Reviews in Food Science and Food Safety 16 (6):1243–68. doi: 10.1111/1541-4337.12298.
  • Pastoriza-Gallego, M. J., S. Losada-Barreiro, and C. Bravo Díaz. 2012. Effects of acidity and emulsifier concentration on the distribution of Vitamin C in a model food emulsion. Journal of Physical Organic Chemistry 25 (11):908–15. doi: 10.1002/poc.2949.
  • Pastoriza-Gallego, M. J., V. Sánchez-Paz, S. Losada-Barreiro, C. Bravo-Diaz, K. Gunaseelan, and L. S. Romsted. 2009. Effects of temperature and emulsifier concentration on a-tocopherol distribution in a stirred, fluid, emulsion. Thermodynamics of a-tocopherol transfer between the oil and interfacial regions. Langmuir 25 (5):2646–53. doi: 10.1021/la803224j.
  • Pekkarinen, S. S., H. Stöckmann, K. Schwarz, I. M. Heinonen, and A. I. Hopia. 1999. Antioxidant activity and partitioning of phenolic acids in bulk and emulsified methyl linoleate. Journal of Agricultural and Food Chemistry 47 (8):3036–43. doi: 10.1021/jf9813236.
  • Pillai, V., and D. O. Shah. 1996. Reaction kinetics in water-in-oil microemulsions. In Dynamic properties of interfaces and association structures, ed V. Pillai, and D. O. Shah, 156–65. Illinois, USA: AOC Press.
  • Pinchuk, I., and D. Lichtenberg. 2002. The mechanism of action of antioxidants against lipoprotein peroxidation, evaluation based on kinetic experiments. Progress in Lipid Research 41 (4):279–314. doi: 10.1016/s0163-7827(01)00026-1.
  • Pinchuk, I., and D. Lichtenberg. 2014. Analysis of the kinetics of lipid peroxidation in terms of characteristic time-points. Chemistry and Physics of Lipids 178:63–76. doi: 10.1016/j.chemphyslip.2013.12.001.
  • Pinchuk, I., and D. Lichtenberg. 2016. The effect of compartmentalization on the kinetics of transition metal ions-induced lipoprotein peroxidation. Chemistry and Physics of Lipids 195:39–46. doi: 10.1016/j.chemphyslip.2015.11.004.
  • Pinchuk, I., H. Shoval, Y. Dotan, and D. Lichtenberg. 2012. Evaluation of antioxidants: Scope, limitations and relevance of assays. Chemistry and Physics of Lipids 165 (6):638–47. doi: 10.1016/j.chemphyslip.2012.05.003.
  • Porter, W. L. 1980. Recent trends in food applications of antioxidants, autooxidation in foods and biological systems. New York: Plenum Press.
  • Porter, W. L. 1993. Paradoxical behavior of antioxidants in food and in biological systems. In Antioxidants: Chemical, physiological, nutritional and toxicological aspects. Princeton, NJ: Priceton Scientific.
  • Prior, R. L., X. Wu, and K. Schaich. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry 53 (10):4290–302. doi: 10.1021/jf0502698.
  • Pryor, W. A., J. A. Cornicelli, L. J. Devall, B. Tait, B. K. Trivedi, D. T. Witiak, and M. Wu. 1993. A rapid screening test to determine the antioxidant potencies of natural and synthetic antioxidants. The Journal of Organic Chemistry 58 (13):3521–32. doi: 10.1021/jo00065a013.
  • Qiu, X., C. Jacobsen, P. Villeneuve, E. Durand, and A.-D M. Sørensen. 2017. Effects of different lipophilized ferulate esters in fish oil-enriched milk: Partitioning, interaction, protein, and lipid oxidation. Journal of Agricultural and Food Chemistry 65 (43):9496–505. doi: 10.1021/acs.jafc.7b02994.
  • Quina, F. H. 2013. Dynamics and prototropic reactivity of electronically excited states in simple surfactant aggregates. Current Opinion in Colloid and Interface Science 18 (1):35–9. doi: 10.1016/j.cocis.2012.12.005.
  • Raimúndez-Rodríguez, E. A., S. Losada-Barreiro, and C. Bravo-Díaz. 2019. Enhancing the fraction of antioxidants at the interfaces of oil-in-water emulsions: A kinetic and thermodynamic analysis of their partitioning. Journal of Colloid and Interface Science 555:224–33. doi: 10.1016/j.jcis.2019.07.085.
