1,204
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

Biodegradation behavior and digestive properties of starch-based film for food packaging – a review

, , &

References

  • Afshar, S., and H. Baniasadi. 2018. Investigation the effect of graphene oxide and gelatin/starch weight ratio on the properties of starch/gelatin/GO nanocomposite films: The RSM study. International Journal of Biological Macromolecules 109:1019–28. doi: 10.1016/j.ijbiomac.2017.11.083.
  • Alexopoulos, A., S. Plessas, and E. Bezirtzoglou. 2009. Water microbial ecology – An overview. In Encyclopedia of Life Sciences, eds. A. Alexopoulos, S. Plessas, and E. Bezirtzoglou, 1:24. 2009. UK: Wiley: Chichester.
  • Al-Tayyar, N. A., A. M. Youssef, and R. Al-Hindi. 2020. Antimicrobial food packaging based on sustainable bio-based materials for reducing foodborne pathogens: A review. Food Chemistry 310:125915. doi: 10.1016/j.foodchem.2019.125915.
  • Amin, M. R., M. A. Chowdhury, and M. A. Kowser. 2019. Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Heliyon 5 (8):E02009. doi: 10.1016/j.heliyon.2019.e02009.
  • Amni, C., A. M. S. Ismet, and S. A. Akbar. 2020. Mechanical properties of bioplastics Janeng starch (Dioscorea hispida) film with glycerol and zinc oxide as reinforcement. Rasayan Journal of Chemistry 13 (1):275–81. doi: 10.31788/RJC.2020.1315492.
  • Anugrahwidya, R., B. Armynah, and D. Tahir. 2021. Bioplastics starch-based with additional fiber and nanoparticle: Characteristics and biodegradation performance: A review. Journal of Polymers and the Environment 29 (11):3459–76. doi: 10.1007/s10924-021-02152-z.
  • Anukiruthika, T., P. Sethupathy, A. Wilson, K. Kashampur, J. Moses, and C. Anandharamakrishnan. 2020. Multilayer packaging: Advances in preparation techniques and emerging food applications. Comprehensive Reviews in Food Science and Food Safety 19 (3):1156–86. doi: 10.1111/1541-4337.12556.
  • Asgari, A., A. Hemmasi, B. Bazyar, M. Talaeipour, and A. Nourbakhsh. 2020. Inspecting the properties of polypropylene/poplar wood flour composites with microcrystalline cellulose and starch powder addition. BioResources 15 (2):4188–204. doi: 10.15376/biores.15.2.4188-4204.
  • Asgher, M., S. A. Qamar, M. Bilal, and H. M. N. Iqbal. 2020. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Research International (Ottawa, Ont.) 137:109625. doi: 10.1016/j.foodres.2020.109625.
  • Avella, M., J. J. De Vlieger, M. E. Errico, S. Fischer, P. Vacca, and M. G. Volpe. 2005. Biodegradation starch/clay nanocomposite films for food packaging applications. Food Chemistry 93 (3):467–74. doi: 10.1016/j.foodchem.2004.10.024.
  • Baran, E. T., K. Tuzlakoğlu, J. F. Mano, and R. L. Reis. 2012. Enzymatic degradation behavior and cytocompatibility of silk fibroin-starch-chitosan conjugate membranes. Materials Science & Engineering C, Materials for Biological Applications 32 (6):1314–22. doi: 10.1016/j.msec.2012.02.015.
  • Barone, A. S., J. R. V. Matheus, T. S. P. de Souza, R. F. A. Moreira, and A. E. C. Fai. 2021. Green-based active packaging: Opportunities beyond COVID-19, food applications, and perspectives in circular economy – A brief review. Comprehensive Reviews in Food Science and Food Safety 20 (5):4881–905. doi: 10.1111/1541-4337.12812.
  • Behera, A. K., C. Mohanty, S. K. Pradhan, and N. Das. 2021. Assessment of soil and fungal degradability of thermoplastic starch reinforced natural fiber composite. Journal of Polymers and the Environment 29 (4):1031–9. doi: 10.1007/s10924-020-01944-z.
  • Benbettaieb, N., T. Karbowiak, and F. Debeaufort. 2019. Bioactive edible films for food applications: Influence of the bioactive compounds on film structure and properties. Critical Reviews in Food Science and Nutrition 59 (7):1137–53. doi: 10.1080/10408398.2017.1393384.
