2,657
Views
17
CrossRef citations to date
0
Altmetric
Review Articles

Ellagic acid and intestinal microflora metabolite urolithin A: A review on its sources, metabolic distribution, health benefits, and biotransformation

, , , , , , ORCID Icon & show all

References

  • Abdelazeem, K. N. M., M. Z. Kalo, S. Beer-Hammer, and F. Lang. 2021. The gut microbiota metabolite urolithin A inhibits NF-κB activation in LPS stimulated BMDMs . Scientific Reports 11 (1):7117. doi: 10.1038/s41598-021-86514-6.
  • Abdulrahman, A. O., A. Kuerban, Z. A. Alshehri, W. H. Abdulaal, J. A. Khan, and M. I. Khan. 2020. Urolithins attenuate multiple symptoms of obesity in rats fed on a high-fat diet. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 13:3337–48. doi: 10.2147/dmso.S268146.
  • Adachi, S. I., K. Sasaki, S. Kondo, W. Komatsu, F. Yoshizawa, H. Isoda, and K. Yagasaki. 2020. Antihyperuricemic effect of Urolithin A in cultured hepatocytes and model mice. Molecules 25 (21):15.5136. doi: 10.3390/molecules2521:.
  • Aehle, E., U. Müller, P. C. Eklund, S. M. Willför, W. Sippl, and B. Dräger. 2011. Lignans as food constituents with estrogen and antiestrogen activity. Phytochemistry 72 (18):2396–405. doi: 10.1016/j.phytochem.2011.08.013.
  • Aguilera-Carbo, A., J. S. Hernandez, C. Augur, L. A. Prado-Barragan, E. Favela-Torres, and C. N. Aguilar. 2009. Ellagic acid production from biodegradation of creosote bush ellagitannins by Aspergillus niger in solid state culture. Food and Bioprocess Technology 2 (2):208–12. doi: 10.1007/s11947-008-0063-0.
  • Ahsan, A., Y. R. Zheng, X. L. Wu, W. D. Tang, M. R. Liu, S. J. Ma, L. Jiang, W. W. Hu, X. N. Zhang, and Z. Chen. 2019. Urolithin A-activated autophagy but not mitophagy protects against ischemic neuronal injury by inhibiting ER stress in vitro and in vivo. CNS Neuroscience & Therapeutics 25 (9):976–86. doi: 10.1111/cns.13136.
  • Akter, S., H. Hong, M. Netzel, U. Tinggi, M. Fletcher, S. Osborne, and Y. Sultanbawa. 2021. Determination of ellagic acid, punicalagin, and castalagin from Terminalia ferdinandiana (Kakadu plum) by a validated UHPLC-PDA-MS/MS methodology. Food Analytical Methods 14 (12):2534–44. doi: 10.1007/s12161-021-02063-8.
  • Alauddin, M., T. Okumura, J. Rajaxavier, S. Khozooei, S. Poschel, S. Takeda, Y. Singh, S. Y. Brucker, D. Wallwiener, A. Koch, et al. 2020. Gut bacterial metabolite Urolithin A decreases actin polymerization and migration in cancer cells. Molecular Nutrition & Food Research 64 (7):11. doi: 10.1002/mnfr.20:1900390.
  • Alzahrani, A. M., M. R. S. Mohammed, R. A. Alghamdi, A. Ahmad, M. A. Zamzami, H. Choudhry, and M. I. Khan. 2021. Urolithin A and B alter cellular metabolism and induce metabolites associated with apoptosis in leukemic cells. International Journal of Molecular Sciences 22 (11):12. doi: 10.3390/ijms2211:5465.
  • Anderson, K. J., S. S. Teuber, A. Gobeille, P. Cremin, A. L. Waterhouse, and F. M. Steinberg. 2001. Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. The Journal of Nutrition 131 (11):2837–42. doi: 10.1093/jn/131.11.2837.
  • Andreux, P. A., W. Blanco-Bose, D. Ryu, F. Burdet, M. Ibberson, P. Aebischer, J. Auwerx, A. Singh, and C. Rinsch. 2019. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nature Metabolism 1 (6):595–603. doi: 10.1038/s42255-019-0073-4.
  • Ángeles, Á.-G M., E. J. Carlos, and G.-S. Antonio. 2018. Physiological relevance of the antiproliferative and estrogenic effects of dietary polyphenol aglycones versus their phase-II metabolites on breast cancer cells: A call of caution. Journal of Agricultural and Food Chemistry 66 (32):8547–55. doi: 10.1021/acs.jafc.8b03100.
