1,503
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

New definition of resistant starch types from the gut microbiota perspectives – a review

ORCID Icon &

References

  • Arpaia, N., C. Campbell, X. Fan, S. Dikiy, J. van der Veeken, P. deRoos, H. Liu, J. R. Cross, K. Pfeffer, P. J. Coffer, et al. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504 (7480):451–5.
  • Ashwar, B. A., A. Gani, A. Shah, and F. A. Masoodi. 2017. Physicochemical properties, in-vitro digestibility and structural elucidation of RS4 from rice starch. International Journal of Biological Macromolecules 105 (Pt 1):471–7.
  • Bae, C.-H., M.-S. Park, G.-E. Ji, and H.-D. Park. 2013. Effects of phosphorylated cross-linked resistant corn starch on the intestinal microflora and short chain fatty acid formation during in vitro human fecal batch culture. Food Science and Biotechnology 22 (6):1649–54. doi: 10.1007/s10068-013-0262-y.
  • Baxter, N. T., A. W. Schmidt, A. Venkataraman, K. S. Kim, C. Waldron, and T. M. Schmidt. 2019. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. MBio 10 (1):e02566–18. doi: 10.1128/mBio.02566-18.
  • Bendiks, Z. A., K. E. B. Knudsen, M. J. Keenan, and M. L. Marco. 2020. Conserved and variable responses of the gut microbiome to resistant starch type 2. Nutrition Research (New York, N.Y.) 77:12–28.
  • Blazek, J., and E. P. Gilbert. 2010. Effect of enzymatic hydrolysis on native starch granule structure. Biomacromolecules 11 (12):3275–89.
  • Cantu-Jungles, T. M., N. Bulut, E. Chambry, A. Ruthes, M. Iacomini, A. Keshavarzian, T. A. Johnson, and B. R. Hamaker. 2021. Dietary fiber hierarchical specificity: The missing link for predictable and strong shifts in gut bacterial communities. MBio 12 (3):e0102821. doi: 10.1128/mBio.01028-21.
  • Cantu-Jungles, T. M., and B. R. Hamaker. 2020. New view on dietary fiber selection for predictable shifts in gut microbiota. MBio 11 (1):e02179-02119.
  • Cantu-Jungles, T. M., A. C. Ruthes, M. El-Hindawy, R. B. Moreno, X. Zhang, L. M. C. Cordeiro, B. R. Hamaker, and M. Iacomini. 2018. In vitro fermentation of Cookeina speciosa glucans stimulates the growth of the butyrogenic Clostridium cluster XIVa in a targeted way. Carbohydrate Polymers 183:219–29. doi: 10.1016/j.carbpol.2017.12.020.
  • Carmody, R. N., A. Sarkar, and A. T. Reese. 2021. Gut microbiota through an evolutionary lens. Science (New York, N.Y.) 372 (6541):462–3.
  • Chambers, E. S., C. S. Byrne, D. J. Morrison, K. G. Murphy, T. Preston, C. Tedford, I. Garcia-Perez, S. Fountana, J. I. Serrano-Contreras, E. Holmes, et al. 2019. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: A randomised cross-over trial. Gut 68 (8):1430–8. doi: 10.1136/gutjnl-2019-318424.
  • Chambers, E. S., A. Viardot, A. Psichas, D. J. Morrison, K. G. Murphy, S. E. K. Zac-Varghese, K. MacDougall, T. Preston, C. Tedford, G. S. Finlayson, et al. 2015. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64 (11):1744–54. doi: 10.1136/gutjnl-2014-307913.
  • Comalada, M., E. Bailon, O. de Haro, F. Lara-Villoslada, J. Xaus, A. Zarzuelo, and J. Galvez. 2006. The effects of short-chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype. Journal of Cancer Research and Clinical Oncology 132 (8):487–97.
  • Dahl, W. J., A. L. Ford, M. Ukhanova, A. Radford, M. C. Christman, S. Waugh, and V. Mai. 2016. Resistant potato starches (type 4 RS) exhibit varying effects on laxation with and without phylum level changes in microbiota: A randomised trial in young adults. Journal of Functional Foods 23:1–11. doi: 10.1016/j.jff.2016.02.013.
  • Deehan, E. C., C. Yang, M. E. Perez-Munoz, N. K. Nguyen, C. C. Cheng, L. Triador, Z. Zhang, J. A. Bakal, and J. Walter. 2020. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host & Microbe 27 (3):389–404. e386.