  • Bher, A., I. U. Unalan, R. Auras, M. Rubino, and C. E. Schvezov. 2019. Graphene modifies the biodegradation of poly (lactic acid)-thermoplastic cassava starch reactive blend films. Polymer Degradation and Stability 164:187–97. doi: 10.1016/j.polymdegradstab.2019.04.014.
  • Breslin, V. T. 1993. Degradation of starch-plastic composites in a municipal solid waste landfill. Journal of Environmental Polymer Degradation 1 (2):127–41. doi: 10.1007/BF01418206.
  • Calderon, L. J. P., E. Gontikaki, L. D. Potts, S. Shaw, A. Gallego, J. A. Anderson, and U. Witte. 2019. Pressure and temperature effects on deep-sea hydrocarbon-degrading microbial communities in subarctic sediments. Microbiologyopen 8 (6):e768. doi: 10.1002/mbo3.768.
  • Cano, A. I., M. Chafer, A. Chiralt, and C. Gonzalez-Martinez. 2016. Biodegradation behavior of starch-PVA films as affected by the incorporation of different antimicrobials. Polymer Degradation and Stability 132:11–20. doi: 10.1016/j.polymdegradstab.2016.04.014.
  • Cazon, P., G. Velazquez, J. A. Ramírez, and M. Vazquez. 2017. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids 68:136–48. doi: 10.1016/j.foodhyd.2016.09.009.
  • Chen, X. L., L. M. Wang, J. G. Shi, H. Shi, and Y. L. Liu. 2011. Environmental degradation of starch/poly (lactic acid) composite in seawater. Polymers and Polymer Composites 19 (7):559–65. doi: 10.1177/096739111101900705.
  • Cheng, H., L. Chen, D. J. McClements, T. Y. Yang, Z. P. Zhang, F. Ren, M. Miao, Y. Q. Tian, and Z. Y. Jin. 2021. Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry. Trends in Food Science & Technology 114:70–82. doi: 10.1016/j.tifs.2021.05.017.
  • Cheng, J., H. Wang, S. Kang, L. Xia, S. Jiang, M. Chen, and S. Jiang. 2019. An active packaging film based on yam starch with eugenol and its application for pork preservation. Food Hydrocolloids. 96:546–54. doi: 10.1016/j.foodhyd.2019.06.007.
  • Datta, D., S. Samanta, and G. Halder. 2019. Surface functionalization of extracted nanosilica from rice husk for augmenting mechanical and optical properties of synthesized LDPE-Starch biodegradable film. Polymer Testing 77:105878. doi: 10.1016/j.polymertesting.2019.04.025.
  • Deroine, M., G. Cesar, A. L. Duigou, P. Davies, and S. Bruzaud. 2015. Natural degradation and biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in liquid and solid marine environments. Journal of Polymers and the Environment 23 (4):493–505. doi: 10.1007/s10924-015-0736-5.
  • Deroine, M., A. L. Duigou, Y. M. Corre, P. Y. Le Gac, P. Davies, G. Cesar, and S. Bruzaud. 2014. Seawater accelerated ageing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer Degradation and Stability 105:237–47. doi: 10.1016/j.polymdegradstab.2014.04.026.
  • Dhall, R. K. 2013. Advances in edible coatings for fresh fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition 53 (5):435–50. doi: 10.1080/10408398.2010.541568.
  • Dhital, S., A. K. Shrestha, and M. J. Gidley. 2010. Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydrate Polymers 82 (2):480–8. doi: 10.1016/j.carbpol.2010.05.018.
  • Di Piazza, S., J. Houbraken, M. Meijer, G. Cecchi, B. Kraak, E. Rosa, and M. Zotti. 2020. Thermotolerant and thermophilic mycobiota in different steps of compost maturation. Microorganisms 8 (6):880. doi: 10.3390/microorganisms8060880.
  • Edwards, C. H., F. J. Warren, P. J. Milligan, P. J. Butterworth, and P. R. Ellis. 2014. A novel method for classifying starch digestion by modelling the amylolysis of plant foods using first-order enzyme kinetic principles. Food & Function 5 (11):2751–8. doi: 10.1039/c4fo00115j.
  • Eyheraguibel, B., M. Leremboure, M. Traikia, M. Sancelme, S. Bonhomme, D. Fromageot, J. Lemaire, J. Lacoste, and A. M. Delort. 2018. Environmental scenarii for the degradation of oxo-polymers. Chemosphere 198:182–90. doi: 10.1016/j.chemosphere.2018.01.153.