  • Ávila-Gálvez, M. Á., A. González-Sarrías, and J. C. Espín. 2018. In vitro research on dietary polyphenols and health: A call of caution and a guide. Journal of Agricultural and Food Chemistry 66 (30):7857–8. doi: 10.1021/acs.jafc.8b03377.
  • Beltrán, D., M. Romo-Vaquero, J. C. Espín, F. A. Tomás-Barberán, and M. V. Selma. 2018. Ellagibacter isourolithinifaciens gen. nov., sp. nov., a new member of the family Eggerthellaceae, isolated from human gut. International Journal of Systematic and Evolutionary Microbiology 68 (5):1707–12. doi: 10.1099/ijsem.0.002735.
  • Bialonska, D., S. G. Kasimsetty, K. K. Schrader, and D. Ferreira. 2009. The Effect of Pomegranate (Punica granatum L.) byproducts and ellagitannins on the growth of human gut bacteria. Journal of Agricultural and Food Chemistry 57 (18):8344–9. doi: 10.1021/jf901931b.
  • Bialonska, D., P. Ramnani, S. G. Kasimsetty, K. R. Muntha, G. R. Gibson, and D. Ferreira. 2010. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. International Journal of Food Microbiology 140 (2–3):175–82. doi: 10.1016/j.ijfoodmicro.2010.03.038.
  • Birbal, S., M. Gorakh, S. Dixit, S. Rinku, A. C. Paul, and K. R. Singh. 2020. Gastrointestinal biotransformation of phytochemicals: Towards futuristic dietary therapeutics and functional foods. Trends in Food Science & Technology 106 (20):64–77. doi: 10.1016/j.tifs.2020.09.022.
  • Cam, M., and Y. Hisil. 2010. Pressurised water extraction of polyphenols from pomegranate peels. Food Chemistry 123 (3):878–85. doi: 10.1016/j.foodchem.2010.05.011.
  • Casedas, G., F. Les, C. Choya-Foces, M. Hugo, and V. Lopez. 2020. The metabolite Urolithin-A ameliorates oxidative stress in neuro-2a cells, becoming a potential neuroprotective agent. Antioxidants 9 (2):16. doi: 10.3390/antiox9020:177.
  • Cawthon, P. M. 2018. Recent progress in sarcopenia research: A focus on operationalizing a definition of Sarcopenia. Current Osteoporosis Reports 16 (6):730–7. doi: 10.1007/s11914-018-0484-2.
  • Cerdá, B., J. C. Espin, S. Parra, P. Martinez, and F. A. Tomas-Barberan. 2004. The potent in vitro antioxidant ellagitannins from pomegranate juice are metabolised into bioavailable but poor antioxidant hydroxy-6H-dibenzopyran-6-one derivatives by the colonic microflora of healthy humans. European Journal of Nutrition 43 (4):205–20. doi: 10.1007/s00394-004-0461-7.
  • Cerdá, B., R. Llorach, J. Cerón, J. Espín, and F. Tomás-Barberán. 2003. Evaluation of the bioavailability and metabolism in the rat of punicalagin, an antioxidant polyphenol from pomegranate juice. European Journal of Nutrition 42 (1):18–28. doi: 10.1007/s00394-003-0396-4.
  • Cerdá, B., P. Periago, J. C. Espin, and F. A. Tomas-Barberan. 2005a. Identification of urolithin A as a metabolite produced by human colon microflora from ellagic acid and related compounds. Journal of Agricultural and Food Chemistry 53 (14):5571–6. doi: 10.1021/jf050384i.
  • Cerdá, B., F. A. Tomás-Barberán, and J. C. Espín. 2005b. Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts, and oak-aged wine in humans: Identification of biomarkers and individual variability. Journal of Agricultural and Food Chemistry 53 (2):227–35. doi: 10.1021/jf049144d.
  • Chen, P., F. C. Chen, J. X. Lei, Q. L. Li, and B. H. Zhou. 2019. Activation of the miR-34a-mediated SIRT1/mTOR signaling pathway by Urolithin A attenuates d-galactose-induced brain aging in mice. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics 16 (4):1269–82. doi: 10.1007/s13311-019-00753-0.
  • Cheng, F., J. T. Dou, Y. Zhang, X. Wang, H. J. Wei, Z. J. Zhang, Y. X. Cao, and Z. H. Wu. 2021a. Urolithin A inhibits epithelial-mesenchymal transition in lung cancer cells via P53-Mdm2-snail pathway. OncoTargets and Therapy 14:3199–208. doi: 10.2147/ott.S305595.
