978
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Dietary proanthocyanidins on gastrointestinal health and the interactions with gut microbiota

ORCID Icon, ORCID Icon, , , & ORCID Icon

References

  • Aalim, H., and Z. Luo. 2021. Insight into rice (Oryza sativa L.) cooking: Phenolic composition, inhibition of α-amylase and α-glucosidase, and starch physicochemical and functional properties. Food Bioscience 40 (3):100917. doi: 10.1016/j.fbio.2021.100917.
  • Aalim, H., D. Wang, and Z. Luo. 2021. Black rice (Oryza sativa L.) processing: Evaluation of physicochemical properties, in vitro starch digestibility, and phenolic functions linked to type 2 diabetes. Food Research International (Ottawa, Ont.) 141:109898. doi: 10.1016/j.foodres.2020.109898.
  • Adisakwattana, S., O. Lerdsuwankij, U. Poputtachai, A. Minipun, and C. Suparpprom. 2011. Inhibitory activity of cinnamon bark species and their combination effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 66 (2):143–8. doi: 10.1007/s11130-011-0226-4.
  • Al Othaim, A.,. D. Marasini, and F. Carbonero. 2020. Impact of increasing concentration of tart and sweet cherries juices concentrates on healthy mice gut microbiota. Food Frontiers 1 (3):224–33. doi: 10.1002/fft2.46.
  • Alejo-Armijo, A.,. S. Salido, and J. Altarejos. 2020. Synthesis of a-type proanthocyanidins and their analogues: A comprehensive review. Journal of Agricultural and Food Chemistry 68 (31):8104–18. doi: 10.1021/acs.jafc.0c03380.
  • Amagase, H., B. Sun, and D. M. Nance. 2009. Immunomodulatory effects of a standardized Lycium barbarum fruit juice in Chinese older healthy human subjects. Journal of Medicinal Food 12 (5):1159–65. doi: 10.1089/jmf.2008.0300.
  • Andersen-Civil, A. I. S., P. Arora, and A. R. Williams. 2021. Regulation of enteric infection and immunity by dietary proanthocyanidins. Frontiers in Immunology 12:637603. doi: 10.3389/fimmu.2021.637603.
  • Anhe, F. F., D. Roy, G. Pilon, S. Dudonne, S. Matamoros, T. V. Varin, C. Garofalo, Q. Moine, Y. Desjardins, E. Levy, et al. 2015. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64 (6):872–83. doi: 10.1136/gutjnl-2014-307142.
  • Appeldoorn, M. M., J.-P. Vincken, H. Gruppen, and P. C. H. Hollman. 2009. Procyanidin dimers A1, A2, and B2 are absorbed without conjugation or methylation from the small intestine of rats. The Journal of Nutrition 139 (8):1469–73. doi: 10.3945/jn.109.106765.
  • Aravind, S. M., S. Wichienchot, R. Tsao, S. Ramakrishnan, and S. Chakkaravarthi. 2021. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Research International (Ottawa, Ont.) 142 (5):110189. doi: 10.1016/j.foodres.2021.110189.
  • Arimboor, R., and C. Arumughan. 2011. Sea Buckthorn (Hippophae rhamnoides) proanthocyanidins inhibit in vitro enzymatic hydrolysis of protein. Journal of Food Science 76 (6):T130–7. doi: 10.1111/j.1750-3841.2011.02238.x.
  • Bagchi, M., M. Milnes, C. Williams, J. Balmoori, X. M. Ye, S. Stohs, and D. Bagchi. 1999. Acute and chronic stress-induced oxidative gastrointestinal injury in rats, and the protective ability of a novel grape seed proanthocyanidin extract. Nutrition Research 19 (8):1189–99. doi: 10.1016/S0271-5317(99)00080-9.
  • Bandyopadhyay, P., A. K. Ghosh, and C. Ghosh. 2012. Recent developments on polyphenol–protein interactions: Effects on tea and coffee taste, antioxidant properties and the digestive system. Food & Function 3 (6):592–605. doi: 10.1039/c2fo00006g.
  • Barrett, A. H., N. F. Farhadi, and T. J. Smith. 2018. Slowing starch digestion and inhibiting digestive enzyme activity using plant flavanols/tannins - A review of efficacy and mechanisms. Lwt-Food Science and Technology 87:394–9. doi: 10.1016/j.lwt.2017.09.002.
  • Barroso, E., I. Munoz-Gonzalez, E. Jimenez, B. Bartolome, M. V. Moreno-Arribas, C. Pelaez, M. del, C. Martinez-Cuesta, and T. Requena. 2017. Phylogenetic profile of gut microbiota in healthy adults after moderate intake of red wine. Molecular Nutrition & Food Research 61 (3):1600620. doi: 10.1002/mnfr.201600620.
  • Baydar, N. G., O. Sagdic, G. Ozkan, and S. Cetin. 2006. Determination of antibacterial effects and total phenolic contents of grape (Vitis vinifera L.) seed extracts. International Journal of Food Science & Technology 41 (7):799–804. doi: 10.1111/j.1365-2621.2005.01095.x.
  • Beil, W., and P. Kilian. 2007. EPs (R) 7630, an extract from Pelargonium sidoides roots inhibits adherence of Helicobacter pylori to gastric epithelial cells. Phytomedicine 14:5–8. doi: 10.1016/j.phymed.2006.11.024.
  • Berenguer, B.,. C. Trabadela, S. Sanchez-Fidalgo, A. Quilez, P. Mino, R. De la Puerta, and M. J. Martin-Calero. 2007. The aerial parts of Guazuma ulmifolia Lam. protect against NSAID-induced gastric legions. Journal of Ethnopharmacology 114 (2):153–60. doi: 10.1016/j.jep.2007.07.019.
  • Bibi, S., Y. Kang, G. Yang, and M.-J. Zhu. 2016. Grape seed extract improves small intestinal health through suppressing inflammation and regulating alkaline phosphatase in IL-10-deficient mice. Journal of Functional Foods 20:245–52. doi: 10.1016/j.jff.2015.10.021.
  • Bitzer, Z. T., S. L. Glisan, M. R. Dorenkott, K. M. Goodrich, L. Ye, S. F. O’Keefe, J. D. Lambert, and A. P. Neilson. 2015. Cocoa procyanidins with different degrees of polymerization possess distinct activities in models of colonic inflammation. The Journal of Nutritional Biochemistry 26 (8):827–31. doi: 10.1016/j.jnutbio.2015.02.007.
  • Bras, N. F., R. Goncalves, P. A. Fernandes, N. Mateus, M. J. Ramos, and V. de Freitas. 2010. Understanding the binding of procyanidins to pancreatic elastase by experimental and computational methods. Biochemistry 49 (25):5097–108. doi: 10.1021/bi100410q.
  • Burger, O., I. Ofek, M. Tabak, E. I. Weiss, N. Sharon, and I. Neeman. 2000. A high molecular mass constituent of cranberry juice inhibits Helicobacter pylori adhesion to human gastric mucus. FEMS Immunology and Medical Microbiology 29 (4):295–301. doi: 10.1111/j.1574-695X.2000.tb01537.x.
  • Burger, O., E. Weiss, N. Sharon, M. Tabak, I. Neeman, and I. Ofek. 2002. Inhibition of Helicobacter pylori adhesion to human gastric mucus by a high-molecular-weight constituent of cranberry juice. Critical Reviews in Food Science and Nutrition 42 (3 Suppl):279–84. doi: 10.1080/10408390209351916.
  • Caldas Moura, M. H., M. G. Cunha, M. R. Alezandro, and M. I. Genovese. 2018. Phenolic-rich jaboticaba (Plinia jaboticaba (Vell.) Berg) extracts prevent high-fat-sucrose diet-induced obesity in C57BL/6 mice. Food Research International (Ottawa, Ont.) 107:48–60. doi: 10.1016/j.foodres.2018.01.071.
  • Carbonell-Capella, J. M., M. Buniowska, F. J. Barba, M. J. Esteve, and A. Frigola. 2014. Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety 13 (2):155–71. doi: 10.1111/1541-4337.12049.
  • Casanova-Marti, À., J. Serrano, K. J. Portune, Y. Sanz, M. T. Blay, X. Terra, A. Ardévol, and M. Pinent. 2018. Grape seed proanthocyanidins influence gut microbiota and enteroendocrine secretions in female rats. Food & Function 9 (3):1672–82. doi: 10.1039/c7fo02028g.
  • Casanova-Marti, A., N. Gonzalez-Abuin, J. Serrano, M. T. Blay, X. Terra, G. Frost, M. Pinent, and A. Ardevol. 2020. Long term exposure to a grape seed proanthocyanidin extract enhances L-cell differentiation in intestinal organoids. Molecular Nutrition & Food Research 64 (16):2000303. doi: 10.1002/mnfr.202000303.
  • Casanova-Marti, A., J. Serrano, M. T. Blay, X. Terra, A. Ardevol, and M. Pinent. 2017. Acute selective bioactivity of grape seed proanthocyanidins on enteroendocrine secretions in the gastrointestinal tract. Food & Nutrition Research 61 (1):1321347. doi: 10.1080/16546628.2017.1321347.
  • Catalkaya, G., K. Venema, L. Lucini, G. Rocchetti, D. Delmas, M. Daglia, A. De Filippis, H. Xiao, J. L. Quiles, J. Xiao, et al. 2020. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Frontiers 1 (2):109–33. doi: 10.1002/fft2.25.