  • Faisant, N., A. Buleon, P. Colonna, C. Molis, S. Lartigue, J. P. Galmiche, and M. Champ. 1995. Digestion of raw banana starch in the small-intestine of healthy humans – Structural features of resistant starch. British Journal of Nutrition 73 (1):111–23. doi: 10.1079/BJN19950013.
  • Fakhouri, F. M., S. M. Martelli, T. Caon, J. I. Velasco, and L. H. I. Mei. 2015. Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biology and Technology 109:57–64. doi: 10.1016/j.postharvbio.2015.05.015.
  • Falguera, V., J. P. Quintero, A. Jimenez, J. A. Munoz, and A. Ibarz. 2011. Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology 22 (6):292–303. doi: 10.1016/j.tifs.2011.02.004.
  • Fei, Y., L. W. Qing, and L. Yong. 2008. Thermal decomposition kinetics of natural fibers: Activation energy dynamic thermo-gravimetric analysis. Polymer Degradation and Stability 93:90–8. doi: 10.1016/j.polymdegradstab.2007.10.012.
  • Gallet, G., R. Lempiäinen, and S. Karlsson. 2000. Characterisation by solid phase microextraction-gas chromatography–mass spectrometry of matrix changes of poly(-lactide) exposed to outdoor soil environment. Polymer Degradation and Stability 71 (1):147–51. doi: 10.1016/S0141-3910(00)00165-8.
  • Garavand, F., M. Rouhi, S. H. Razavi, I. Cacciotti, and R. Mohammadi. 2017. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. International Journal of Biological Macromolecules 104 (Pt A):687–707. doi: 10.1016/j.ijbiomac.2017.06.093.
  • Gorrasi, G., and R. Pantani. 2013. Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: Assessment of structural modification and kinetic parameters. Polymer Degradation and Stability 98 (5):1006–14. doi: 10.1016/j.polymdegradstab.2013.02.005.
  • Guo, M., L. Chen, T. Fang, R. Wang, N. Nuraje, and P. E. Brodelius. 2021. Synthesis, properties and applications of self-repairing carbohydrates as smart materials via thermally reversible DA bonds. Polymers for Advanced Technologies 32 (3):1026–37. doi: 10.1002/pat.5150.
  • Gutierrez, T. J. 2017. Surface and nutraceutical properties of edible films made from starchy sources with and without added blackberry pulp. Carbohydrate Polymers 165:169–79. doi: 10.1016/j.carbpol.2017.02.016.
  • Gutierrez, T. J. 2018. Characterization and in vitro digestibility of non-conventional starches from guinea arrowroot and La Armuna entils as potential food sources for special diet regimens. Starch-Starke 70:1–2. doi: 10.1002/star.201700124.
  • Gutierrez, T. J., and K. Alvarez. 2016. Physicochemical properties and in vitro digestibility of edible films made from plantain flour with added aloe vera gel. Journal of Functional Foods 26:750–62. doi: 10.1016/j.jff.2016.08.054.
  • Gutierrez, T. J., C. Herniou-Julien, K. Alvarez, and V. A. Alvarez. 2018. Structural properties and in vitro digestibility of edible and pH-sensitive films made from guinea arrowroot starch and wastes from wine manufacture. Carbohydrate Polymers 184:135–43. doi: 10.1016/j.carbpol.2017.12.039.
  • Guzman-Sielicka, A., H. Janik, and P. Sielicki. 2012. Degradation of oolycaprolactone modified with TPS or CaCO3 in biotic/abiotic seawater. Journal of Polymers and the Environment 20 (2):353–60. doi: 10.1007/s10924-011-0384-3.
  • Heimowska, A., M. Morawska, and A. Bocho-Janiszewska. 2017. Biodegradation of poly(epsilon-caprolactone) in natural water environments. Polish Journal of Chemical Technology 19 (1):120–6. doi: 10.1515/pjct-2017-0017.
  • Hejri, Z., A. A. Seifkordi, A. Ahmadpour, S. M. Zebarjad, and A. Maskooki. 2013. Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles. International Journal of Minerals, Metallurgy, and Materials 20 (10):1001–11. doi: 10.1007/s12613-013-0827-z.
  • Hernandez, O., U. Emaldi, and J. Tovar. 2008. In vitro digestibility of edible films from various starch sources. Carbohydrate Polymers 71 (4):648–55. doi: 10.1016/j.carbpol.2007.07.016.
  • Ibrahim, N., M. K. Ab Wahab, D. N. Uylan, and H. Ismail. 2017. Physical and degradation properties of polylactic acid and thermoplastic starch blends – Effect of citric acid treatment on starch structures. BioResources 12 (2):3076–87. doi: 10.15376/biores.12.2.3076-3087.