  • Edwards, C. H., M. M. Grundy, T. Grassby, D. Vasilopoulou, G. S. Frost, P. J. Butterworth, S. E. Berry, J. Sanderson, and P. R. Ellis. 2015. Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion, postprandial glycemia, insulinemia, and gut hormone responses: A randomized controlled trial in healthy ileostomy participants. The American Journal of Clinical Nutrition 102 (4):791–800. doi: 10.3945/ajcn.114.106203.
  • Englyst, H. N., S. M. Kingman, and J. H. Cummings. 1992. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46 (Suppl 2):S33–S50.
  • Gong, B., L. Cheng, R. G. Gilbert, and C. Li. 2019. Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch. Food Hydrocolloids. 96:634–43. doi: 10.1016/j.foodhyd.2019.06.003.
  • Goñi, I., A. García-Alonso, N. Martín-Carrón, and F. Saura-Calixto. 2000. In vitro fermentation of different types of α-amylase resistant corn starches. European Food Research and Technology 211:316–21.
  • Gu, F., C. Li, B. R. Hamaker, R. G. Gilbert, and X. Zhang. 2020. Fecal microbiota responses to rice RS3 are specific to amylose molecular structure. Carbohydrate Polymers 243:116475.
  • Guan, N., X. He, S. Wang, F. Liu, Q. Huang, X. Fu, T. Chen, and B. Zhang. 2020. Cell wall integrity of pulse modulates in vitro fecal fermentation rate and microbiota composition. Journal of Agricultural and Food Chemistry 68 (4):1091–100.
  • Hasjim, J., S. O. Lee, S. Hendrich, S. Setiawan, Y. F. Ai, and J. L. Jane. 2010. Characterization of a novel resistant-starch and its effects on postprandial plasma-glucose and insulin responses. Cereal Chemistry 87 (4):257–62. doi: 10.1094/CCHEM-87-4-0257.
  • Higgins, J. A. 2004. Resistant starch: Metabolic effects and potential health benefits. Journal of AOAC International 87 (3):761–8. doi: 10.1093/jaoac/87.3.761.
  • Hu, Y., C. Li, and Y. Hou. 2021. Possible regulation of liver glycogen structure through the gut-liver axis by resistant starch: A review. Food & Function 12 (22):11154–64.
  • Jonathan, M. C., J. J. G. C. v d Borne, P. Wiechen, C. S. d Silva, H. A. Schols, and H. Gruppen. 2012. In vitro fermentation of 12 dietary fibres by faecal inoculum from pigs and humans. Food Chemistry 133 (3):889–97. doi: 10.1016/j.foodchem.2012.01.110.
  • Kaur, A., T. Chen, S. J. Green, E. Mutlu, B. R. Martin, P. Rumpagaporn, J. A. Patterson, A. Keshavarzian, and B. R. Hamaker. 2019. Physical inaccessibility of a resistant starch shifts mouse gut microbiota to butyrogenic firmicutes. Molecular Nutrition & Food Research 63 (7):e1801012. doi: 10.1002/mnfr.201801012.
  • Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Backhed. 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165 (6):1332–45. doi: 10.1016/j.cell.2016.05.041.
  • Larsbrink, J., T. E. Rogers, G. R. Hemsworth, L. S. McKee, A. S. Tauzin, O. Spadiut, S. Klinter, N. A. Pudlo, K. Urs, N. M. Koropatkin, et al. 2014. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506 (7489):498–502.
  • Larsen, N., F. K. Vogensen, F. W. J. van den Berg, D. S. Nielsen, A. S. Andreasen, B. K. Pedersen, W. A. Al-Soud, S. J. Sørensen, L. H. Hansen, and M. Jakobsen. 2010. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PloS One 5 (2):e9085.
  • Lei, S., X. Li, L. Liu, M. Zheng, Q. Chang, Y. Zhang, and H. Zeng. 2020. Effect of lotus seed resistant starch on tolerance of mice fecal microbiota to bile salt. International Journal of Biological Macromolecules 151:384–93.
  • Lesmes, U., E. J. Beards, G. R. Gibson, K. M. Tuohy, and E. Shimoni. 2008. Effects of resistant starch type III polymorphs on human colon microbiota and short chain fatty acids in human gut models. Journal of Agricultural and Food Chemistry 56 (13):5415–21.