  • Chai, W. M., C. Ou-Yang, Q. Huang, M. Z. Lin, Y. X. Wang, K. L. Xu, W. Y. Huang, and D. D. Pang. 2018. Antityrosinase and antioxidant properties of mung bean seed proanthocyanidins: Novel insights into the inhibitory mechanism. Food Chemistry 260:27–36. doi: 10.1016/j.foodchem.2018.04.001.
  • Cheah, K. Y., S. E. P. Bastian, T. M. V. Acott, S. M. Abimosleh, K. A. Lymn, and G. S. Howarth. 2013. Grape seed extract reduces the severity of selected disease markers in the proximal colon of dextran sulphate sodium-induced colitis in rats. Digestive Diseases and Sciences 58 (4):970–7. doi: 10.1007/s10620-012-2464-1.
  • Cheah, K. Y., G. S. Howarth, K. A. Bindon, J. A. Kennedy, and S. E. P. Bastian. 2014. Low molecular weight procyanidins from grape seeds enhance the impact of 5-Fluorouracil chemotherapy on Caco-2 human colon cancer cells. Plos One 9 (6):e98921. doi: 10.1371/journal.pone.0098921.
  • Chen, L., Q. You, L. Hu, J. Gao, Q. Meng, W. Liu, X. Wu, and Q. Xu. 2017. The antioxidant Procyanidin reduces reactive oxygen species signaling in macrophages and ameliorates experimental colitis in mice. Frontiers in Immunology 8:1910. doi: 10.3389/fimmu.2017.01910.
  • Cheung, D. Y., J. I. Kim, S.-H. Park, and J. K. Kim. 2014. Proanthocyanidin from grape seed extracts protects indomethacin-induced small intestinal mucosal injury. Gastroenterology Research and Practice 2014:618068. doi: 10.1155/2014/618068.
  • Choy, Y. Y., P. Quifer-Rada, D. M. Holstege, S. A. Frese, C. C. Calvert, D. A. Mills, R. M. Lamuela-Raventos, and A. L. Waterhouse. 2014. Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins. Food & Function 5 (9):2298–308. doi: 10.1039/c4fo00325j.
  • Cires, M. J., P. Navarrete, E. Pastene, C. Carrasco-Pozo, R. Valenzuela, D. A. Medina, M. Andriamihaja, M. Beaumont, F. Blachier, and M. Gotteland. 2019. Effect of a proanthocyanidin-rich polyphenol extract from avocado on the production of amino acid-derived bacterial metabolites and the microbiota composition in rats fed a high-protein diet. Food & Function 10 (7):4022–35. doi: 10.1039/c9fo00700h.
  • Condezo-Hoyos, L., I. P. Mohanty, and G. D. Noratto. 2014. Assessing non-digestible compounds in apple cultivars and their potential as modulators of obese faecal microbiota in vitro. Food Chemistry 161:208–15. doi: 10.1016/j.foodchem.2014.03.122.
  • Contreras, T. C., E. Ricciardi, E. Cremonini, and P. I. Oteiza. 2015. (-)-Epicatechin in the prevention of tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity . Archives of Biochemistry and Biophysics 573:84–91. doi: 10.1016/j.abb.2015.01.024.
  • Cortés-Martín, A., M. V. Selma, J. C. Espín, and R. García-Villalba. 2019. The human metabolism of nuts proanthocyanidins does not reveal urinary metabolites consistent with distinctive gut microbiota metabotypes. Molecular Nutrition & Food Research 63 (2):1800819. doi: 10.1002/mnfr.201800819.
  • Costa Silva, T. d., A. B. Justino, D. G. Prado, G. A. Koch, M. M. Martins, P. d S. Santos, S. A. L. d Morais, L. R. Goulart, L. C. S. Cunha, R. M. F. d Sousa, et al. 2019. Chemical composition, antioxidant activity and inhibitory capacity of α-amylase, α-glucosidase, lipase and non-enzymatic glycation, in vitro, of the leaves of Cassia bakeriana Craib. Industrial Crops and Products 140:111641. doi: 10.1016/j.indcrop.2019.111641.
  • Cote, J., S. Caillet, G. Doyon, J. F. Sylvain, and M. Lacroix. 2010. Bioactive compounds in cranberries and their biological properties. Critical Reviews in Food Science and Nutrition 50 (7):666–79. doi: 10.1080/10408390903044107.
  • Da Silva, M., G. K. Jaggers, S. V. Verstraeten, A. G. Erlejman, C. G. Fraga, and P. I. Oteiza. 2012. Large procyanidins prevent bile-acid-induced oxidant production and membrane-initiated ERK1/2, p38, and Akt activation in Caco-2 cells. Free Radical Biology & Medicine 52 (1):151–9. doi: 10.1016/j.freeradbiomed.2011.10.436.
  • Daughenbaugh, K. F., J. Holderness, J. C. Graff, J. F. Hedges, B. Freedman, J. W. Graff, and M. A. Jutila. 2011. Contribution of transcript stability to a conserved procyanidin-induced cytokine response in γδ T cells. Genes and Immunity 12 (5):378–89. doi: 10.1038/gene.2011.7.
  • de Souza Mesquita, L., C. Caria, P. Santos, C. Ruy, N. da Silva Lima, D. Moreira, C. da Rocha, D. Murador, V. de Rosso, A. Gambero, et al. 2018. Modulatory effect of polyphenolic compounds from the mangrove tree Rhizophora mangle L. on non-alcoholic fatty liver disease and insulin resistance in high-fat diet obese mice. Molecules 23 (9):2114. doi: 10.3390/molecules23092114.
  • Denis, M.-C., Y. Desjardins, A. Furtos, V. Marcil, S. Dudonne, A. Montoudis, C. Garofalo, E. Delvin, A. Marette, and E. Levy. 2015. Prevention of oxidative stress, inflammation and mitochondrial dysfunction in the intestine by different cranberry phenolic fractions. Clinical Science (London, England: 1979) 128 (3):197–212. doi: 10.1042/cs20140210.
  • Deprez, S., C. Brezillon, S. Rabot, C. Philippe, I. Mila, C. Lapierre, and A. Scalbert. 2000. Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. The Journal of Nutrition 130 (11):2733–8. doi: 10.1093/jn/130.11.2733.
  • Dinicola, S., A. Cucina, A. Pasqualato, F. D’Anselmi, S. Proietti, E. Lisi, G. Pasqua, D. Antonacci, and M. Bizzarri. 2012. Antiproliferative and apoptotic effects triggered by grape seed extract (GSE) versus epigallocatechin and procyanidins on colon cancer cell lines. International Journal of Molecular Sciences 13 (1):651–64. doi: 10.3390/ijms13010651.
  • de Cássia Dos Santos, R., F. Bonamin, L. L. Périco, V. P. Rodrigues, A. C. Zanatta, C. M. Rodrigues, M. Sannomiya, M. A. Dos Santos Ramos, B. V. Bonifácio, T. M. Bauab, et al. 2019. Byrsonima intermedia A. Juss partitions promote gastroprotection against peptic ulcers and improve healing through antioxidant and anti-inflammatory activities. Biomedicine & Pharmacotherapy/ Biomedecine & Pharmacotherapie 111:1112–23. doi: 10.1016/j.biopha.2018.12.132.
  • Elkahoui, S., C. E. Levin, G. E. Bartley, W. Yokoyama, and M. Friedman. 2019. Levels of fecal procyanidins and changes in microbiota and metabolism in mice fed a high-fat diet supplemented with apple peel. Journal of Agricultural and Food Chemistry 67 (37):10352–60. doi: 10.1021/acs.jafc.9b04870.
  • Ercan, P., and S. N. El. 2021. Inhibitory effects of bioaccessible anthocyanins and procyanidins from apple, red grape, cinnamon on α-amylase, α-glucosidase and lipase. International Journal for Vitamin and Nutrition Research 91 (1-2):16–24. doi: 10.1024/0300-9831/a000652.
  • Erlejman, A. G., G. Jaggers, C. G. Fraga, and P. I. Oteiza. 2008. TNFalpha-induced NF-kappaB activation and cell oxidant production are modulated by hexameric procyanidins in Caco-2 cells . Archives of Biochemistry and Biophysics 476 (2):186–95. doi: 10.1016/j.abb.2008.01.024.
  • Euston, S. R., W. G. Baird, L. Campbell, and M. Kuhns. 2013. Competitive adsorption of dihydroxy and trihydroxy bile salts with whey protein and casein in oil-in-water emulsions. Biomacromolecules 14 (6):1850–8. doi: 10.1021/bm4002443.
  • Feliciano, R. P., J. J. Meudt, D. Shanmuganayagam, C. G. Krueger, and J. D. Reed. 2014. Ratio of "A-type" to "B-type" proanthocyanidin interflavan bonds affects extra-intestinal pathogenic Escherichia coli invasion of gut epithelial cells . Journal of Agricultural and Food Chemistry 62 (18):3919–25. doi: 10.1021/jf403839a.
  • Fidelis, M., J. S. Santos, G. B. Escher, R. S. Rocha, A. G. Cruz, T. M. Cruz, M. B. Marques, J. B. Nunes, M. A. V. do Carmo, L. A. de Almeida, et al. 2021. Polyphenols of jabuticaba [Myrciaria jaboticaba (Vell.) O.Berg] seeds incorporated in a yogurt model exert antioxidant activity and modulate gut microbiota of 1,2-dimethylhydrazine-induced colon cancer in rats . Food Chemistry 334:127565 doi: 10.1016/j.foodchem.2020.127565.