  • Cheng, Z. Z., J. J. Tu, H. P. Zhang, Y. Zhang, and B. H. Zhou. 2021b. Urolithin A attenuates renal fibrosis by inhibiting TGF-beta 1/Smad and MAPK signaling pathways. Journal of Functional Foods 83 (10):104547. doi: 10.1016/j.jff.2021.104547.
  • Cortés-Martín, A., R. Villalba, A. González-Sarrías, M. Romo Vaquero, V. Kohen, A. Ramírez deMolina, F. Tomás-Barberán, M. Selma, and J. C. Espín. 2018. The gut microbiota urolithin metabotypes revisited: The human metabolism of ellagic acid is mainly determined by aging. Food & Function 9 (8):4100–6. doi: 10.1039/c8fo00956b.
  • Cui, G. H., W. Q. Chen, and Z. Y. Shen. 2018. Urolithin A shows anti-atherosclerotic activity via activation of class B scavenger receptor and activation of Nef2 signaling pathway. Pharmacological Reports 70 (3):519–24. doi: 10.1016/j.pharep.2017.04.020.
  • Dahiya, N. R., B. Chandrasekaran, V. Kolluru, M. Ankem, C. Damodaran, and M. V. Vadhanam. 2018. A natural molecule, urolithin A, downregulates androgen receptor activation and suppresses growth of prostate cancer. Molecular Carcinogenesis 57 (10):1332–1341. doi: 10.1002/mc.22848.
  • D’Amico, D., P. A. Andreux, P. Valdes, A. Singh, C. Rinsch, and J. Auwerx. 2021. Impact of the natural compound Urolithin A on health, disease, and aging. Trends in Molecular Medicine 27 (7):687–99. doi: 10.1016/j.molmed.2021.04.009.
  • Dellafiora, L., M. Milioli, A. Falco, M. Interlandi, A. Mohamed, M. Frotscher, B. Riccardi, P. Puccini, D. D. Rio, G. Galaverna, et al. 2020. A hybrid in silico/in vitro target fishing study to mine novel targets of Urolithin A and B: A step towards a better comprehension of their estrogenicity. Molecular Nutrition & Food Research 64 (16):11. doi: 10.1002/mnfr.20:2000289.
  • Ding, S. L., Z. Y. Pang, X. M. Chen, Z. Li, X. X. Liu, Q. L. Zhai, J. M. Huang, and Z. Y. Ruan. 2020. Urolithin A attenuates IL-1β-induced inflammatory responses and cartilage degradation via inhibiting the MAPK/NF-κB signaling pathways in rat articular chondrocytes. Journal of Inflammation (London, England) 17 (1):13. doi: 10.1186/s12950-020-00242-8.
  • Djedjibegovic, J., A. Marjanovic, E. Panieri, and L. Saso. 2020. Ellagic acid-derived Urolithins as modulators of oxidative stress. Oxidative Medicine and Cellular Longevity 2020 (20):1–15. doi: 10.1155/2020/5194508.
  • Doyle, B., and L. A. Griffiths. 1980. The metabolism of ellagic acid in the rat. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 10 (4):247–56. doi: 10.3109/00498258009033752.
  • Espin, J. C., M. Larrosa, M. T. Garcia-Conesa, and F. Tomas-Barberan. 2013. Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: The evidence so far. Evidence-Based Complementary and Alternative Medicine: eCAM 2013:270418–5. doi: 10.1155/2013/270418.
  • Fischer, U. A., R. Carle, and D. R. Kammerer. 2011. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MS n. Food Chemistry 127 (2):807–21. doi: 10.1016/j.foodchem.2010.12.156.
  • Fu, X., L.-F. Gong, Y.-F. Wu, Z. Lin, B.-J. Jiang, L. Wu, and K.-H. Yu. 2019. Urolithin A targets the PI3K/Akt/NF-κB pathways and prevents IL-1β-induced inflammatory response in human osteoarthritis: in vitro and in vivo studies. Food and Function 10 (9):6135–46. doi: 10.1039/c9fo01332f.
  • Garcia-Munoz, C., and F. Vaillant. 2014. Metabolic fate of ellagitannins: Implications for health, and research perspectives for innovative functional foods. Critical Reviews in Food Science and Nutrition 54 (12):1584–98. doi: 10.1080/10408398.2011.644643.
  • García-Villalba, R., J. Carlos Espin, K. Aaby, C. Alasalvar, M. Heinonen, G. Jacobs, S. Voorspoels, T. Koivumaki, P. A. Kroon, E. Pelvan, et al. 2015. Validated method for the characterization and quantification of extractable and nonextractable ellagitannins after acid hydrolysis in pomegranate fruits, juices, and extracts. Journal of Agricultural and Food Chemistry 63 (29):6555–66. doi: 10.1021/acs.jafc.5b02062.