  • Raman, M., A. Almutairdi, L. Mulesa, C. Alberda, C. Beattie, and L. Gramlich. 2017. Parenteral nutrition and lipids. Nutrients 9 (4):388–49. doi: 10.3390/nu9040388.
  • Richards, M. P., R. Aranda, C. He, and G. N. Phillips. 2009. Effect of pH on structural changes in perch hemoglobin that can alter redox stability and heme affinity. Journal of Aquatic Food Product Technology 18 (4):416–23. doi: 10.1080/10498850903223598.
  • Richards, M. P., W. Chaiyasit, D. J. McClements, and E. A. Decker. 2002. Ability of Surfactant micelles to alter the partitioning of phenolic antioxidants in oil-in-water emulsions. Journal of Agricultural and Food Chemistry 50 (5):1254–9. doi: 10.1021/jf011324p.
  • Říha, M., J. Karlíčková, T. Filipský, K. Macáková, L. Rocha, P. Bovicelli, I. P. Silvestri, L. Saso, L. Jahodář, R. Hrdina, et al. 2014. In vitro evaluation of copper-chelating properties of flavonoids. RSC Advance 4 (62):32628–38. doi: 10.1039/C4RA04575K.
  • Rodis, P. S., V. T. Karathanos, and A. Mantzavinou. 2002. Partitioning of olive oil antioxidants between oil and water phases. Journal of Agricultural and Food Chemistry 50 (3):596–601. doi: 10.1021/jf010864j.
  • Roleira, F. M. F., E. J. Tavares-da-Silva, C. L. Varela, S. C. Costa, T. Silva, J. Garrido, and F. Borges. 2015. Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chemistry 183:235–58. doi: 10.1016/j.foodchem.2015.03.039.
  • Romsted, L. S. 1984. Micellar effects on reaction rates and equilibria. In Surfactants in solution, ed. K. L. Mittal, and J. Lindman. New York: Plenum Press.
  • Romsted, L. S. 2012. Introduction to surfactant self-assembly. In Supramolecular chemistry: From molecules to nanomaterials, ed. P. A. Gale, and J. W. Steed, 181–203. New York: J. Wiley & Sons Ltd.
  • Romsted, L. S., and C. Bravo-Díaz. 2013. Modelling chemical reactivity in emulsions. Current Opinion in Colloid and Interface Science 18 (1):3–14. doi: 10.1016/j.cocis.2012.11.001.
  • Ross, L., C. Barclay, and M. R. Vinqvist. 2003. Phenols as antioxidants. In The chemistry of phenols, ed. Z. Rappoport. West Sussex, England: J. Wiley.
  • Salvia-Trujillo, L., R. Soliva-Fortuny, M. Alejandra Rojas-Graü, D. J. McClements, and O. Martín-Belloso. 2017. Edible nanoemulsions as carriers of active ingredients: A review. Annual Review of Food Science and Technology 8 (1):439–66. doi: 10.1146/annurev-food-030216-025908.
  • Sánchez-Paz, V., M. J. Pastoriza-Gallego, S. Losada-Barreiro, C. Bravo-Diaz, K. Gunaseelan, and L. S. Romsted. 2008. Quantitative determination of alpha-tocopherol distribution in a tributyrin/Brij 30/water model food emulsion. Journal of Colloid and Interface Science 320 (1):1–8. doi: 10.1016/j.jcis.2007.12.018.
  • Sánchez-Paz, V. 2009. PhD. Thesis, Universidad de Vigo. Facultad de Química, 36310 Vigo, Spain.
  • Sangster, J. 1997. Octanol-water partition coefficients, fundamentals and physcial chemistry. Chichester: J. Wiley & Sons.
  • Savelli, G., R. Germani, and L. Brinchi. 2001. Reactivity control by aqueous self-assembling systems. In Reactions and synthesis in surfactant systems, ed. J. Texter. New York: Marcel-Dekker.
  • Schaich, K. M. 2005. Lipid oxidation: Theoretical aspects. In Bailey’s industrial oil and fat products, ed. F. Shahidi, 269–355. New York: J. Wiley & Sons.
  • Schaich, K. M. 2020. Lipid oxidation: New perspectives on an old reaction. In Bailey’s industrial oil and fat products, ed. F. Shahidi, 7th ed., 1–72. USA, NY: John Wiley & Sons.