  • Fumagalli, M., E. Sangiovanni, U. Vrhovsek, S. Piazza, E. Colombo, M. Gasperotti, F. Mattivi, E. De Fabiani, and M. Dell’Agli. 2016. Strawberry tannins inhibit IL-8 secretion in a cell model of gastric inflammation. Pharmacological Research 111:703–12. doi: 10.1016/j.phrs.2016.07.028.
  • Ganesan, K., J. L. Quiles, M. Daglia, J. Xiao, and B. Xu. 2021. Dietary phytochemicals modulate intestinal epithelial barrier dysfunction and autoimmune diseases. Food Frontiers 2 (3):357–82. doi: 10.1002/fft2.102.
  • Gao, Z., H. Wu, K. Zhang, I. Hossen, J. Wang, C. Wang, D. Xu, J. Xiao, and Y. Cao. 2020. Protective effects of grape seed procyanidin extract on intestinal barrier dysfunction induced by a long-term high-fat diet. Journal of Functional Foods 64:103663. doi: 10.1016/j.jff.2019.103663.
  • Gentile, C., A. Perrone, A. Attanzio, L. Tesoriere, and M. A. Livrea. 2015. Sicilian pistachio (Pistacia vera L.) nut inhibits expression and release of inflammatory mediators and reverts the increase of paracellular permeability in IL-1β-exposed human intestinal epithelial cells . European Journal of Nutrition 54 (5):811–21. doi: 10.1007/s00394-014-0760-6.
  • George, N. S., L. Cheung, D. L. Luthria, M. Santin, H. D. Dawson, A. A. Bhagwat, and A. D. Smith. 2019. Pomegranate peel extract alters the microbiome in mice and dysbiosis caused by Citrobacter rodentium infection. Food Science & Nutrition 7 (8):2565–76. doi: 10.1002/fsn3.1106.
  • Ghouila, Z., S. Laurent, S. Boutry, L. Vander Elst, F. Nateche, R. N. Muller, and A. Baaliouamer. 2017. Antioxidant, antibacterial and cell toxicity effects of polyphenols Fromahmeur bouamer grape seed extracts. Journal of Fundamental and Applied Sciences 9 (1):392–410. doi: 10.4314/jfas.v9i1.24.
  • Gibert-Ramos, A., M. Z. Martin-Gonzalez, A. Crescenti, and M. J. Salvado. 2020. A mix of natural bioactive compounds reduces fat accumulation and modulates gene expression in the adipose tissue of obese rats fed a cafeteria diet. Nutrients 12 (11):3251. doi: 10.3390/nu12113251.
  • Gil-Cardoso, K., R. Comitato, I. Gines, A. Ardevol, M. Pinent, F. Virgili, X. Terra, and M. Blay. 2019. Protective effect of proanthocyanidins in a rat model of mild intestinal inflammation and impaired intestinal permeability induced by LPS. Molecular Nutrition & Food Research 63 (8):1800720. doi: 10.1002/mnfr.201800720.
  • Gil-Cardoso, K., I. Gines, M. Pinent, A. Ardevol, L. Arola, M. Blay, and X. Terra. 2017. Chronic supplementation with dietary proanthocyanidins protects from diet-induced intestinal alterations in obese rats. Molecular Nutrition & Food Research 61 (8):1601039. doi: 10.1002/mnfr.201601039.
  • Gil-Cardoso, K., I. Gines, M. Pinent, A. Ardevol, M. Blay, and X. Terra. 2016. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutrition Research Reviews 29 (2):234–48. doi: 10.1017/s0954422416000159.
  • Gil-Cardoso, K., I. Gines, M. Pinent, A. Ardevol, M. Blay, and X. Terra. 2018. The co-administration of proanthocyanidins and an obesogenic diet prevents the increase in intestinal permeability and metabolic endotoxemia derived to the diet. The Journal of Nutritional Biochemistry 62:35–42. doi: 10.1016/j.jnutbio.2018.07.012.
  • Goncalves, R., S. Soares, N. Mateus, and V. D. Freitas. 2007. Inhibition of trypsin by condensed tannins and wine. Journal of Agricultural and Food Chemistry 55 (18):7596–601. doi: 10.1021/jf071490i.
  • Gonzalez-Abuin, N., N. Martinez-Micaelo, M. Blay, A. Ardevol, and M. Pinent. 2014. Grape-seed procyanidins prevent the cafeteria-diet-induced decrease of glucagon-like peptide-1 production. Journal of Agricultural and Food Chemistry 62 (5):1066–72. doi: 10.1021/jf405239p.
  • Gonzalez-Quilen, C., K. Gil-Cardoso, I. Gines, R. Beltran-Debon, M. Pinent, A. Ardevol, X. Terra, and M. T. Blay. 2019. Grape-seed proanthocyanidins are able to reverse intestinal dysfunction and metabolic endotoxemia induced by a cafeteria diet in Wistar rats. Nutrients 11 (5):979. doi: 10.3390/nu11050979.
  • Gonzalez-Quilen, C., E. Rodriguez-Gallego, R. Beltran-Debon, M. Pinent, A. Ardevol, M. T. Blay, and X. Terra. 2020. Health-promoting properties of proanthocyanidins for intestinal dysfunction. Nutrients 12 (1):130. doi: 10.3390/nu12010130.
  • Gotteland, M., M. Andrews, M. Toledo, L. Munoz, P. Caceres, A. Anziani, E. Wittig, H. Speisky, and G. Salazar. 2008. Modulation of Helicobacter pylori colonization with cranberry juice and Lactobacillus johnsonii La1 in children. Nutrition 24 (5):421–6. doi: 10.1016/j.nut.2008.01.007.
  • Govers, C., M. B. Kasikci, A. A. van der Sluis, and J. J. Mes. 2018. Review of the health effects of berries and their phytochemicals on the digestive and immune systems. Nutrition Reviews 76 (1):29–46. doi: 10.1093/nutrit/nux039.
  • Griffin, L. E., K. A. Witrick, C. Klotz, M. R. Dorenkott, K. M. Goodrich, G. Fundaro, R. P. McMillan, M. W. Hulver, M. A. Ponder, and A. P. Neilson. 2017. Alterations to metabolically active bacteria in the mucosa of the small intestine predict anti-obesity and anti-diabetic activities of grape seed extract in mice. Food & Function 8 (10):3510–22. doi: 10.1039/c7fo01236e.
  • Gu, L. W., M. A. Kelm, J. F. Hammerstone, G. Beecher, J. Holden, D. Haytowitz, S. Gebhardt, and R. L. Prior. 2004. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. The Journal of Nutrition 134 (3):613–7. doi: 10.1093/jn/134.3.613.
  • Gu, Y., W. J. Hurst, D. A. Stuart, and J. D. Lambert. 2011. Inhibition of key digestive enzymes by cocoa extracts and procyanidins. Journal of Agricultural and Food Chemistry 59 (10):5305–11. doi: 10.1021/jf200180n.
  • Gu, Y., S. Yu, J. Y. Park, K. Harvatine, and J. D. Lambert. 2014. Dietary cocoa reduces metabolic endotoxemia and adipose tissue inflammation in high-fat fed mice. The Journal of Nutritional Biochemistry 25 (4):439–45. doi: 10.1016/j.jnutbio.2013.12.004.
  • Hamauzu, Y., F. Forest, K. Hiramatsu, and M. Sugimoto. 2007. Effect of pear (Pyrus communis L.) procyanidins on gastric lesions induced by HCl/ethanol in rats. Food Chemistry 100 (1):255–63. doi: 10.1016/j.foodchem.2005.09.050.
  • Hamauzu, Y., H. Kishida, and N. Yamazaki. 2018. Gastroprotective property of Pseudocydonia sinensis fruit jelly on the ethanol-induced gastric lesions in rats. Journal of Functional Foods 48:275–82. doi: 10.1016/j.jff.2018.07.026.
  • Han, M., P. Song, C. Huang, A. Rezaei, S. Farrar, M. A. Brown, and X. Ma. 2016. Dietary grape seed proanthocyanidins (GSPs) improve weaned intestinal microbiota and mucosal barrier using a piglet model. Oncotarget 7 (49):80313–26. doi: 10.18632/oncotarget.13450.
  • Hao, R., Q. Li, J. Zhao, H. Li, W. Wang, and J. Gao. 2015. Effects of grape seed procyanidins on growth performance, immune function and antioxidant capacity in weaned piglets. Livestock Science 178:237–42. doi: 10.1016/j.livsci.2015.06.004.
  • Hellstrom, J. K., A. R. Torronen, and P. H. Mattila. 2009. Proanthocyanidins in common food products of plant origin. Journal of Agricultural and Food Chemistry 57 (17):7899–906. doi: 10.1021/jf901434d.
  • Hiruma-Lima, C. A., C. M. Rodrigues, H. Kushima, T. M. Moraes, S. d F. Lolis, S. B. Feitosa, L. P. Magri, F. R. Soares, M. M. Cola, F. D. P. Andrade, et al. 2009. The anti-ulcerogenic effects of Curatella americana L. Journal of Ethnopharmacology 121 (3):425–32. doi: 10.1016/j.jep.2008.10.017.
  • Horigome, T., R. Kumar, and K. Okamoto. 1988. Effects of condensed tannins prepared from leaves of fodder plants on digestive enzymes in vitro and in the intestine of rats. The British Journal of Nutrition 60 (2):275–85. doi: 10.1079/bjn19880099.
  • Hou, K., and Z. Wang. 2021. Application of nanotechnology to enhance adsorption and bioavailability of procyanidins: A review. Food Reviews International :1–15. doi: 10.1080/87559129.2021.1888970.