  • García-Villalba, R., J. Carlos Espin, and F. A. Tomas-Barberan. 2016. Chromatographic and spectroscopic characterization of urolithins for their determination in biological samples after the intake of foods containing ellagitannins and ellagic acid. Journal of Chromatography. A 1428 (2016):162–75. doi: 10.1016/j.chroma.2015.08.044.
  • García-Villalba, R., J. A. Giménez-Bastida, M. A. Ávila-Gálvez, F. A. Tomás-Barberán, J. C. Espín, and A. González-Sarrías. 2020. Dietary polyphenols: Their metabolism and health effects. In Ellagitannins and their gut microbiota-derived metabolites: Urolithins, ed. F. A. Tomás-Barberán, A. González-Sarrías, and R. García-Villalba, vol. 9th ed., 319–64. Hoboken: Wiley.
  • García-Villalba, R., H. Vissenaekens, J. Pitart, M. Romo-Vaquero, J. C. Espín, C. Grootaert, M. V. Selma, K. Raes, G. Smagghe, S. Possemiers, et al. 2017. Gastrointestinal simulation model TWIN-SHIME shows differences between human urolithin-metabotypes in gut microbiota composition, pomegranate polyphenol metabolism, and transport along the intestinal tract. Journal of Agricultural and Food Chemistry 65 (27):5480–93. doi: 10.1021/acs.jafc.7b02049.
  • Gaya, P., A. Peirotén, M. Medina, I. Álvarez, and J. Landete. 2018. Bifidobacterium pseudocatenulatum INIA P815: The first bacterium able to produce urolithins A and B from ellagic acid. Journal of Functional Foods 45 (18):95–9. doi: 10.1016/j.jff.2018.03.040.
  • Gentile, C. L., and T. L. Weir. 2018. The gut microbiota at the intersection of diet and human health. Science (New York, NY) 362 (6416):776–80. doi: 10.1126/science.aau5812.
  • Ghosh, N., A. Das, N. Biswas, S. Gnyawali, K. Singh, M. Gorain, C. Polcyn, S. Khanna, S. Roy, and C. K. Sen. 2020. Urolithin A augments angiogenic pathways in skeletal muscle by bolstering NAD(+) and SIRT1. Scientific Reports 10 (1):13. doi: 10.1038/s41598-020-76564-7.
  • Gimenez-Bastida, J. A., M. A. Avila-Galvez, J. C. Espin, and A. Gonzalez-Sarrias. 2020. The gut microbiota metabolite urolithin A, but not other relevant urolithins, induces p53-dependent cellular senescence in human colon cancer cells. Food and Chemical Toxicology 139 (10):111260. doi: 10.1016/j.fct.2020.111260.
  • Gimenez-Bastida, J. A., A. Gonzalez-Sarrias, M. Larrosa, F. Tomas-Barberan, J. C. Espin, and M. T. Garcia-Conesa. 2012a. Ellagitannin metabolites, urolithin A glucuronide and its aglycone urolithin A, ameliorate TNF-α-induced inflammation and associated molecular markers in human aortic endothelial cells. Molecular Nutrition & Food Research 56 (5):784–96. doi: 10.1002/mnfr.201100677.
  • Gimenez-Bastida, J. A., M. Larrosa, A. González-Sarrías, F. Tomás-Barberán, J. C. Espín, and M. T. García-Conesa. 2012b. Intestinal ellagitannin metabolites ameliorate cytokine-induced inflammation and associated molecular markers in human colon fibroblasts. Journal of Agricultural and Food Chemistry 60 (36):8866–76. doi: 10.1021/jf300290f.
  • Giménez-Bastida, J. A., P. Truchado, M. Larrosa, J. C. Espín, F. A. Tomás-Barberán, A. Allende, and M. T. García-Conesa. 2012. Urolithins, ellagitannin metabolites produced by colon microbiota, inhibit Quorum Sensing in Yersinia enterocolitica: Phenotypic response and associated molecular changes. Food Chemistry 132 (3):1465–1474. doi: 10.1016/j.foodchem.2011.12.003.
  • Gong, Z., J. Y. Huang, B. Xu, Z. R. Ou, L. Zhang, X. H. Lin, X. J. Ye, X. J. Kong, D. H. Long, X. D. Sun, et al. 2019. Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. Journal of Neuroinflammation 16 (1):13. doi: 10.1186/s12974-019-1450-3.
  • González-Barrio, R., P. Truchado, R. Villalba, G. Hervás, P. Frutos, J. C. Espín, and F. Tomás-Barberán. 2012. Metabolism of oak leaf ellagitannins and urolithin production in beef cattle. Journal of Agricultural and Food Chemistry 60 (12):3068–77. doi: 10.1021/jf300718k.