  • Ilyas, R. A., S. M. Sapuan, M. R. Ishak, and E. S. Zainudin. 2018. Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydrate Polymers 202:186–202. doi: 10.1016/j.carbpol.2018.09.002.
  • Imam, S. H., S. H. Gordon, A. Mohamed, R. Harry-O’kuru, B.-S. Chiou, G. M. Glenn, and W. J. Orts. 2006. Enzyme catalysis of insoluble cornstarch granules: Impact on surface morphology, properties and biodegradability. Polymer Degradation and Stability 91 (12):2894–900. doi: 10.1016/j.polymdegradstab.2006.08.021.
  • Ismail, H., and N. F. Zaaba. 2014a. Effects of poly (vinyl alcohol) on the performance of sago starch plastic films. Journal of Vinyl and Additive Technology 20 (2):72–9. doi: 10.1002/vnl.21348.
  • Ismail, H., and N. F. Zaaba. 2014b. Effect of unmodified and modified sago starch on properties of (sago starch)/silica/PVA plastic films. Journal of Vinyl and Additive Technology 20 (3):185–92. doi: 10.1002/vnl.21344.
  • Jambeck, J. R., R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, and K. L. Law. 2015. Plastic waste inputs from land into the ocean. Science (New York, N.Y.) 347 (6223):768–71. doi: 10.1126/science.1260352.
  • Jiménez, A., M. J. Fabra, P. Talens, and A. Chiralt. 2012. Edible and Biodegradable Starch Films: A Review. Food and Bioprocess Technology 5 (6):2058–76. doi: 10.1007/s11947-012-0835-4.
  • Johnson, K. E., A. L. Pometto, and Z. L. Nikolov. 1993. Degradation of degradable starch-polyethylene plastics in a compost environment. Applied and Environmental Microbiology 59 (4):1155–61. doi: 10.1128/aem.59.4.1155-1161.1993.
  • Julinová, M., L. Vaňharová, M. Jurča, A. Minařík, P. Duchek, J. Kavečková, D. Rouchalová, and P. Skácelík. 2020. Effect of different fillers on the biodegradation rate of thermoplastic starch in water and soil environments. Journal of Polymers and the Environment 28 (2):566–83. doi: 10.1007/s10924-019-01624-7.
  • Karan, H., C. Funk, M. Grabert, M. Oey, and B. Hankamer. 2019. Green bioplastics as part of a circular bioeconomy. Trends in Plant Science 24 (3):237–49. doi: 10.1016/j.tplants.2018.11.010.
  • Kassé, M., M. Cissé, F. Charles, M.-N. Ducamp, D. Montet, and A. Guissé. 2017. Inhibiting effects of neem seed oil on pathogenic and spoilage microorganisms of fresh-cut mango (Mangifera indica L.). Fruits 72 (2):97–103. doi: 10.17660/th2017/72.2.5.
  • Kaur, K., R. Jindal, M. Maiti, and S. Mahajan. 2019. Studies on the properties and biodegradability of PVA/Trapa natans starch (N-st) composite films and PVA/N-st-g-poly (EMA) composite films. International Journal of Biological Macromolecules 123:826–36. doi: 10.1016/j.ijbiomac.2018.11.134.
  • Klein, R., and F. R. Wurm. 2015. Aliphatic polyethers: Classical polymers for the 21st century. Macromolecular Rapid Communications 36 (12):1147–65. doi: 10.1002/marc.201500013.
  • Kliem, S., M. Kreutzbruck, and C. Bonten. 2020. Review on the biological degradation of polymers in various environments. Materials 13 (20):4586. doi: 10.3390/ma13204586.
  • Kochkina, N. E., and N. D. Lukin. 2020. Structure and properties of biodegradable maize starch/chitosan composite films as affected by PVA additions. International Journal of Biological Macromolecules 157:377–84. doi: 10.1016/j.ijbiomac.2020.04.154.
  • Kubowicz, S., and A. M. Booth. 2017. Biodegradability of plastics: Challenges and misconceptions. Environmental Science & Technology 51 (21):12058–60. doi: 10.1021/acs.est.7b04051.
  • Kuchaiyaphum, P., W. Punyodom, S. Watanesk, and R. Watanesk. 2013. Composition optimization of polyvinyl alcohol/rice starch/silk fibroin-blended films for improving its eco-friendly packaging properties. Journal of Applied Polymer Science 129 (5):2614–20. doi: 10.1002/app.38977.