  • Howell, A. B. 2020. Clinical evidence supporting cranberry as a complementary approach to Helicobacter pylori management. Food Frontiers 1 (3):329–31. doi: 10.1002/fft2.47.
  • Huifan, L., L. Jiaxi, X. Gengsheng, M. Lukai, and W. Qin. 2021. Dendrobine suppresses lipopolysaccharide-induced gut inflammation in a co-culture of intestinal epithelial Caco-2 cells and RAW264.7 macrophages. eFood 2 (2):92–9. doi: 10.2991/efood.k.210409.001.
  • Ishihara, T., S. Kaidzu, H. Kimura, Y. Koyama, Y. Matsuoka, and A. Ohira. 2018. Protective effect of highly polymeric a-type proanthocyanidins from seed shells of Japanese horse chestnut (Aesculus turbinata BLUME) against light-induced oxidative damage in rat retina. Nutrients 10 (5):593. doi: 10.3390/nu10050593.
  • Iwasaki, Y., T. Matsui, and Y. Arakawa. 2004. The protective and hormonal effects of proanthocyanidin against gastric mucosal injury in Wistar rats. Journal of Gastroenterology 39 (9):831–7. doi: 10.1007/s00535-004-1399-5.
  • Jang, S., J. Sun, P. Chen, S. Lakshman, A. Molokin, J. M. Harnly, B. T. Vinyard, J. F. Urban, Jr., C. D. Davis, and G. Solano-Aguilar. 2015. Flavanol-enriched cocoa powder alters the intestinal microbiota, tissue and fluid metabolite profiles, and intestinal gene expression in pigs. The Journal of Nutrition 146 (4):673–80. doi: 10.3945/jn.115.222968.
  • Jin, G., Y. Asou, K. Ishiyama, A. Okawa, T. Kanno, and Y. Niwano. 2018. Proanthocyanidin-rich grape seed extract modulates intestinal microbiota in ovariectomized mice. Journal of Food Science 83 (4):1149–52. doi: 10.1111/1750-3841.14098.
  • Jose, C. M., X. Wong, C. Carrasco-Pozo, and M. Gotteland. 2016. The gastrointestinal tract as a key target organ for the health-promoting effects of dietary proanthocyanidins. Frontiers in Nutrition 3:57. doi: 10.3389/fnut.2016.00057.
  • Karlsson, P. C., U. Huss, A. Jenner, B. Halliwell, L. Bohlin, and J. J. Rafter. 2005. Human fecal water inhibits COX-2 in colonic HT-29 cells: Role of phenolic compounds. The Journal of Nutrition 135 (10):2343–9. doi: 10.1093/jn/135.10.2343.
  • Kim, T. H., E. J. Jeon, D. Y. Cheung, C. W. Kim, S. S. Kim, S.-H. Park, S. W. Han, M. J. Kim, Y. S. Lee, M.-L. Cho, et al. 2013. Gastroprotective effects of grape seed proanthocyanidin extracts against nonsteroid anti-inflammatory drug-induced gastric injury in rats. Gut and Liver 7 (3):282–9. doi: 10.5009/gnl.2013.7.3.282.
  • Kolacek, M., J. Muchova, M. Dvorakova, Z. Paduchova, I. Zitnanova, I. Cierna, Z. Orszaghova, D. Szekyova, N. Jajcaiova-Zednickova, L. Kovacs, et al. 2013. Effect of natural polyphenols (Pycnogenol) on oxidative stress markers in children suffering from Crohn’s disease: A pilot study. Free Radical Research 47 (8):624–34. doi: 10.3109/10715762.2013.807508.
  • Kong, F., Z. Su, L. Zhang, Y. Qin, and K. Zhang. 2019. Inclusion complex of grape seeds extracts with sulfobutyl ether beta-cyclodextrin: Preparation, characterization, stability and evaluation of alpha-glucosidase and alpha-amylase inhibitory effects in vitro. Lwt-Food Science and Technology 101:819–26. doi: 10.1016/j.lwt.2018.12.007.
  • Koudoufio, M., F. Feldman, L. Ahmarani, E. Delvin, S. Spahis, Y. Desjardins, and E. Levy. 2021. Intestinal protection by proanthocyanidins involves anti-oxidative and anti-inflammatory actions in association with an improvement of insulin sensitivity, lipid and glucose homeostasis. Scientific Reports 11 (1):3878. doi: 10.1038/s41598-020-80587-5.
  • Koutsos, A., M. Lima, L. Conterno, M. Gasperotti, M. Bianchi, F. Fava, U. Vrhovsek, J. A. Lovegrove, and K. M. Tuohy. 2017. Effects of commercial apple varieties on human gut microbiota composition and metabolic output using an in vitro colonic model. Nutrients 9 (6):533. doi: 10.3390/nu9060533.
  • Krishnan, V., R. Rani, M. Awana, D. Pitale, A. Kulshreshta, S. Sharma, H. Bollinedi, A. Singh, B. Singh, A. K. Singh, et al. 2021. Role of nutraceutical starch and proanthocyanidins of pigmented rice in regulating hyperglycemia: Enzyme inhibition, enhanced glucose uptake and hepatic glucose homeostasis using in vitro model. Food Chemistry 335:127505. doi: 10.1016/j.foodchem.2020.127505.
  • Kühl, A. A., N. N. Pawlowski, K. Grollich, C. Loddenkemper, M. Zeitz, and J. C. Hoffmann. 2007. Aggravation of intestinal inflammation by depletion/deficiency of gammadelta T cells in different types of IBD animal models. Journal of Leukocyte Biology 81 (1):168–75. doi: 10.1189/jlb.1105696.
  • Le Bourvellec, C., P. Bagano Vilas Boas, P. Lepercq, S. Comtet-Marre, P. Auffret, P. Ruiz, R. Bott, C. Renard, C. Dufour, J.-M. Chatel, et al. 2019. Procyanidin-cell wall interactions within apple matrices decrease the metabolization of procyanidins by the human gut microbiota and the anti-inflammatory effect of the resulting microbial metabolome in vitro. Nutrients 11 (3):664. doi: 10.3390/nu11030664.
  • Lee, H. C., A. M. Jenner, C. S. Low, and Y. K. Lee. 2006. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Research in Microbiology 157 (9):876–84. doi: 10.1016/j.resmic.2006.07.004.
  • Li-Shu, W., E. C. Elena, J.-H. Yu, Y.-W. Huang, L. John, M. Ling, S. Patrick, Y. Martha, C.-K. Wang, and S. Gary. 2020. Can natural products suppress resistant Helicobacter pylori to fight against gastric diseases in humans? eFood 1 (1):53–60. doi: 10.2991/efood.k.200211.001.
  • Li, R., M.-H. Kim, A. K. Sandhu, C. Gao, and L. Gu. 2017. Muscadine grape (Vitis rotundifolia) or wine phytochemicals reduce intestinal inflammation in mice with dextran sulfate sodium-induced colitis. Journal of Agricultural and Food Chemistry 65 (4):769–76. doi: 10.1021/acs.jafc.6b03806.
  • Li, X.-L., Y.-Q. Cai, H. Qin, and Y.-J. Wu. 2008. Therapeutic effect and mechanism of proanthocyanidins from grape seeds in rats with TNBS-induced ulcerative colitis. Canadian Journal of Physiology and Pharmacology 86 (12):841–9. doi: 10.1139/Y08-089.
  • Li, X., Y. Sui, B. Xie, Z. Sun, and S. Li. 2021. Diabetes diminishes a typical metabolite of litchi pericarp oligomeric procyanidins (LPOPC) in urine mediated by imbalanced gut microbiota. Food & Function 12 (12):5375–86. doi: 10.1039/d1fo00587a.
  • Lin, G.-M., C.-Y. Hsu, and S.-T. Chang. 2018. Antihyperglycemic activities of twig extract of indigenous cinnamon (Cinnamomum osmophloeum) on high-fat diet and streptozotocin-induced hyperglycemic rats. Journal of the Science of Food and Agriculture 98 (15):5908–15. doi: 10.1002/jsfa.9286.
  • Liu, W., S. Zhao, J. Wang, J. Shi, Y. Sun, W. Wang, G. Ning, J. Hong, and R. Liu. 2017. Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice. Molecular Nutrition & Food Research 61 (9):1601082. doi: 10.1002/mnfr.201601082.
  • Liu, X., T. Chen, Q. Wang, J. Liu, Y. Lu, and Y. Shi. 2021. Structure analysis and study of biological activities of condensed tannins from Bruguiera gymnorhiza (L.) Lam and their effect on fresh-cut lotus roots. Molecules 26 (5):1369. doi: 10.3390/molecules26051369.
  • Liu, X., C. M. G. C. Renard, A. Rolland-Sabate, and C. L. Bourvellec. 2021. Exploring interactions between pectins and procyanidins: Structure-function relationships. Food Hydrocolloids 113:106498. doi: 10.1016/j.foodhyd.2020.106498.
  • Macho-González, A., A. Garcimartín, N. Redondo, S. Cofrades, S. Bastida, E. Nova, J. Benedí, F. J. Sánchez-Muniz, A. Marcos, and M. Elvira López-Oliva. 2021. Carob fruit extract-enriched meat, as preventive and curative treatments, improves gut microbiota and colonic barrier integrity in a late-stage T2DM model. Food Research International 141:110124. doi: 10.1016/j.foodres.2021.110124.
  • Mannino, G., G. Chinigò, G. Serio, T. Genova, C. Gentile, L. Munaron, and C. M. Bertea. 2021. Proanthocyanidins and where to find them: A meta-analytic approach to investigate their chemistry, biosynthesis, distribution, and effect on human health. Antioxidants 10 (8):1229. doi: 10.3390/antiox10081229.