  • González-Sarrías, A., J. A. Gimenez-Bastida, M. T. Garcia-Conesa, M. B. Gomez-Sanchez, N. V. Garcia-Talavera, A. Gil-Izquierdo, C. Sanchez-Alvarez, L. O. Fontana-Compiano, J. P. Morga-Egea, F. A. Pastor-Quirante, et al. 2010. Occurrence of urolithins, gut microbiota ellagic acid metabolites and proliferation markers expression response in the human prostate gland upon consumption of walnuts and pomegranate juice. Molecular Nutrition & Food Research 54 (3):311–22. doi: 10.1002/mnfr.200900152.
  • González-Sarrías, A., V. Miguel, G. Merino, R. Lucas, J. C. Morales, F. Tomas-Barberan, A. I. Alvarez, and J. C. Espin. 2013. The gut microbiota ellagic acid-derived metabolite Urolithin A and its sulfate conjugate are substrates for the drug efflux transporter breast cancer resistance protein (ABCG2/BCRP). Journal of Agricultural and Food Chemistry 61 (18):4352–9. doi: 10.1021/jf4007505.
  • González-Sarrías, A., M. A. Nunez-Sanchez, R. Garcia-Villalba, F. Tomas-Barberan, and J. Espin. 2017a. Antiproliferative activity of the ellagic acid-derived gut microbiota isourolithin A and comparison with its urolithin A isomer: The role of cell metabolism. European Journal of Nutrition 56 (2):831–41. doi: 10.1007/s00394-015-1131-7.
  • González-Sarrías, A., M. Á. Núñez-Sánchez, J. Tomé-Carneiro, F. A. Tomás-Barberán, M. T. García-Conesa, and J. C. Espín. 2016. Comprehensive characterization of the effects of ellagic acid and urolithins on colorectal cancer and key-associated molecular hallmarks: MicroRNA cell specific induction of CDKN1A (p21) as a common mechanism involved. Molecular Nutrition & Food Research 60 (4):701–16. doi: 10.1002/mnfr.201500780.
  • González-Sarrías, A., J. Tome-Carneiro, A. Bellesia, F. A. Tomas-Barberan, and J. C. Espin. 2015a. The ellagic acid-derived gut microbiota metabolite, urolithin A, potentiates the anticancer effects of 5-fluorouracil chemotherapy on human colon cancer cells. Food & Function 6 (5):1460–9. doi: 10.1039/c5fo00120j.
  • González-Sarrías, A., R. Villalba, M. A. Nuñez Sanchez, J. Tomé Carneiro, P. Zafrilla, J. Mulero, F. Tomás-Barberán, and J. C. Espín. 2015b. Identifying the limits for ellagic acid bioavailability: A crossover pharmacokinetic study in healthy volunteers after consumption of pomegranate extracts. Journal of Functional Foods 19:225–35. doi: 10.1016/j.jff.2015.09.019.
  • González-Sarrías, A., R. Villalba, M. Romo Vaquero, C. Alasalvar, A. Orem, P. Zafrilla, F. Tomás-Barberán, M. Selma, and J. C. Espín. 2017b. Clustering according to urolithin metabotype explains the interindividual variability in the improvement of cardiovascular risk biomarkers in overweight-obese individuals consuming pomegranate: A randomised clinical trial. Molecular Nutrition & Food Research 61 (5):1600830. doi: 10.1002/mnfr.201600830.
  • Guada, M., R. Ganugula, M. Vadhanam, and M. N. V. Ravi Kumar. 2017. Urolithin A Mitigates cisplatin-induced nephrotoxicity by inhibiting renal inflammation and apoptosis in an experimental rat model. The Journal of Pharmacology and Experimental Therapeutics 363 (1):58–65. doi: 10.1124/jpet.117.242420.
  • Hager, T. J., L. R. Howard, R. Liyange, J. O. Lay, and R. L. Prior. 2008. Ellagitannin composition of blackberry as determined by HPLC-ESI-MS and MALDI-TOF-MS. Journal of Agricultural and Food Chemistry 56 (3):661–669. doi: 10.1021/jf071990b.
  • Han, Q. A., D. F. Su, C. Shi, P. F. Liu, Y. Wang, B. W. Zhu, and X. D. Xia. 2020. Urolithin A attenuated ox-LDL-induced cholesterol accumulation in macrophages partly through regulating miR-33a and ERK/AMPK/SREBP1 signaling pathways. Food & Function 11 (4):3432–40. doi: 10.1039/c9fo02471a.