  • Lauer, M. K., and R. C. Smith. 2020. Recent advances in starch-based films toward food packaging applications: Physicochemical, mechanical, and functional properties. Comprehensive Reviews in Food Science and Food Safety 19 (6):3031–83. doi: 10.1111/1541-4337.12627.
  • Li, C., Y. Hu, and E. Li. 2021. Effects of amylose and amylopectin chain-length distribution on the kinetics of long-term rice starch retrogradation. Food Hydrocolloids. 111:106239. doi: 10.1016/j.foodhyd.2020.106239.
  • Li, M. C., J. K. Lee, and U. R. Cho. 2012. Synthesis, characterization, and enzymatic degradation of starch-grafted poly (methyl methacrylate) copolymer films. Journal of Applied Polymer Science 125 (1):405–14. doi: 10.1002/app.35620.
  • Li, S., Y. Ma, T. Ji, D. E. Sameen, S. Ahmed, W. Qin, J. Dai, S. Li, and Y. Liu. 2020. Cassava starch/carboxymethylcellulose edible films embedded with lactic acid bacteria to extend the shelf life of banana. Carbohydrate Polymers 248:116805. doi: 10.1016/j.carbpol.2020.116805.
  • Li, G., P. Sarazin, W. J. Orts, S. H. Imam, and B. D. Favis. 2011. Biodegradation of thermoplastic starch and its blends with poly (lactic acid) and polyethylene: Influence of morphology. Macromolecular Chemistry and Physics 212 (11):1147–54. doi: 10.1002/macp.201100090.
  • Li, M., X. Tian, R. Jin, and D. Li. 2018. Preparation and characterization of nanocomposite films containing starch and cellulose nanofibers. Industrial Crops and Products 123:654–60. doi: 10.1016/j.indcrop.2018.07.043.
  • Liu, Y., C. Chao, J. Yu, S. Wang, S. Wang, and L. Copeland. 2020. New insights into starch gelatinization by high pressure: Comparison with heat-gelatinization. Food Chemistry 318:126493. doi: 10.1016/j.foodchem.2020.126493.
  • Liu, J., J. Ming, W. J. Li, and G. H. Zhao. 2012. Synthesis, characterisation and in vitro digestibility of carboxymethyl potato starch rapidly prepared with microwave-assistance. Food Chemistry 133 (4):1196–205. doi: 10.1016/j.foodchem.2011.05.061.
  • Li, M., T. Witt, F. W. Xie, F. J. Warren, P. J. Halley, and R. G. Gilbert. 2015. Biodegradation of starch films: The roles of molecular and crystalline structure. Carbohydrate Polymers 122:115–22. doi: 10.1016/j.carbpol.2015.01.011.
  • Lv, X. X., Y. Hong, Q. W. Zhou, and C. C. Jiang. 2021. Structural features and digestibility of corn starch with different amylose content. Frontiers in Nutrition 8:692673. doi: 10.3389/fnut.2021.692673.
  • Maiti, S., D. Ray, and D. Mitra. 2012. Role of crosslinker on the biodegradation behavior of starch/polyvinylalcohol blend films. Journal of Polymers and the Environment 20 (3):749–59. doi: 10.1007/s10924-012-0433-6.
  • Meert, J., A. Izzo, and J. D. Atkinson. 2021. Impact of plastic bag bans on retail return polyethylene film recycling contamination rates and speciation. Waste Management 135:234–42. doi: 10.1016/j.wasman.2021.08.043.
  • Mezzanotte, V., R. Bertani, F. D. Innocenti, and M. Tosin. 2005. Influence of inocula on the results of biodegradation tests. Polymer Degradation and Stability 87 (1):51–6. doi: 10.1016/j.polymdegradstab.2004.06.009.
  • Misman, M. A., A. R. Azura, and Z. A. A. Hamid. 2015. Physico-chemical properties of solvent based etherification of sago starch. Industrial Crops and Products 65:397–405. doi: 10.1016/j.indcrop.2014.11.009.
  • Mittal, A., S. Garg, D. Kohli, M. Maiti, A. K. Jana, and S. Bajpai. 2016. Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films. Carbohydrate Polymers 151:926–38. doi: 10.1016/j.carbpol.2016.06.037.
  • Moriana, R., S. Karlsson, and A. Ribes-Greus. 2010. Assessing the influence of cotton fibers on the degradation in soil of a thermoplastic starch-based biopolymer. Polymer Composites 31 (12):2102–11. doi: 10.1002/pc.21007.