  • Masquelier, J., J. Michaud, J. Laparra, and M. C. Dumon. 1979. Flavonoids and pycnogenols. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition 49 (3):307–11.
  • Masumoto, S., A. Terao, Y. Yamamoto, T. Mukai, T. Miura, and T. Shoji. 2016. Non-absorbable apple procyanidins prevent obesity associated with gut microbial and metabolomic changes. Scientific Reports 6:31208. doi: 10.1038/srep31208.
  • Matsumoto, K., S.-I. Yokoyama, and N. Gato. 2010. Bile acid-binding activity of young persimmon (Diospyros kaki) fruit and its hypolipidemic effect in mice. Phytotherapy Research: PTR 24 (2):205–10. doi: 10.1002/ptr.2911.
  • Meeran, S. M., and S. K. Katiyar. 2007. Grape seed proanthocyanidins promote apoptosis in human epidermoid carcinoma A431 cells through alterations in Cdki-Cdk-cyclin cascade, and caspase-3 activation via loss of mitochondrial membrane potential. Experimental Dermatology 16 (5):405–15. doi: 10.1111/j.1600-0625.2007.00542.x.
  • Minker, C., L. Duban, D. Karas, P. Järvinen, A. Lobstein, and C. D. Muller. 2015. Impact of procyanidins from different berries on caspase 8 activation in colon cancer. Oxidative Medicine and Cellular Longevity 2015:154164– 13. doi: 10.1155/2015/154164.
  • Monagas, M.,. M. Urpi-Sarda, F. Sanchez-Patan, R. Llorach, I. Garrido, C. Gomez-Cordoves, C. Andres-Lacueva, and B. Bartolome. 2010. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food & Function 1 (3):233–53. doi: 10.1039/c0fo00132e.
  • Moraes, T. D. M., C. M. Rodrigues, H. Kushima, T. M. Bauab, W. Villegas, C. H. Pellizzon, A. R. M. S. Brito, and C. A. Hiruma-Lima. 2008. Hancornia speciosa: Indications of gastroprotective, healing and anti-Helicobacter pylori actions. Journal of Ethnopharmacology 120 (2):161–8. doi: 10.1016/j.jep.2008.08.001.
  • Moreno-Indias, I.,. L. Sanchez-Alcoholado, P. Perez-Martinez, C. Andres-Lacueva, F. Cardona, F. Tinahones, and M. I. Queipo-Ortuno. 2016. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food & Function 7 (4):1775–87. doi: 10.1039/c5fo00886g.
  • Nallathambi, R., A. Poulev, J. B. Zuk, and I. Raskin. 2020. Proanthocyanidin-rich grape seed extract reduces inflammation and oxidative stress and restores tight junction barrier function in Caco-2 colon cells. Nutrients 12 (6):1623. doi: 10.3390/nu12061623.
  • Nantz, M. P., C. A. Rowe, C. Muller, R. Creasy, J. Colee, C. Khoo, and S. S. Percival. 2013. Consumption of cranberry polyphenols enhances human gamma γδ-T cell proliferation and reduces the number of symptoms associated with colds and influenza: A randomized, placebo-controlled intervention study. Nutrition Journal 12 (1):161. doi: 10.1186/1475-2891-12-161.
  • Nie, C., J. Zhou, X. Qin, X. Shi, Q. Zeng, J. Liu, S. Yan, and L. Zhang. 2016. Reduction of apoptosis by proanthocyanidin-induced autophagy in the human gastric cancer cell line MGC-803. Oncology Reports 35 (2):649–58. doi: 10.3892/or.2015.4419.
  • Ntemiri, A., T. S. Ghosh, M. E. Gheller, T. T. T. Tran, J. E. Blum, P. Pellanda, K. Vlckova, M. C. Neto, A. Howell, A. Thalacker-Mercer, et al. 2020. Whole blueberry and isolated polyphenol-rich fractions modulate specific gut microbes in an in vitro colon model and in a pilot study in human consumers. Nutrients 12 (9):1–21. doi: 10.3390/nu1209:2800.
  • Nunes, C., R. Figueiredo, J. Laranjinha, and G. J. da Silva. 2019. Intestinal cytotoxicity induced by Escherichia coli is fully prevented by red wine polyphenol extract: Mechanistic insights in epithelial cells. Chemico-Biological Interactions 310:108711. doi: 10.1016/j.cbi.2019.06.024.
  • Olson, C. M., M. N. Hedrick, H. Izadi, T. C. Bates, E. R. Olivera, and J. Anguita. 2007. p38 mitogen-activated protein kinase controls NF-kappaB transcriptional activation and tumor necrosis factor alpha production through RelA phosphorylation mediated by mitogen- and stress-activated protein kinase 1 in response to Borrelia burgdorferi antigens . Infection and Immunity 75 (1):270–7. doi: 10.1128/iai.01412-06.
  • Osman, A. M., and K. K. Y. Wong. 2007. Laccase (EC 1.10.3.2) catalyses the conversion of procyanidin B-2 (epicatechin dimer) to type A-2. Tetrahedron Letters 48 (7):1163–7. doi: 10.1016/j.tetlet.2006.12.075.
  • Ottaviani, J. I., T. Y. Momma, C. Heiss, C. Kwik-Uribe, H. Schroeter, and C. L. Keen. 2011. The stereochemical configuration of flavanols influences the level and metabolism of flavanols in humans and their biological activity in vivo. Free Radical Biology & Medicine 50 (2):237–44. doi: 10.1016/j.freeradbiomed.2010.11.005.
  • Ou, K., and L. Gu. 2014. Absorption and metabolism of proanthocyanidins. Journal of Functional Foods 7:43–53. doi: 10.1016/j.jff.2013.08.004.
  • Park, M.-K., J.-S. Park, M.-L. Cho, H.-J. Oh, Y.-J. Heo, Y.-J. Woo, Y.-M. Heo, M.-J. Park, H.-S. Park, S.-H. Park, et al. 2011. Grape seed proanthocyanidin extract (GSPE) differentially regulates Foxp3(+) regulatory and IL-17(+) pathogenic T cell in autoimmune arthritis. Immunology Letters 135 (1-2):50–8. doi: 10.1016/j.imlet.2010.09.011.
  • Pastene, E., V. Parada, M. Avello, A. Ruiz, and A. Garcia. 2014. Catechin-based procyanidins from Peumus boldus Mol. aqueous extract inhibit Helicobacter pylori urease and adherence to adenocarcinoma gastric cells. Phytotherapy Research: PTR 28 (11):1637–45. doi: 10.1002/ptr.5176.
  • Pathak, A. K., N. Dutta, P. S. Banerjee, T. K. Goswami, and K. Sharma. 2016. Effect of condensed tannins supplementation through leaf meal mixture on voluntary feed intake, immune response and worm burden in Haemonchus contortus infected sheep. Journal of Parasitic Diseases 40 (1):100–5. doi: 10.1007/s12639-014-0455-1.
  • Pereira-Caro, G., S. Gaillet, J. L. Ordóñez, P. Mena, L. Bresciani, K. A. Bindon, D. Del Rio, J. M. Rouanet, J. M. Moreno-Rojas, and A. Crozier. 2020. Bioavailability of red wine and grape seed proanthocyanidins in rats. Food & Function 11 (5):3986–4001. doi: 10.1039/d0fo00350f.
  • Pierre, J. F., A. F. Heneghan, R. P. Feliciano, D. Shanmuganayagam, C. G. Krueger, J. D. Reed, and K. A. Kudsk. 2014. Cranberry proanthocyanidins improve intestinal sIgA during elemental enteral nutrition. JPEN. Journal of Parenteral and Enteral Nutrition 38 (1):107–14. doi: 10.1177/0148607112473654.
  • Pinent, M., A. Castell-Auví, M. I. Genovese, J. Serrano, A. Casanova, M. Blay, and A. Ardévol. 2016. Antioxidant effects of proanthocyanidin-rich natural extracts from grape seed and cupuassu on gastrointestinal mucosa. Journal of the Science of Food and Agriculture 96 (1):178–82. doi: 10.1002/jsfa.7079.
  • Prasain, J. K., and S. Barnes. 2020. Cranberry polyphenols‐gut microbiota interactions and potential health benefits: An updated review. Food Frontiers 1 (4):459–64. doi: 10.1002/fft2.56.
  • Prpa, E. J., B. H. Bajka, P. R. Ellis, P. J. Butterworth, C. P. Corpe, and W. L. Hall. 2021. A systematic review ofin vitrostudies evaluating the inhibitory effects of polyphenol-rich fruit extracts on carbohydrate digestive enzymes activity: A focus on culinary fruits consumed in Europe. Critical Reviews in Food Science and Nutrition 61 (22):3783–803. doi: 10.1080/10408398.2020.1808585.
  • Quaresma, D. M. O., A. B. Justino, R. M. F. Sousa, R. A. A. Munoz, F. J. T. de Aquino, M. M. Martins, L. R. Goulart, M. Pivatto, F. S. Espindola, and A. de Oliveira. 2020. Antioxidant compounds from Banisteriopsis argyrophylla leaves as α-amylase, α-glucosidase, lipase, and glycation inhibitors. Bioorganic Chemistry 105:104335. doi: 10.1016/j.bioorg.2020.104335.
  • Raab, T., D. Barron, F. A. Vera, V. Crespy, M. Oliveira, and G. Williamson. 2010. Catechin glucosides: Occurrence, synthesis, and stability. Journal of Agricultural and Food Chemistry 58 (4):2138–49. doi: 10.1021/jf9034095.