  • He, Y. C., L. Yocum, P. G. Alexander, M. J. Jurczak, and H. Lin. 2021. Urolithin A protects chondrocytes from mechanical overloading-induced injuries. Frontiers in Pharmacology 12:703847. doi: 10.3389/fphar.2021.703847.
  • Heilman, J., P. Andreux, N. Tran, C. Rinsch, and W. Blanco-Bose. 2017. Safety assessment of Urolithin A, a metabolite produced by the human gut microbiota upon dietary intake of plant derived ellagitannins and ellagic acid. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 108 (Pt A):289–97. doi: 10.1016/j.fct.2017.07.050.
  • Hering, N. A., J. Luettig, B. Jebautzke, J. D. Schulzke, and R. Rosenthal. 2021. The punicalagin metabolites ellagic acid and Urolithin A exert different strengthening and anti-inflammatory effects on tight junction-mediated intestinal barrier function in vitro. Frontiers in Pharmacology 12:610164. doi: 10.3389/fphar.2021.610164.
  • Ishimoto, H., A. Tai, M. Yoshimura, Y. Amakura, T. Yoshida, T. Hatano, and H. Ito. 2012. Antioxidative properties of functional polyphenols and their metabolites assessed by an ORAC assay. Bioscience, Biotechnology, and Biochemistry 76 (2):395–9. doi: 10.1271/bbb.110717.
  • Izquierdo-Pulido, M., C. Sanchez-Gonzalez, C. J. Ciudad, and V. Noe. 2015. Urolithin A, a walnut polyphenol metabolite, modifies cell cycle progression and induces apoptosis in breast and prostate cancer cell models. Annals of Nutrition and Metabolism 67:453.
  • Jala, V. R., R. Singh, S. Chandrashekarappa, S. R. Bodduluri, B. V. Becca, B. Hegde, N. Kotla, A. A. Hiwale, T. Saiyed, P. Patel, et al. 2019. Enhancement of gut barrier function by microbial metabolite, urolithin A via AhR-Nrf2 dependent pathways in IBD. Journal of Immunology 202 (1):2.
  • Jing, T. L., J. Z. Liao, K. Z. Shen, X. Y. Chen, Z. J. Xu, W. J. Tian, Y. M. Wang, B. Y. Jin, and H. Pan. 2019. Protective effect of urolithin A on cisplatin-induced nephrotoxicity in mice via modulation of inflammation and oxidative stress. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 129:108–114. doi: 10.1016/j.fct.2019.04.031.
  • Kallio, T., J. Kallio, M. Jaakkola, M. M?Ki, P. Kilpel?Inen, and V. Virtanen. 2013. Urolithins display both antioxidant and pro-oxidant activities depending on assay system and conditions. Journal of Agricultural and Food Chemistry 61 (45):10720–10729. doi: 10.1021/jf403208d.
  • Kim, K. B., S. Lee, and J. H. Kim. 2020. Neuroprotective effects of urolithin A on H2O2-induced oxidative stress-mediated apoptosis in SK-N-MC cells. Nutrition Research and Practice 14 (1):3–11. doi: 10.4162/nrp.2020.14.1.3.
  • Komatsu, W., H. Kishi, K. Yagasaki, and S. Ohhira. 2018. Urolithin A attenuates pro-inflammatory mediator production by suppressing PI3-K/Akt/NF-κB and JNK/AP-1 signaling pathways in lipopolysaccharide-stimulated RAW264 macrophages: Possible involvement of NADPH oxidase-derived reactive oxygen species. European Journal of Pharmacology 833 (2018):411–424. doi: 10.1016/j.ejphar.2018.06.023.
  • Kujawska, M., and J. Jodynis-Liebert. 2020a. Potential of the ellagic acid-derived gut microbiota metabolite - Urolithin A in gastrointestinal protection. World Journal of Gastroenterology 26 (23):3170–3181. doi: 10.3748/wjg.v26.i23.3170.
  • Kujawska, M., M. Jourdes, M. Kurpik, M. Szulc, H. Szaefer, P. Chmielarz, G. Kreiner, V. Krajka-Kuźniak, P. Ł. Mikołajczak, P.-L. Teissedre, et al. 2020b. Neuroprotective effects of pomegranate juice against Parkinson’s disease and presence of ellagitannins-derived metabolite-Urolithin A-in the brain. International Journal of Molecular Sciences 21 (1):202. doi: 10.3390/ijms21010202.
  • Landete, J. M. 2011. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Research International 44 (5):1150–1160. doi: 10.1016/j.foodres.2011.04.027.