  • Li, C., B. Gong, Y. Hu, X. Liu, X. Guan, and B. Zhang. 2020. Combined crystalline, lamellar and granular structural insights into in vitro digestion rate of native starches. Food Hydrocolloids. 105:105823. doi: 10.1016/j.foodhyd.2020.105823.
  • Li, C., and Y. Hu. 2021. Align resistant starch structures from plant-based foods with human gut microbiome for personalized health promotion. Critical Reviews in Food Science and Nutrition:1–12. doi: 10.1080/10408398.2021.1976722.
  • Li, C., Y. Hu, and B. Zhang. 2021. Plant cellular architecture and chemical composition as important regulator of starch functionality in whole foods. Food Hydrocolloids. 117:106744. doi: 10.1016/j.foodhyd.2021.106744.
  • Li, H., S. Chen, A. T. Bui, B. Xu, and S. Dhital. 2021. Natural ‘capsule’ in food plants: Cell wall porosity controls starch digestion and fermentation. Food Hydrocolloids. 117:106657. doi: 10.1016/j.foodhyd.2021.106657.
  • Li, Z. T., G. A. Hu, L. Zhu, Z. C. Zhao, J. Yun, M. J. Gao, and X. B. Zhan. 2021. In vitro digestion and fecal fermentation of highly resistant starch rice and its effect on the gut microbiota. Food Chemistry 361:130095.
  • Liu, H., M. Zhang, Q. Ma, B. Tian, C. Nie, Z. Chen, and J. Li. 2020. Health beneficial effects of resistant starch on diabetes and obesity via regulation of gut microbiota: A review. Food & Function 11 (7):5749–67.
  • Lu, S., B. M. Flanagan, B. A. Williams, D. Mikkelsen, and M. J. Gidley. 2020. Cell wall architecture as well as chemical composition determines fermentation of wheat cell walls by a faecal inoculum. Food Hydrocolloids. 107:105858. doi: 10.1016/j.foodhyd.2020.105858.
  • Lu, S., D. Mikkelsen, H. Yao, B. A. Williams, B. M. Flanagan, and M. J. Gidley. 2021. Wheat cell walls and constituent polysaccharides induce similar microbiota profiles upon in vitro fermentation despite different short chain fatty acid end-product levels. Food & Function 12 (3):1135–46. doi: 10.1039/D0FO02509G.
  • Ma, Z., and J. I. Boye. 2018. Research advances on structural characterization of resistant starch and its structure-physiological function relationship: A review. Critical Reviews in Food Science and Nutrition 58 (7):1059–83.
  • Macfarlane, G. T., G. R. Gibson, and J. H. Cummings. 1992. Comparison of fermentation reactions in different regions of the human colon. Journal of Applied Bacteriology 72 (1):57–64. doi: 10.1111/j.1365-2672.1992.tb04882.x.
  • Marques, F. Z., C. R. Mackay, and D. M. Kaye. 2018. Beyond gut feelings: How the gut microbiota regulates blood pressure. Nature Reviews. Cardiology 15 (1):20–32.
  • Martens, E. C., A. G. Kelly, A. S. Tauzin, and H. Brumer. 2014. The devil lies in the details: How variations in polysaccharide fine-structure impact the physiology and evolution of gut microbes. Journal of Molecular Biology 426 (23):3851–65.
  • Martinez, I., J. Kim, P. R. Duffy, V. L. Schlegel, and J. Walter. 2010. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PloS One 5 (11):e15046.
  • Miao, M., B. Jiang, S. W. Cui, T. Zhang, and Z. Jin. 2015. Slowly digestible starch–a review. Critical Reviews in Food Science and Nutrition 55 (12):1642–57.
  • Patel, H., P. G. Royall, S. Gaisford, G. R. Williams, C. H. Edwards, F. J. Warren, B. M. Flanagan, P. R. Ellis, and P. J. Butterworth. 2017. Structural and enzyme kinetic studies of retrograded starch: Inhibition of α-amylase and consequences for intestinal digestion of starch . Carbohydrate Polymers 164:154–61. doi: 10.1016/j.carbpol.2017.01.040.
  • Plongbunjong, V., P. Graidist, K. E. B. Knudsen, and S. Wichienchot. 2017. Starch-based carbohydrates display the bifidogenic and butyrogenic properties in pH-controlled faecal fermentation. International Journal of Food Science & Technology 52 (12):2647–53. doi: 10.1111/ijfs.13553.