  • Ramos-Romero, S., M. Hereu, E. Molinar-Toribio, M. P. Almajano, L. Méndez, I. Medina, N. Taltavull, M. Romeu, M. R. Nogués, and J. L. Torres. 2017. Effects of the combination of ω-3 PUFAs and proanthocyanidins on the gut microbiota of healthy rats. Food Research International (Ottawa, Ont.) 97:364–71. doi: 10.1016/j.foodres.2017.04.024.
  • Ramos-Romero, S., D. Martinez-Maqueda, M. Hereu, S. Amezqueta, J. L. Torres, and J. Perez-Jimenez. 2020. Modifications of gut microbiota after grape pomace supplementation in subjects at cardiometabolic risk: A randomized cross-over controlled clinical trial. Foods 9 (9):1279. doi: 10.3390/foods9091279.
  • Rauf, A., M. Imran, T. Abu-Izneid, H. Iahfisham Ul, S. Patel, X. Pan, S. Naz, A. S. Silva, F. Saeed, and H. A. R. Suleria. 2019. Proanthocyanidins: A comprehensive review. Biomedicine & Pharmacotherapy 116:108999. doi: 10.1016/j.biopha.2019.108999.
  • Ríos-De, Á. L., A. W. Greer, F. Jackson, S. Athanasiadou, I. Kyriazakis, and J. F. Huntley. 2008. The effect of dietary sainfoin (Onobrychis viciifolia) on local cellular responses to Trichostrongylus colubriformis in sheep. Parasitology 135 (9):1117–24. doi: 10.1017/S0031182008004563.
  • Rodriguez-Daza, M.-C., L. Daoust, L. Boutkrabt, G. Pilon, T. Varin, S. Dudonne, E. Levy, A. Marette, D. Roy, and Y. Desjardins. 2020. Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence glucose homeostasis and intestinal phenotypes in high-fat high-sucrose fed mice. Scientific Reports 10 (1):2217. doi: 10.1038/s41598-020-58863-1.
  • Rohdewald, P., and W. Beil. 2008. In vitro inhibition of Helicobacter pylori growth and adherence to gastric mucosal cells by Pycnogenol). Phytotherapy Research: PTR 22 (5):685–8. doi: 10.1002/ptr.2409.
  • Roopchand, D. E., R. N. Carmody, P. Kuhn, K. Moskal, P. Rojas-Silva, P. J. Turnbaugh, and I. Raskin. 2015. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 64 (8):2847–58. doi: 10.2337/db14-1916.
  • Roowi, S., A. Stalmach, W. Mullen, M. E. J. Lean, C. A. Edwards, and A. Crozier. 2010. Green tea flavan-3-ols: Colonic degradation and urinary excretion of catabolites by humans. Journal of Agricultural and Food Chemistry 58 (2):1296–304. doi: 10.1021/jf9032975.
  • Rowe, C. A., M. P. Nantz, C. Nieves, Jr., R. L. West, and S. S. Percival. 2011. Regular consumption of Concord grape juice benefits human immunity. Journal of Medicinal Food 14 (1-2):69–78. doi: 10.1089/jmf.2010.0055.
  • Rue, E. A., M. D. Rush, and R. B. van Breemen. 2018. Procyanidins: A comprehensive review encompassing structure elucidation via mass spectrometry. Phytochemistry Reviews: proceedings of the Phytochemical Society of Europe 17 (1):1–16. doi: 10.1007/s11101-017-9507-3.
  • Ruggiero, P., G. Rossi, F. Tombola, L. Pancotto, L. Lauretti, G. Del Giudice, and M. Zoratti. 2007. Red wine and green tea reduce H pylori- or VacA-induced gastritis in a mouse model. World Journal of Gastroenterology 13 (3):349–54. doi: 10.3748/wjg.v13.i3.349.
  • Saito, M., H. Hosoyama, T. Ariga, S. Kataoka, and N. Yamaji. 1998. Antiulcer activity of grape seed extract and procyanidins. Journal of Agricultural and Food Chemistry 46 (4):1460–4. doi: 10.1021/jf9709156.
  • Saminathan, M., H. Y. Tan, C. C. Sieo, N. Abdullah, C. M. V. L. Wong, E. Abdulmalek, and Y. W. Ho. 2014. Polymerization degrees, molecular weights and protein-binding affinities of condensed tannin fractions from a Leucaena leucocephala hybrid. Molecules (Basel, Switzerland) 19 (6):7990–8010. doi: 10.3390/molecules19067990.
  • Sánchez-Patán, F., E. Barroso, T. van de Wiele, A. Jiménez-Girón, P. J. Martín-Alvarez, M. V. Moreno-Arribas, M. C. Martínez-Cuesta, C. Peláez, T. Requena, and B. Bartolomé. 2015. Comparative in vitro fermentations of cranberry and grape seed polyphenols with colonic microbiota. Food Chemistry 183:273–82. doi: 10.1016/j.foodchem.2015.03.061.
  • Sangiovanni, E., S. Piazza, U. Vrhovsek, M. Fumagalli, S. Khalilpour, D. Masuero, C. Di Lorenzo, L. Colombo, F. Mattivi, E. De Fabiani, et al. 2018. A bio-guided approach for the development of a chestnut-based proanthocyanidin-enriched nutraceutical with potential anti-gastritis properties. Pharmacological Research 134:145–55. doi: 10.1016/j.phrs.2018.06.016.
  • Santos-Buelga, C., and A. Scalbert. 2000. Proanthocyanidins and tannin-like compounds: nature, occurrence, dietary intake and effects on nutrition and health. Journal of the Science of Food and Agriculture 80 (7):1094–117. doi: 10.1002/(sici)1097-0010(20000515)80:7 < 1094::aid-jsfa569 > 3.0.co;2-1.
  • Santos, R. C., H. Kushima, C. M. Rodrigues, M. Sannomiya, L. R. M. Rocha, T. M. Bauab, J. Tamashiro, W. Vilegas, and C. A. Hiruma-Lima. 2012. Byrsonima intermedia A. Juss.: Gastric and duodenal anti-ulcer, antimicrobial and antidiarrheal effects in experimental rodent models. Journal of Ethnopharmacology 140 (2):203–12. doi: 10.1016/j.jep.2011.12.008.
  • Sayago-Ayerdi, S. G., V. M. Zamora-Gasga, and K. Venema. 2019. Prebiotic effect of predigested mango peel on gut microbiota assessed in a dynamic in vitro model of the human colon (TIM-2). Food Research International (Ottawa, Ont.) 118:89–95. doi: 10.1016/j.foodres.2017.12.024.
  • Scarsella, E., M. Cintio, L. Iacumin, F. Ginaldi, and B. Stefanon. 2020. Interplay between neuroendocrine biomarkers and gut microbiota in dogs supplemented with grape proanthocyanidins: Results of dietary intervention study. Animals 10 (3):531. doi: 10.3390/ani10030531.
  • Selma, M. V., J. C. Espín, and F. A. Tomás-Barberán. 2009. Interaction between phenolics and gut microbiota: Role in human health. Journal of Agricultural and Food Chemistry 57 (15):6485–501. doi: 10.1021/jf902107d.
  • Serrano, J., A. Casanova-Marti, K. Gil-Cardoso, M. T. Blay, X. Terra, M. Pinent, and A. Ardevol. 2016. Acutely administered grape-seed proanthocyanidin extract acts as a satiating agent. Food & Function 7 (1):483–90. doi: 10.1039/c5fo00892a.
  • Sheng, K., G. Zhang, M. Sun, S. He, X. Kong, J. Wang, F. Zhu, X. Zha, and Y. Wang. 2020. Grape seed proanthocyanidin extract ameliorates dextran sulfate sodium-induced colitis through intestinal barrier improvement, oxidative stress reduction, and inflammatory cytokines and gut microbiota modulation. Food & Function 11 (9):7817–29. doi: 10.1039/d0fo01418d.
  • Shmuely, H., O. Burger, I. Neeman, J. Yahav, Z. I. Samra, Y. Niv, N. Sharon, E. Weiss, A. Athamna, M. Tabak, et al. 2004. Susceptibility of Helicobacter pylori isolates to the antiadhesion activity of a high-molecular-weight constituent of cranberry. Diagnostic Microbiology and Infectious Disease 50 (4):231–5. doi: 10.1016/j.diagmicrobio.2004.08.011.
  • Shoji, T., S. Masumoto, N. Moriichi, H. Akiyama, T. Kanda, Y. Ohtake, and Y. Goda. 2006. Apple procyanidin oligomers absorption in rats after oral administration: Analysis of procyanidins in plasma using the porter method and high-performance liquid chromatography/tandem mass spectrometry. Journal of Agricultural and Food Chemistry 54 (3):884–92. doi: 10.1021/jf052260b.
  • Shrestha, S. P., J. A. Thompson, M. F. Wempe, M. Gu, R. Agarwal, and C. Agarwal. 2012. Glucuronidation and methylation of procyanidin dimers B2 and 3,3″-di-o-galloyl-b2 and corresponding monomers epicatechin and 3-o-galloyl-epicatechin in mouse liver . Pharmaceutical Research 29 (3):856–65. doi: 10.1007/s11095-011-0614-3.
  • Siegień, J., T. Buchholz, D. Popowski, S. Granica, E. Osińska, M. F. Melzig, and M. E. Czerwińska. 2021. Pancreatic lipase and α-amylase inhibitory activity of extracts from selected plant materials after gastrointestinal digestion in vitro. Food Chemistry 355:129414. doi: 10.1016/j.foodchem.2021.129414.