  • Larrosa, M., A. González-Sarrías, M. T. García-Conesa, F. A. Tomás-Barberán, and J. C. Espín. 2006a. Urolithins, ellagic acid-derived metabolites produced by human colonic microflora, exhibit estrogenic and antiestrogenic activities. Journal of Agricultural and Food Chemistry 54 (5):1611–1620. doi: 10.1021/jf0527403.
  • Larrosa, M., A. González-Sarrías, M. J. Yáñez-Gascón, M. V. Selma, M. Azorín-Ortuño, S. Toti, F. Tomás-Barberán, P. Dolara, and J. C. Espín. 2010. Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on phenolic metabolism. The Journal of Nutritional Biochemistry 21 (8):717–725. doi: 10.1016/j.jnutbio.2009.04.012.
  • Larrosa, M., F. A. Tomás-Barberán, and J. C. Espín. 2006b. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. The Journal of Nutritional Biochemistry 17 (9):611–625. doi: 10.1016/j.jnutbio.2005.09.004.
  • Lee, H. C., A. M. Jenner, C. S. Low, and Y. K. Lee. 2006. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Research in Microbiology 157 (9):876–884. doi: 10.1016/j.resmic.2006.07.004.
  • Lee, H. J., Y. H. Jung, G. E. Choi, J. S. Kim, C. W. Chae, J. R. Lim, S. Y. Kim, J. H. Yoon, J. H. Cho, S. J. Lee, et al. 2021. Urolithin A suppresses high glucose-induced neuronal amyloidogenesis by modulating TGM2-dependent ER-mitochondria contacts and calcium homeostasis. Cell Death and Differentiation 28 (1):184–202. doi: 10.1038/s41418-020-0593-1.
  • Les, F., J. M. Arbones-Mainar, M. S. Valero, and V. Lopez. 2018. Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. Journal of Ethnopharmacology 220:67–74. doi: 10.1016/j.jep.2018.03.029.
  • Li, Z. P., S. M. Henning, R. P. Lee, Q. Y. Lu, P. H. Summanen, G. Thames, K. Corbett, J. Downes, C. H. Tseng, S. M. Finegold, et al. 2015. Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers. Food & Function 6 (8):2487–2495. doi: 10.1039/c5fo00669d.
  • Li, Y., Z. Li, H. Hou, Y. Zhuang, and L. Sun. 2018. Metal chelating, inhibitory DNA damage, and anti-inflammatory activities of phenolics from Rambutan (Nephelium lappaceum) peel and the quantifications of geraniin and corilagin. Molecules 23 (9):2263. doi: 10.3390/molecules23092263.
  • Lin, X. H., X. J. Ye, Q. F. Li, Z. Gong, X. Cao, J. H. Li, S. T. Zhao, X. D. Sun, X. S. He, and A. G. Xuan. 2020. Urolithin A prevents focal cerebral ischemic injury via attenuating apoptosis and neuroinflammation in mice. Neuroscience 448:94–106. doi: 10.1016/j.neuroscience.2020.09.027.
  • Lipinski, C. A., F. Lombardo, B. W. Dominy, and P. J. Feeney. 2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 46 (1–3):3–26. doi: 10.1016/S0169-409X(00)00129-0.
  • Liu, C. F., X. L. Li, Z. L. Zhang, L. Qiu, S. X. Ding, J. X. Xue, G. P. Zhao, and J. Li. 2019. Antiaging effects of Urolithin A on replicative senescent human skin fibroblasts. Rejuvenation Research 22 (3):191–200. doi: 10.1089/rej.2018.2066.
  • Luan, P., D. D’Amico, P. A. Andreux, P.-P. Laurila, M. Wohlwend, H. Li, T. Imamura de Lima, N. Place, C. Rinsch, N. Zanou, et al. 2021. Urolithin A improves muscle function by inducing mitophagy in muscular dystrophy. Science Translational Medicine 13 (588):eabb0319. doi: 10.1126/scitranslmed.abb0319.
  • Maini Rekdal, V., P. Nol Bernadino, M. U. Luescher, S. Kiamehr, C. Le, J. E. Bisanz, P. J. Turnbaugh, E. N. Bess, and E. P. Balskus. 2020. A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols. eLife 9 (4):e50845. doi: 10.7554/eLife.50845.
  • Manigandan, S., and J. W. Yun. 2020. Urolithin A induces brown-like phenotype in 3T3-L1 white adipocytesvia beta 3-adrenergic receptor-p38 MAPK signaling pathway. Biotechnology and Bioprocess Engineering 25 (3):345–355. doi: 10.1007/s12257-020-0149-8.