  • Schaich, K. M., F. Shahidi, Y. Zhong, and N. A. Michael Eskin. 2013. Chapter 11 - Lipid oxidation. In Biochemistry of foods, 3rd ed., 419–78. San Diego: Academic Press.
  • Schwarz, K., E. N. Frankel, and J. B. German. 1996. Partition behavior of antioxidant phenolic compounds in heterophasic systems. Lipid / Fett 98 (3):115–21. doi: 10.1002/lipi.19960980306.
  • Schwarzenbach, R. P., P. M. Gschwend, and D. M. Imboden. 2003. Organic liquid-water partitioning. In Environmental organic chemistry. 2nd ed. USA, NY: John Wiley & Sons, Inc.
  • Sezgin-Bayindir, Z., S. Losada-Barreiro, C. Bravo-Díaz, M. Sova, J. Kristl, and L. Saso. 2021. Nanotechnology-based drug delivery to improve the therapeutic benefits of NRF2 modulators in cancer therapy. Antioxidants 10 (5):685. doi: 10.3390/antiox10050685.
  • Shahidi, F. 2015. Handbook of antioxidants for food preservation. 1st ed. Cambridge, UK: Woodhead Pub.
  • Shahidi, F., and Y. Zhong. 2010. Lipid oxidation and improving the oxidative stability. Chemical Society Reviews 39 (11):4067. doi: 10.1039/b922183m.
  • Shahidi, F., and Y. Zhong. 2011. Revisiting the polar paradox theory: A critical overview. Journal of Agricultural and Food Chemistry 59 (8):3499–504. doi: 10.1021/jf104750m.
  • Silva, R., S. Losada-Barreiro, F. Paiva-Martins, and C. Bravo-Díaz. 2017. Partitioning and antioxidative effect of protocatechuates in soybean oil emulsions: Relevance of emulsifier concentration. European Journal of Lipid Science and Technology 119 (6):1600274. doi: 10.1002/ejlt.201600274.
  • Skhiri, Y., P. Gruner, B. Semin, Q. Brosseau, D. Pekin, L. Mazutis, V. Goust, F. Kleinschmidt, A. El Harrak, J. B. Hutchison, et al. 2012. Dynamics of molecular transport by surfactants in emulsions. Soft Matter 8 (41):10618–27. doi: 10.1039/c2sm25934f.
  • Smoluchowski, M. V. 1918. Versuch Einer Mathematischen Theorie der Koagulationskinetik kolloider Losungen. Zeitschrift Für Physikalische Chemie 92U (1):129–68. XCII:doi: 10.1515/zpch-1918-9209.
  • Sørensen, A. D. M., P. Villeneuve, and C. Jacobsen. 2017. Alkyl caffeates as antioxidants in O/W emulsions: Impact of emulsifier type and endogenous tocopherols. European Journal of Lipid Science and Technology 119 (6):1600276. doi: 10.1002/ejlt.201600276.
  • St. Angelo, A. J., J. Vercellotti, T. Jacks, and M. Legendre. 1996. Lipid oxidantion in foods. Critical Reviews in Food Science and Nutrition 36 (3):175–224. doi: 10.1080/10408399609527723.
  • Stöckman, H., K. Schwarz, and T. Huynh-Ba. 2000. The influence of various emulsifiers on the partitioning and antioxidant activity of hydrobenzoic acids and their derivatives in oil-in-water emulsions. Journal of the American Oil Chemists’ Society 77 (5):535–42. doi: 10.1007/s11746-000-0085-6.
  • Sun, Y.-E., W.-D. Wang, H.-W. Chen, and C. Li. 2011. Autoxidation of unsaturated lipids in food emulsion. Critical Reviews in Food Science and Nutrition 51 (5):453–66. doi: 10.1080/10408391003672086.
  • Tadros, T. F. 2013. Emulsion formation, stability, and rheology. In Emulsion formation and stability, 1–75.
  • Tavadyan, L. A., and S. H. Minasyan. 2019. Synergistic and antagonistic co-antioxidant effects of flavonoids with trolox or ascorbic acid in a binary mixture. Journal of Chemical Sciences 131 (5):40. doi: 10.1007/s12039-019-1618-5.
  • Thomas, J. P., B. Kalyanaraman, and A. W. Girotti. 1994. Involvement of Preexisting Lipid Hydroperoxides in Cu(2+)-stimulated oxidation of low-density lipoprotein. Archives of Biochemistry and Biophysics 315 (2):244–54. doi: 10.1006/abbi.1994.1496.