  • Silvan, J. M., A. Gutierrez-Docio, S. Moreno-Fernandez, T. Alarcon-Cavero, M. Prodanov, and A. J. Martinez-Rodriguez. 2020. Procyanidin-rich extract from grape seeds as a putative tool against Helicobacter pylori. Foods 9 (10):1370. doi: 10.3390/foods9101370.
  • Skyberg, J. A., A. Robison, S. Golden, M. F. Rollins, G. Callis, E. Huarte, I. Kochetkova, M. A. Jutila, and D. W. Pascual. 2011. Apple polyphenols require T cells to ameliorate dextran sulfate sodium-induced colitis and dampen proinflammatory cytokine expression. Journal of Leukocyte Biology 90 (6):1043–54. doi: 10.1189/jlb.0311168.
  • Sokolova, O., and M. Naumann. 2021. Manifold role of ubiquitin in Helicobacter pylori infection and gastric cancer. Cellular and Molecular Life Sciences: CMLS 78 (10):4765–83. doi: 10.1007/s00018-021-03816-8.
  • Song, M.-Y., J.-H. Wang, T. Eom, and H. Kim. 2015. Schisandra chinensis fruit modulates the gut microbiota composition in association with metabolic markers in obese women: A randomized, double-blind placebo-controlled study. Nutrition Research (New York, N.Y.) 35 (8):655–63. doi: 10.1016/j.nutres.2015.05.001.
  • Souccar, C., R. M. Cysneiros, M. M. Tanae, L. M. B. Torres, M. T. R. Lima-Landman, and A. J. Lapa. 2008. Inhibition of gastric acid secretion by a standardized aqueous extract of Cecropia glaziovii Sneth and underlying mechanism. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 15 (6-7):462–9. doi: 10.1016/j.phymed.2008.02.006.
  • Sripanidkulchai, K., S. Teepsawang, and B. Sripanidkulchai. 2010. Protective effect of Cratoxylum formosum extract against acid/alcohol-induced gastric mucosal damage in rats. Journal of Medicinal Food 13 (5):1097–103. doi: 10.1089/jmf.2009.1237.
  • Stoupi, S.,. G. Williamson, F. Viton, D. Barron, L. J. King, J. E. Brown, and M. N. Clifford. 2010. In vivo bioavailability, absorption, excretion, and pharmacokinetics of [14C]procyanidin B2 in male rats. Drug Metabolism and Disposition: The Biological Fate of Chemicals 38 (2):287–91. doi: 10.1124/dmd.109.030304.
  • Stoupi, S.,. G. Williamson, J. W. Drynan, D. Barron, and M. N. Clifford. 2010. A comparison of the in vitro biotransformation of (–)-epicatechin and procyanidin B2 by human faecal microbiota. Molecular Nutrition & Food Research 54 (6):747–59. doi: 10.1002/mnfr.200900123.
  • Sugiyama, H., Y. Akazome, T. Shoji, A. Yamaguchi, M. Yasue, T. Kanda, and Y. Ohtake. 2007. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. Journal of Agricultural and Food Chemistry 55 (11):4604–9. doi: 10.1021/jf070569k.
  • Sun, C., C. Zhao, E. C. Guven, P. Paoli, J. Simal‐Gandara, K. M. Ramkumar, S. Wang, F. Buleu, A. Pah, V. Turi, et al. 2020. Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Frontiers 1 (1):18–44. doi: 10.1002/fft2.15.
  • Symma, N., J. Sendker, F. Petereit, and A. Hensel. 2020. Multistep Analysis of Diol-LC-ESI-HRMS data reveals proanthocyanidin composition of complex plant extracts (PAComics). Journal of Agricultural and Food Chemistry 68 (30):8040–9. doi: 10.1021/acs.jafc.0c02826.
  • Tadic, V. M., S. Dobric, G. M. Markovic, S. M. Dordevic, I. A. Arsic, N. R. Menkovic, and T. Stevic. 2008. Anti-inflammatory, gastroprotective, free-radical-scavenging, and antimicrobial activities of hawthorn berries ethanol extract. Journal of Agricultural and Food Chemistry 56 (17):7700–9. doi: 10.1021/jf801668c.
  • Takekawa, K., and K. Matsumoto. 2012. Water-insoluble condensed tannins content of young persimmon fruits-derived crude fibre relates to its bile acid-binding ability. Natural Product Research 26 (23):2255–8. doi: 10.1080/14786419.2011.650640.
  • Tao, W., H. Pan, H. Jiang, M. Wang, X. Ye, and S. Chen. 2022. Extraction and identification of proanthocyanidins from the leaves of persimmon and loquat. Food Chemistry 372:130780. doi: 10.1016/j.foodchem.2021.130780.
  • Tao, W., Y. Zhang, X. Shen, Y. Cao, J. Shi, X. Ye, and S. Chen. 2019. Rethinking the mechanism of the health benefits of proanthocyanidins: Absorption, metabolism, and interaction with gut microbiota. Comprehensive Reviews in Food Science and Food Safety 18 (4):971–85. doi: 10.1111/1541-4337.12444.
  • Terra, X., J. Valls, X. Vitrac, J.-M. Mérrillon, L. Arola, A. Ardèvol, C. Bladé, J. Fernández-Larrea, G. Pujadas, J. Salvadó, et al. 2007. Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. Journal of Agricultural and Food Chemistry 55 (11):4357–65. doi: 10.1021/jf0633185.
  • Theoharides, T. C. 2007. Treatment approaches for painful bladder syndrome/interstitial cystitis. Drugs 67 (2):215–35. doi: 10.2165/00003495-200767020-00004.
  • Thomas-Valdes, S., C. Theoduloz, F. Jimenez-Aspee, and G. Schmeda-Hirschmann. 2019. Effect of simulated gastrointestinal digestion on polyphenols and bioactivity of the native Chilean red strawberry (Fragaria chiloensis ssp. chiloensis f. patagonica). Food Research International (Ottawa, Ont.) 123:106–14. doi: 10.1016/j.foodres.2019.04.039.
  • Tsao, R. 2010. Chemistry and biochemistry of dietary polyphenols. Nutrients 2 (12):1231–46. doi: 10.3390/nu2121231.
  • Tsujita, T.,. T. Shintani, and H. Sato. 2014. Preparation and characterisation of peanut seed skin polyphenols. Food Chemistry 151:15–20. doi: 10.1016/j.foodchem.2013.11.072.
  • Unusan, N. 2020. Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry. Journal of Functional Foods 67:103861. doi: 10.1016/j.jff.2020.103861.
  • Vazquez-Flores, A. A., A. I. Martinez-Gonzalez, E. Alvarez-Parrilla, A. G. Diaz-Sanchez, L. A. de la Rosa, G. A. Gonzalez-Aguilar, and C. N. Aguilar. 2018. Proanthocyanidins with a low degree of polymerization are good inhibitors of digestive enzymes because of their ability to form specific interactions: A hypothesis. Journal of Food Science 83 (12):2895–902. doi: 10.1111/1750-3841.14386.
  • Vendrame, S., S. Guglielmetti, P. Riso, S. Arioli, D. Klimis-Zacas, and M. Porrini. 2011. Six-week consumption of a wild blueberry powder drink increases Bifidobacteria in the human gut. Journal of Agricultural and Food Chemistry 59 (24):12815–20. doi: 10.1021/jf2028686.
  • Visvanathan, R., and G. Williamson. 2021a. Citrus polyphenols and risk of type 2 diabetes: Evidence from mechanistic studies. Critical Reviews in Food Science and Nutrition :1–25. doi: 10.1080/10408398.2021.1971945.
  • Visvanathan, R., and G. Williamson. 2021b. Effect of citrus fruit and juice consumption on risk of developing type 2 diabetes: Evidence on polyphenols from epidemiological and intervention studies. Trends in Food Science & Technology 115:133–46. doi: 10.1016/j.tifs.2021.06.038.
  • Wang, H., Y. Xue, H. Zhang, Y. Huang, G. Yang, M. Du, and M.-J. Zhu. 2013. Dietary grape seed extract ameliorates symptoms of inflammatory bowel disease in IL10-deficient mice. Molecular Nutrition & Food Research 57 (12):2253–7. doi: 10.1002/mnfr.201300146.
  • Wang, L.-S., Y. Y. Mo, Y.-W. Huang, C. E. Echeveste, H.-T. Wang, J. Chen, K. Oshima, M. Yearsley, J. Simal-Gandaraf, M. Battino, et al. 2020. Effects of dietary interventions on gut microbiota in humans and the possible impacts of foods on patients’ responses. eFood 1 (4):279–87. doi: 10.2991/efood.k.200824.002.
  • Wang, M., J. Chen, X. Ye, and D. Liu. 2020. In vitro inhibitory effects of Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves proanthocyanidins on pancreatic α-amylase and their interaction. Bioorganic Chemistry 101:104029. doi: 10.1016/j.bioorg.2020.104029.
  • Wang, T. K., S. Xu, S. Li, and Y. Zhang. 2020. Proanthocyanidins should be a candidate in the treatment of cancer, cardiovascular diseases and lipid metabolic disorder. Molecules 25 (24):5971. doi: 10.3390/molecules25245971.
  • Wang, Y.-H., B. Ge, X.-L. Yang, J. Zhai, L.-N. Yang, X.-X. Wang, X. Liu, J.-C. Shi, and Y.-J. Wu. 2011. Proanthocyanidins from grape seeds modulates the nuclear factor-kappa B signal transduction pathways in rats with TNBS-induced recurrent ulcerative colitis. Int Immunopharmacol 11 (10):1620–7. doi: 10.1016/j.intimp.2011.05.024.