  • Nilsen-Nygaard, J., E. N. Fernandez, T. Radusin, B. T. Rotabakk, J. Sarfraz, N. Sharmin, M. Sivertsvik, I. Sone, and M. K. Pettersen. 2021. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Comprehensive Reviews in Food Science and Food Safety 20 (2):1333–80. doi: 10.1111/1541-4337.12715.
  • Noah, L., F. Guillon, B. Bouchet, A. Buleon, C. Molis, M. Gratas, and M. Champ. 1998. Digestion of carbohydrate from white beans (Phaseolus vulgaris L.) in healthy humans. The Journal of Nutrition 128 (6):977–85. doi: 10.1093/jn/128.6.977.
  • Okafor, N. 2011. Environmental Microbiology of Aquatic and Waste Systems. 1st ed. USA: Springer, Dordrecht. doi: 10.1007/978-94-007-1460-15.
  • Oluwasina, O. O., F. K. Olaleye, S. J. Olusegun, O. O. Oluwasina, and N. D. S. Mohallem. 2019. Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. International Journal of Biological Macromolecules 135:282–93. doi: 10.1016/j.ijbiomac.2019.05.150.
  • Panahi, L., M. Gholizadeh, and R. Hajimohammadi. 2020. Investigating the degradability of polyethylene using starch, oxo-material, and polylactic acid under the different environmental conditions. Asia-Pacific Journal of Chemical Engineering 15 (1): e2402. doi: 10.1002/apj.2402.
  • Park, J. S., J. H. Yang, D. H. Kim, and D. H. Lee. 2004. Degradability of expanded starch/PVA blends prepared using calcium carbonate as the expanding inhibitor. Journal of Applied Polymer Science 93 (2):911–9. doi: 10.1002/app.20533.
  • Peanasky, J. S., J. M. Long, and R. P. Wool. 1991. Percolation effects in degradable polyethylene-starch blends. Journal of Polymer Science Part B: Polymer Physics 29 (5):565–79. doi: 10.1002/polb.1991.090290506.
  • Pitkanen, L., M. Heinonen, and K. S. Mikkonen. 2018. Safety considerations of plant polysaccharides for food use: A case study on phenolic-rich softwood galactoglucomannan extract. Food & Function 9 (4):1931–43. doi: 10.1039/C7FO01425B.
  • Priya, B., V. K. Gupta, D. Pathania, and A. S. Singha. 2014. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydrate Polymers 109:171–9. doi: 10.1016/j.carbpol.2014.03.044.
  • Rahmouni, M., F. Chouinard, F. Nekka, V. Lenaerts, and J. C. Leroux. 2001. Enzymatic degradation of cross-linked high amylose starch tablets and its effect on in vitro release of sodium diclofenac. European Journal of Pharmaceutics and Biopharmaceutics 51 (3):191–8. doi: 10.1016/S0939-6411(01)00127-8.
  • Ramirez-Hernandez, A., A. Aparicio-Saguilan, J. L. Mata-Mata, G. Gonzalez-Garcia, H. Hernandez-Mendoza, E. Baez-Garcia, and C. Conde-Acevedo. 2018. Clusters of starch-g-PCL and their effect on the physicochemical properties of films. Starch – Stärke 70 (1–2):1700135. doi: 10.1002/star.201700135.
  • Ruggero, F., E. Carretti, R. Gori, T. Lotti, and C. Lubello. 2020. Monitoring of degradation of starch-based biopolymer film under different composting conditions, using TGA, FTIR and SEM analysis. Chemosphere 246:125770. doi: 10.1016/j.chemosphere.2019.125770.
  • Sajilata, M. G., R. S. Singhal, and P. R. Kulkarni. 2006. Resistant starch – A review. Comprehensive Reviews in Food Science and Food Safety:1–17. doi: 10.1111/j.1541-4337.2006.tb00076.x.
  • Sandhu, R. S., and M. Shakya. 2019. Comparative study of synthetic plastics and biodegradable plastics. Global Journal of Bio-Science and Biotechnology 8 (1):107–12.
  • Sessini, V., M. P. Arrieta, J. M. Raquez, P. Dubois, J. M. Kenny, and L. Peponi. 2019. Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites. Polymer Degradation and Stability 159:184–98. doi: 10.1016/j.polymdegradstab.2018.11.025.
  • Sharma, V., M. Kaur, K. S. Sandhu, and S. K. Godara. 2020. Effect of cross-linking on physico-chemical, thermal, pasting, in vitro digestibility and film forming properties of Faba bean (Vicia faba L.) starch. International Journal of Biological Macromolecules 159:243–9. doi: 10.1016/j.ijbiomac.2020.05.014.