  • Valgimigli, L., R. Amorati, M. G. Fumo, G. A. DiLabio, G. F. Pedulli, K. U. Ingold, and D. A. Pratt. 2008. The unusual reaction of semiquinone radicals with molecular oxygen. The Journal of Organic Chemistry 73 (5):1830–41. doi: 10.1021/jo7024543.
  • Valgimigli, L., J. T. Banks, K. U. Ingold, and J. Lusztyk. 1995. Kinetic solvent effects on hydroxylic hydrogen atom abstractions are independent of the nature of the abstracting radical. two extreme tests using Vitamin E and phenol. Journal of the American Chemical Society 117 (40):9966–71. doi: 10.1021/ja00145a005.
  • van Boekel, M. A. J. S. 2008. Kinetic modeling of food quality: A critical review. Comprehensive Reviews in Food Science and Food Safety 7 (1):144–58. doi: 10.1111/j.1541-4337.2007.00036.x.
  • van Boekel, M. A. J. S. 2009. Kinetic modeling of reactions in foods. CRC Press. USA, FL: Boca Raton.
  • Villeneuve, P., C. Bourlieu-Lacanal, E. Durand, J. Lecomte, D. J. McClements, and E. A. Decker. 2021. Lipid oxidation in emulsions and bulk oils: A review of the importance of micelles. Critical Reviews in Food Science and Nutrition:1–41. doi: 10.1080/10408398.2021.2006138.
  • Villeneuve, P., E. Durand, and E. A. Decker. 2018. The need for a new step in the study of lipid oxidation in heterophasic systems. Journal of Agricultural and Food Chemistry 66 (32):8433–4. doi: 10.1021/acs.jafc.8b03603.
  • Waldeck, A. R., and R. Stocker. 1996. Radical-initiated lipid peroxidation in low density lipoproteins: Insights obtained from kinetic modeling. Chemical Research in Toxicology 9 (6):954–64. doi: 10.1021/tx960057s.
  • Waraho, T., D. J. McClements, and E. A. Decker. 2011. Mechanisms of lipid oxidation in food dispersions. Trends in Food Science & Technology 22 (1):3–13. doi: 10.1016/j.tifs.2010.11.003.
  • Yin, H., L. Xu, and N. A. Porter. 2011. Free radical lipid peroxidation: Mechanisms and analysis. Chemical Reviews 111 (10):5944–72. doi: 10.1021/cr200084z.
  • Zembyla, M., B. S. Murray, and A. Sarkar. 2020. Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: A review. Trends in Food Science & Technology 104:49–59. doi: 10.1016/j.tifs.2020.07.028.
  • Zhang, J., X. Wang, V. Vikash, Q. Ye, D. Wu, Y. Liu, and W. Dong. 2016. ROS and ROS-mediated cellular signaling. Oxidative Medicine and Cellular Longevity 2016:1–18. doi: 10.1155/2016/4350965.
  • Zhao, Z.,. M. Lu, Z. Mao, J. Xiao, Q. Huang, X. Lin, and Y. Cao. 2020. Modulation of interfacial phenolic antioxidant distribution in Pickering emulsions via interactions between zein nanoparticles and gallic acid. International Journal of Biological Macromolecules 152:223–33. doi: 10.1016/j.ijbiomac.2020.02.136.
  • Zhou, H., B. Zheng, and D. J. McClements. 2021. In vitro gastrointestinal stability of lipophilic polyphenols is dependent on their oil-water partitioning in emulsions: Studies on curcumin. Journal of Agricultural and Food Chemistry 69 (11):3340–50. doi: 10.1021/acs.jafc.0c07578.
  • Zhu, Z., C. Zhao, J. Yi, N. Liu, Y. Cao, E. A. Decker, and D. J. McClements. 2018. Impact of interfacial composition on lipid and protein co-oxidation in oil-in-water emulsions containing mixed emulisifers. Journal of Agricultural and Food Chemistry 66 (17):4458–68. doi: 10.1021/acs.jafc.8b00590.
  • Zielinski, Z., N. Presseau, R. Amorati, L. Valgimigli, and D. A. Pratt. 2014. Redox chemistry of selenenic acids and the insight it brings on transition state geometry in the reactions of peroxyl radicals. Journal of the American Chemical Society 136 (4):1570–8. doi: 10.1021/ja411493t.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.