  • Wang, Y.-H., X.-L. Yang, L. Wang, M.-X. Cui, Y.-Q. Cai, X.-L. Li, and Y.-J. Wu. 2010. Effects of proanthocyanidins from grape seed on treatment of recurrent ulcerative colitis in rats. Canadian Journal of Physiology and Pharmacology 88 (9):888–98. doi: 10.1139/y10-071.
  • Wariyapperuma, W. A. N. M., S. Kannangara, Y. S. Wijayasinghe, S. Subramanium, and B. Jayawardena. 2020. In vitro anti-diabetic effects and phytochemical profiling of novel varieties of Cinnamomum zeylanicum (L.) extracts. Peerj. 8:e10070. doi: 10.7717/peerj.10070.
  • Williams, A. R., L. Krych, H. F. Ahmad, P. Nejsum, K. Skovgaard, D. S. Nielsen, and S. M. Thamsborg. 2017. A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune responses and gut microbiota composition in pigs. PLoS ONE 12 (10):e0186546 doi: 10.1371/journal.pone.0186546.
  • Williams, A. R., A. I. S. Andersen-Civil, L. Zhu, and A. Blanchard. 2020. Dietary phytonutrients and animal health: Regulation of immune function during gastrointestinal infections. Journal of Animal Science 98 (4):1–11. doi: 10.1093/jas/skaa030.
  • Williamson, G., and M. N. Clifford. 2017. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochem Pharmacol 139:24–39. doi: 10.1016/j.bcp.2017.03.012.
  • Witherden, D. A., and W. L. Havran. 2013. Cross-talk between intraepithelial γδ T cells and epithelial cells. Journal of Leukocyte Biology 94 (1):69–76. doi: 10.1189/jlb.0213101.
  • Wong, X., A. M. Madrid, K. Tralma, R. Castillo, C. Carrasco-Pozo, P. Navarrete, C. Beltran, E. Pastene, and M. Gotteland. 2016. Polyphenol extracts interfere with bacterial lipopolysaccharide in vitro and decrease postprandial endotoxemia in human volunteers. Journal of Functional Foods 26:406–17. doi: 10.1016/j.jff.2016.08.011.
  • Wu, Y., N. Ma, P. Song, T. He, C. Levesque, Y. Bai, A. Zhang, and X. Ma. 2019. Grape Seed Proanthocyanidin Affects Lipid Metabolism via Changing Gut Microflora and Enhancing Propionate Production in Weaned Pigs. The Journal of Nutrition 149 (9):1523–32. doi: 10.1093/jn/nxz102.
  • Wu, H., T. Luo, Y. M. Li, Z. P. Gao, K. Q. Zhang, J. Y. Song, J. S. Xiao, and Y. P. Cao. 2018. Granny Smith apple procyanidin extract upregulates tight junction protein expression and modulates oxidative stress and inflammation in lipopolysaccharide-induced Caco-2 cells. Food & Function 9 (6):3321–9. doi: 10.1039/c8fo00525g.
  • Wu, Q., K. Zhao, Y. Chen, Y. Ouyang, Y. Feng, S. Li, L. Zhang, and N. Feng. 2021. Effect of lotus seedpod oligomeric procyanidins on AGEs formation in simulated gastrointestinal tract and cytotoxicity in Caco-2 cells. Food & Function 12 (8):3527–38. doi: 10.1039/d0fo03152f.
  • Wu, T., C. Grootaert, S. Voorspoels, G. Jacobs, J. Pitart, S. Kamiloglu, S. Possemiers, M. Heinonen, N. Kardum, M. Glibetic, et al. 2017. Aronia (Aronia melanocarpa) phenolics bioavailability in a combined in vitro digestion/Caco-2 cell model is structure and colon region dependent. Journal of Functional Foods 38:128–39. doi: 10.1016/j.jff.2017.09.008.
  • Xiao, Y., C. Yang, H. Xu, Q. Wu, Y. Zhou, X. Zhou, and J. Miao. 2020. Procyanidin B-2 prevents dyslipidemia via modulation of gut microbiome and related metabolites in high-fat diet fed mice. Journal of Functional Foods 75:104285. doi: 10.1016/j.jff.2020.104285.
  • Xiaoli, L., Y. Xiaolai, C. Yongqing, Q. Hong, W. Li, W. Yanhong, H. Yanhui, W. Xiaoxia, Y. Shuai, W. Liping, et al. 2011. Proanthocyanidins from grape seeds modulate the NF-κB Signal Transduction Pathways in Rats with TNBS-Induced Ulcerative Colitis . Molecules (Basel, Switzerland) 16 (8):6721–31. doi: 10.3390/molecules16086721.
  • Xing, Y.-W., G.-T. Lei, Q.-H. Wu, Y. Jiang, and M.-X. Huang. 2019. Procyanidin B2 protects against diet-induced obesity and non-alcoholic fatty liver disease via the modulation of the gut microbiota in rabbits. World Journal of Gastroenterology 25 (8):955–66. doi: 10.3748/wjg.v25.i8.955.
  • Xu, H., C. Zhao, Y. Li, R. Liu, M. Ao, F. Li, Y. Yao, Z. Tao, and L. Yu. 2019. The ameliorative effect of the Pyracantha fortuneana (Maxim.) H. L. Li extract on intestinal barrier dysfunction through modulating glycolipid digestion and gut microbiota in high fat diet-fed rats. Food & Function 10 (10):6517–32. doi: 10.1039/c9fo01599j.
  • Yamakoshi, J., S. Tokutake, M. Kikuchi, Y. Kubota, H. Konishi, and T. Mitsuoka. 2001. Effect of proanthocyanidin-rich extract from grape seeds on human fecal flora and fecal odor. Microbial Ecology in Health and Disease 13 (1):25–31. doi: 10.1080/089106001750071672.
  • Yang, H., X. Tuo, L. Wang, R. Tundis, M. P. Portillo, J. Simal-Gandara, Y. Yu, L. Zou, J. Xiao, and J. Deng. 2021. Bioactive procyanidins from dietary sources: The relationship between bioactivity and polymerization degree. Trends in Food Science & Technology 111:114–27. doi: 10.1016/j.tifs.2021.02.063.
  • Yoshioka, Y.,. H. Akiyama, M. Nakano, T. Shoji, T. Kanda, Y. Ohtake, T. Takita, R. Matsuda, and T. Maitani. 2008. Orally administered apple procyanidins protect against experimental inflammatory bowel disease in mice. International Immunopharmacology 8 (13-14):1802–7. doi: 10.1016/j.intimp.2008.08.021.
  • Yu, D., T. Huang, B. Tian, and J. Zhan. 2020. Advances in biosynthesis and biological functions of proanthocyanidins in horticultural plants. Foods 9 (12):1774. doi: 10.3390/foods9121774.
  • Yusuf, E., A. Wojdyło, J. Oszmiański, and P. Nowicka. 2021. Nutritional, phytochemical characteristics and in vitro effect on α-amylase, α-glucosidase, lipase, and cholinesterase activities of 12 coloured carrot varieties. Foods 10 (4):808. doi: 10.3390/foods10040808.
  • Zhang, L., J. L. Ma, K. F. Pan, V. L. W. Go, J. S. Chen, and W. C. You. 2005. Efficacy of cranberry juice on Helicobacter pylori infection: A double-blind, randomized placebo-controlled trial. Helicobacter 10 (2):139–45. doi: 10.1111/j.1523-5378.2005.00301.x.
  • Zhang, L., R. N. Carmody, H. M. Kalariya, R. M. Duran, K. Moskal, A. Poulev, P. Kuhn, K. M. Tveter, P. J. Turnbaugh, I. Raskin, et al. 2018. Grape proanthocyanidin-induced intestinal bloom of Akkermansia muciniphila is dependent on its baseline abundance and precedes activation of host genes related to metabolic health. The Journal of Nutritional Biochemistry 56:142–51. doi: 10.1016/j.jnutbio.2018.02.009.
  • Zhang, L., Y. Wang, D. Li, C.-T. Ho, J. Li, and X. Wan. 2016. The absorption, distribution, metabolism and excretion of procyanidins. Food & Function 7 (3):1273–81. doi: 10.1039/c5fo01244a.
  • Zheng, S., K. Huang, C. Zhao, W. Xu, Y. Sheng, Y. Luo, and X. He. 2018. Procyanidin attenuates weight gain and modifies the gut microbiota in high fat diet induced obese mice. Journal of Functional Foods 49:362–8. doi: 10.1016/j.jff.2018.09.007.
  • Zhong, H., Y. Xue, X. Lu, Q. Shao, Y. Cao, Z. Wu, and G. Chen. 2018. The Effects of different degrees of procyanidin polymerization on the nutrient absorption and digestive enzyme activity in mice. Molecules 23 (11):2916. doi: 10.3390/molecules23112916.
  • Zhou, L., W. Wang, J. Huang, Y. Ding, Z. Pan, Y. Zhao, R. Zhang, B. Hu, and X. Zeng. 2016. In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota. Food & Function 7 (4):1959–67. doi: 10.1039/c6fo00032k.
  • Zumdick, S., A. Deters, and A. Hensel. 2012. In vitro intestinal transport of oligomeric procyanidins (DP 2 to 4) across monolayers of Caco-2 cells. Fitoterapia 83 (7):1210–7. doi: 10.1016/j.fitote.2012.06.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.