  • Qi, M., B. Tan, J. Wang, S. Liao, Y. Deng, P. Ji, T. Song, A. Zha, and Y. Yin. 2021. The microbiota-gut-brain axis: A novel nutritional therapeutic target for growth retardation. Critical Reviews in Food Science and Nutrition 1–26. doi: 10.1080/10408398.2021.1879004.
  • Qin, R., J. Yu, Y. Li, L. Copeland, S. Wang, and S. Wang. 2019. Structural changes of starch-lipid complexes during postprocessing and their effect on in vitro enzymatic digestibility. Journal of Agricultural and Food Chemistry 67 (5):1530–6.
  • Qin, R. B., J. Wang, C. Chao, J. L. Yu, L. Copeland, S. J. Wang, and S. Wang. 2021. RS5 produced more butyric acid through regulating the microbial community of human gut microbiota. Journal of Agricultural and Food Chemistry 69 (10):3209–18.
  • Rivera-Chavez, F., L. F. Zhang, F. Faber, C. A. Lopez, M. X. Byndloss, E. E. Olsan, G. Xu, E. M. Velazquez, C. B. Lebrilla, S. E. Winter, et al. 2016. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of salmonella. Cell Host & Microbe. 19 (4):443–54. doi: 10.1016/j.chom.2016.03.004.
  • Rose, D. J., K. Venema, A. Keshavarzian, and B. R. Hamaker. 2010. Starch-entrapped microspheres show a beneficial fermentation profile and decrease in potentially harmful bacteria during in vitro fermentation in faecal microbiota obtained from patients with inflammatory bowel disease. British Journal of Nutrition 103 (10):1514–24. doi: 10.1017/S0007114509993515.
  • Shin, N. R., J. C. Lee, H. Y. Lee, M. S. Kim, T. W. Whon, M. S. Lee, and J. W. Bae. 2014. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63 (5):727–35. doi: 10.1136/gutjnl-2012-303839.
  • Sonnenburg, E. D., H. Zheng, P. Joglekar, S. K. Higginbottom, S. J. Firbank, D. N. Bolam, and J. L. Sonnenburg. 2010. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 141 (7):1241–52.
  • Storey, D., A. Lee, F. Bornet, and F. Brouns. 2007. Gastrointestinal responses following acute and medium term intake of retrograded resistant maltodextrins, classified as type 3 resistant starch. European Journal of Clinical Nutrition 61 (11):1262–70.
  • Tannock, G. W., and Y. F. Liu. 2020. Guided dietary fibre intake as a means of directing short-chain fatty acid production by the gut microbiota. Journal of the Royal Society of New Zealand 50 (3):434–55. doi: 10.1080/03036758.2019.1657471.
  • Tuncil, Y. E., C. H. Nakatsu, A. E. Kazem, S. Arioglu-Tuncil, B. Reuhs, E. C. Martens, and B. R. Hamaker. 2017. Delayed utilization of some fast-fermenting soluble dietary fibers by human gut microbiota when presented in a mixture. Journal of Functional Foods 32:347–57. doi: 10.1016/j.jff.2017.03.001.
  • Tuncil, Y. E., Y. Xiao, N. T. Porter, B. L. Reuhs, E. C. Martens, and B. R. Hamaker. 2017. Reciprocal prioritization to dietary glycans by gut bacteria in a competitive environment promotes stable coexistence. MBio 8 (5):e01068-01017. doi: 10.1128/mBio.01068-17.
  • Venkataraman, A., J. R. Sieber, A. W. Schmidt, C. Waldron, K. R. Theis, and T. M. Schmidt. 2016. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome 4 (1):33. doi: 10.1186/s40168-016-0178-x.
  • Wan, J., Y. Wu, Q. Pham, R. W. Li, L. Yu, M. H. Chen, S. M. Boue, W. Yokoyama, B. Li, and T. T. Y. Wang. 2021. Effects of differences in resistant starch content of rice on intestinal microbial composition. Journal of Agricultural and Food Chemistry 69 (28):8017–27. doi: 10.1021/acs.jafc.0c07887.
  • Wandee, Y., D. Uttapap, S. Puncha-Arnon, C. Puttanlek, V. Rungsardthong, and N. Wetprasit. 2017. In vitro fermentabilities of raw and cooked canna starches and their derivatives. Journal of Functional Foods 34:461–9. doi: 10.1016/j.jff.2017.05.004.