  • Shrestha, A. K., C. S. Ng, A. Lopez-Rubio, J. Blazek, E. P. Gilbert, and M. J. Gidley. 2010. Enzyme resistance and structural organization in extruded high amylose maize starch. Carbohydrate Polymers 80 (3):699–710. doi: 10.1016/j.carbpol.2009.12.001.
  • Sintim, H. Y., A. I. Bary, D. G. Hayes, L. C. Wadsworth, M. B. Anunciado, M. E. English, S. Bandopadhyay, S. M. Schaeffer, J. M. DeBruyn, C. A. Miles, et al. 2020. In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. The Science of the Total Environment 727:138668. doi: 10.1016/j.scitotenv.2020.138668.
  • Su, C., X. Zhang, X. Ge, H. Shen, Q. Zhang, Y. Lu, X. Sun, Z. Sun, and W. Li. 2022. Structural, physical and degradation characteristics of polyvinyl alcohol/esterified mung bean starch/gliadin ternary composite plastic. Industrial Crops & Products 176:114365. doi: 10.1016/j.indcrop.2021.114365.
  • Tahir, H. E., Z. Xiaobo, G. K. Mahunu, M. Arslan, M. Abdalhai, and L. Zhihua. 2019. Recent developments in gum edible coating applications for fruits and vegetables preservation: A review. Carbohydrate Polymers 224:115141. doi: 10.1016/j.carbpol.2019.115141.
  • Tai, N. L., R. Adhikari, R. Shanks, and B. Adhikari. 2019. Aerobic biodegradation of starch-polyurethane flexible films under soil burial condition: Changes in physical structure and chemical composition. International Biodeterioration & Biodegradation 145:104793. doi: 10.1016/j.ibiod.2019.104793.
  • Thakur, R., P. Pristijono, C. J. Scarlett, M. Bowyer, S. P. Singh, and Q. V. Vuong. 2019. Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules 132:1079–89. doi: 10.1016/j.ijbiomac.2019.03.190.
  • Tovar, J., C. Melito, E. Herrera, A. Rascon, and E. Perez. 2002. Resistant starch formation does not parallel syneresis tendency in different starch gels. Food Chemistry 76 (4):455–9. doi: 10.1016/S0308-8146(01)00306-5.
  • Valencia-Chamorro, S. A., L. Palou, M. A. Del Río, and M. B. Pérez-Gago. 2011. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition 51 (9):872–900. doi: 10.1080/10408398.2010.485705.
  • Vargas, C. G., T. M. H. Costa, A. D. Rios, and S. H. Flores. 2017. Comparative study on the properties of films based on red rice (Oryza glaberrima) flour and starch. Food Hydrocolloids. 65:96–106. doi: 10.1016/j.foodhyd.2016.11.006.
  • Vargun, E., Z. Sisli, F. Yılmaz, and H. B. Sermenli. 2016. The effects of citric acid and stearic acid compatibilizers on the degradation behavior of TPS/LDPE blends for mulch films. Hacettepe Journal of Biological Chemistry 44 (4):463–76. doi: 10.15671/HJBC.2016.127.
  • Velasquez, E., C. P. Vidal, A. Rojas, A. Guarda, M. J. Galotto, and C. L. de Dicastillo. 2021. Natural antimicrobials and antioxidants added to polylactic acid packaging films. Part I: Polymer processing techniques. Comprehensive Reviews in Food Science and Food Safety 20 (4):3388–403. doi: 10.1111/1541-4337.12777.
  • Veliz, A. B. L., J. C. Jimenez, P. Lopez, and B. R. Gascue. 2019. Biodegradability study by FTIR and DSC of polymers films based on polypropylene and cassava starch. Orbital: The Electronic Journal of Chemistry 11:71–82. doi: 10.17807/orbital.v11i2.1360.
  • Versino, F., O. V. Lopez, M. A. Garcia, and N. E. Zaritzky. 2016. Starch-based films and food coatings: An overview. Starch 68:11–2. doi: 10.1002/star.201600095.
  • Versino, F., M. Urriza, and M. A. Garcia. 2019. Eco-compatible cassava starch films for fertilizer controlled-release. International Journal of Biological Macromolecules 134:302–7. doi: 10.1016/j.ijbiomac.2019.05.037.
  • Vilpoux, O., and L. Averous. 2003. Tuberose cultures Latin American starches. In Technology, uses and potential of Latin American starchy tuberoses, ed. M. P. Cereda and O. Vilpoux, 500–30. São Paulo: Cargill.
  • Wang, Y., D. Li, L. J. Wang, L. Yang, and N. Özkan. 2011. Dynamic mechanical properties of flaxseed gum based edible films. Carbohydrate Polymers 86 (2):499–504. doi: 10.1016/j.carbpol.2011.04.079.
  • Wang, X. W., G. X. Wang, D. Huang, B. Lu, Z. C. Zhen, Y. Ding, Z. L. Ren, P. L. Wang, W. Zhang, and J. H. Ji. 2019. Degradability comparison of poly (butylene adipate terephthalate) and its composites filled with starch and calcium carbonate in different aquatic environments. Journal of Applied Polymer Science 136 (2):46916. doi: 10.1002/app.46916.
  • Wang, H., L. Wang, S. Ye, and X. Song. 2019. Construction of Bi2WO6 –TiO2/starch nanocomposite films for visible-light catalytic degradation of ethylene. Food Hydrocolloids 88:92–100. doi: 10.1016/j.foodhyd.2018.09.021.
  • Wang, S., T. Wu, W. Cui, M. Liu, Y. Wu, C. Zhao, M. Zheng, X. Xu, and J. Liu. 2020. Structure and in vitro digestibility on complex of corn starch with soy isoflavone. Food Science & Nutrition 8 (11):6061–8. doi: 10.1002/fsn3.1896.
  • Wang, S. J., J. G. Yu, and J. L. Yu. 2006. Preparation and characterization of compatible and degradable thermoplastic starch/polyethylene film. Journal of Polymers and the Environment 14 (1):65–70. doi: 10.1007/s10924-005-8708-9.
  • Wang, B., B. Yu, C. Yuan, L. Guo, P. Liu, W. Gao, D. Li, B. Cui, and A. M. Abd El-Aty. 2021. An overview on plasticized biodegradable corn starch-based films: The physicochemical properties and gelatinization process. Critical Reviews in Food Science and Nutrition 6:1–11. doi: 10.1080/10408398.2020.1868971.
  • Xie, J. W., L. C. Huang, R. Wang, S. Y. Ye, and X. L. Song. 2020. Novel visible light-responsive graphene oxide/Bi2WO6/starch composite membrane for efficient degradation of ethylene. Carbohydrate Polymers 246:116640. doi: 10.1016/j.carbpol.2020.116640.
  • Yun, Y. H., K. J. Hwang, Y. J. Wee, and S. D. Yoon. 2011. Synthesis, physical properties, and characterization of starch-based blend films by adding nano-sized tio2/poly(methyl metacrylate-co-acrylamide). Journal of Applied Polymer Science 120 (3):1850–8. doi: 10.1002/app.33408.
  • Yun, Y. H., Y. J. Wee, H. Byun, and S. D. Yoon. 2008. Biodegradability of chemically modified starch (RS4)/PVA blend films: Part 2. Journal of Polymers and the Environment 16 (1):12–8. doi: 10.1007/s10924-008-0084-9.
  • Zain, A. H. M., M. K. Ab Wahab, and H. Ismail. 2018. Biodegradation behaviour of thermoplastic starch: The roles of carboxylic acids on cassava starch. Journal of Polymers and the Environment 26 (2):691–700. doi: 10.1007/s10924-017-0978-5.
  • Zhao, G. H., Y. Liu, C. L. Fang, M. Zhang, C. Q. Zhou, and Z. D. Chen. 2006. Water resistance, mechanical properties and biodegradability of methylated-cornstarch/poly(vinyl alcohol) blend film. Polymer Degradation and Stability 91:703–11. doi: 10.1016/j.polymdegradstab.2005.06.008.
  • Zheng, J. J., and S. Suh. 2019. Strategies to reduce the global carbon footprint of plastics. Nature Climate Change 9 (5):374–8. doi: 10.1038/s41558-019-0459-z.
  • Zhou, J., J. Tong, X. G. Su, and L. L. Ren. 2016. Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid. International Journal of Biological Macromolecules 91:1186–93. doi: 10.1016/j.ijbiomac.2016.06.082.
  • Zhou, X., R. Yang, B. Wang, and K. Chen. 2019. Development and characterization of bilayer films based on pea starch/polylactic acid and use in the cherry tomatoes packaging. Carbohydrate Polymers 222:114912. doi: 10.1016/j.carbpol.2019.05.042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.