  • Wang, M. M., S. Wichienchot, X. W. He, X. Fu, Q. Huang, and B. Zhang. 2019. In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends in Food Science & Technology 88:1–9. doi: 10.1016/j.tifs.2019.03.005.
  • Wang, S., S. Dhital, K. Wang, X. Fu, B. Zhang, and Q. Huang. 2021. Side-by-side and exo-pitting degradation mechanism revealed from in vitro human fecal fermentation of granular starches. Carbohydrate Polymers 263:118003.
  • Wang, S., B. Zhang, T. Chen, C. Li, X. Fu, and Q. Huang. 2019. Chemical cross-linking controls in vitro fecal fermentation rate of high-amylose maize starches and regulates gut microbiota composition. Journal of Agricultural and Food Chemistry 67 (49):13728–36.
  • Warren, F. J., N. M. Fukuma, D. Mikkelsen, B. M. Flanagan, B. A. Williams, A. T. Lisle, P. Ó Cuív, M. Morrison, and M. J. Gidley. 2018. Food starch structure impacts gut microbiome composition. mSphere 3 (3):e00086–18. doi: 10.1128/mSphere.00086-18.
  • Woelk, C. H., and A. Snyder. 2021. Modulating gut microbiota to treat cancer. Science (New York, N.Y.) 371 (6529):573–4.
  • Wu, H., V. Tremaroli, C. Schmidt, A. Lundqvist, L. M. Olsson, M. Kramer, A. Gummesson, R. Perkins, G. Bergstrom, and F. Backhed. 2020. The gut microbiota in prediabetes and diabetes: A population-based cross-sectional study. Cell Metabolism. doi: 10.1016/j.cmet.2020.06.011. PMID: 32652044.
  • Xie, Z., S. Wang, Z. Wang, X. Fu, Q. Huang, Y. Yuan, K. Wang, and B. Zhang. 2019. In vitro fecal fermentation of propionylated high-amylose maize starch and its impact on gut microbiota. Carbohydrate Polymers 223:115069.
  • Yang, J., I. Martinez, J. Walter, A. Keshavarzian, and D. J. Rose. 2013. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. Anaerobe 23:74–81. doi: 10.1016/j.anaerobe.2013.06.012.
  • Yi, X., and C. Li. 2022. Main controllers for improving the resistant starch content in cooked white rice. Food Hydrocolloids. 122:107083. doi: 10.1016/j.foodhyd.2021.107083.
  • Yu, E. W., L. Gao, P. Stastka, M. C. Cheney, J. Mahabamunuge, M. Torres Soto, C. B. Ford, J. A. Bryant, M. R. Henn, and E. L. Hohmann. 2020. Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Medicine 17 (3):e1003051. doi: 10.1371/journal.pmed.1003051.
  • Zhang, G., and B. R. Hamaker. 2009. Slowly digestible starch: Concept, mechanism, and proposed extended glycemic index. Critical Reviews in Food Science and Nutrition 49 (10):852–67.
  • Zhang, L., Y. Ouyang, H. Li, L. Shen, Y. Ni, Q. Fang, G. Wu, L. Qian, Y. Xiao, J. Zhang, et al. 2019. Metabolic phenotypes and the gut microbiota in response to dietary resistant starch type 2 in normal-weight subjects: A randomized crossover trial. Scientific Reports 9 (1):4736. doi: 10.1038/s41598-018-38216-9.
  • Zhou, D., Z. Ma, and X. Hu. 2021. Isolated pea resistant starch substrates with different structural features modulate the production of short-chain fatty acids and metabolism of microbiota in anaerobic fermentation in vitro. Journal of Agricultural and Food Chemistry 69 (18):5392–404. doi: 10.1021/acs.jafc.0c08197.
  • Zhou, Q., X. Fu, S. Dhital, H. Zhai, Q. Huang, and B. Zhang. 2021. In vitro fecal fermentation outcomes of starch-lipid complexes depend on starch assembles more than lipid type. Food Hydrocolloids. 120:106941. doi: 10.1016/j.foodhyd.2021.106941.
  • Zia Ud, D., H. Xiong, and P. Fei. 2017. Physical and chemical modification of starches: A review. Critical Reviews in Food Science and Nutrition 57 (12):2691–705.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.