  • María, R.-V., C.-M. Adrián, L.-K. Viviana, R-d-M. Ana, G.-M. Izaskun, C. M. Carmen, E. J. Carlos, and S. M. Victoria. 2019. Deciphering the human gut microbiome of urolithin metabotypes: Association with enterotypes and potential cardiometabolic health implications. Molecular Nutrition & Food Research 63 (4):e1800958. doi: 10.1002/mnfr.201800958.
  • Mattia, G., M. Domenico, G. Graziano, P. Luisa, M. Paolo, P. Elisa, M. Fulvio, and V. Urska. 2013. Evolution of ellagitannin content and profile during fruit ripening in Fragaria spp. Journal of Agricultural and Food Chemistry 61 (36):8597–8607. doi: 10.1021/jf402706h.
  • Mousavi, S., D. Weschka, S. Bereswill, and M. M. Heimesaat. 2020. Preclinical evaluation of oral Urolithin-A for the treatment of acute campylobacteriosis in campylobacter jejuni infected microbiota-depleted IL-10(-/-) mice. Pathogens 10 (1):16.7. doi: 10.3390/pathogens1001000:.
  • Muku, G. E., I. A. Murray, J. C. Espin, and G. H. Perdew. 2018. Urolithin A is a dietary microbiota-derived human aryl hydrocarbon receptor antagonist. Metabolites 8 (4):18.86. doi: 10.3390/metabo80400:.
  • Nicoli, M. C., M. Anese, and M. Parpinel. 1999. Influence of processing on the antioxidant properties of fruit and vegetables. Trends in Food Science & Technology 10 (3):94–100. doi: 10.1016/S0924-2244(99)00023-0.
  • Norden, E., and E. H. Heiss. 2019. Urolithin A gains in antiproliferative capacity by reducing the glycolytic potential via the p53/TIGAR axis in colon cancer cells. Carcinogenesis 40 (1):93–101. doi: 10.1093/carcin/bgy158.
  • Nuñez Sanchez, M. A., A. González-Sarrías, R. Villalba, T. Monedero-Saiz, N. García-Talavera Espín, M. Gómez-Sánchez, C. Sanchez Alvarez, A. García-Albert, F. Rodríguez-Gil, M. Marín, et al. 2017. Gene expression changes in colon tissues from colorectal cancer patients following the intake of an ellagitannin-containing pomegranate extract: A randomized clinical trial. The Journal of Nutritional Biochemistry 42:126–133. doi: 10.1016/j.jnutbio.2017.01.014.
  • Nuñez Sanchez, M. A., A. Karmokar, A. González-Sarrías, R. Villalba, F. Tomás-Barberán, M. García-Conesa, K. Brown, and J. C. Espín. 2016. In vivo relevant mixed urolithins and ellagic acid inhibit phenotypic and molecular colon cancer stem cell features: A new potentiality for ellagitannin metabolites against cancer. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 92 (16):8–16. doi: 10.1016/j.fct.2016.03.011.
  • Nuñez Sanchez, M. A., R. Villalba, T. Monedero-Saiz, N. García-Talavera Espín, M. Gómez-Sánchez, C. Sanchez Alvarez, A. García-Albert, F. Rodríguez-Gil, M. Marín, F. Pastor-Quirante, et al. 2014. Targeted metabolic profiling of pomegranate polyphenols and urolithins in plasma, urine and colon tissues from colorectal cancer patients. Molecular Nutrition & Food Research 58 (6):1199–1211. doi: 10.1002/mnfr.201300931.
  • Nunez-Sanchez, M. A., A. Gonzalez-Sarrias, M. Romo-Vaquero, R. Garcia-Villalba, M. V. Selma, F. A. Tomas-Barberan, M. T. Garcia-Conesa, and J. C. Espin. 2015. Dietary phenolics against colorectal cancer-From promising preclinical results to poor translation into clinical trials: Pitfalls and future needs. Molecular Nutrition & Food Research 59 (7):1274–1291. doi: 10.1002/mnfr.201400866.
  • Pandey, J., A. K. Jha, and K. Hajela. 2004. Synthesis and biological activities of some new dibenzopyranones and dibenzopyrans: Search for potential oestrogen receptor agonists and antagonists. Bioorganic & Medicinal Chemistry 12 (9):2239–2249. doi: 10.1016/j.bmc.2004.02.018.
  • Patrizia, C., L.-G. M. Jesús, S.-A. E. Francisco, and T. T. Gallina. 2014. Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD-MS. Food Chemistry 157 (14):290–295. doi: 10.1016/j.foodchem.2014.02.003.
  • Qiu, Z. P., J. X. Zhou, C. Zhang, Y. Cheng, J. J. Hu, and G. H. Zheng. 2018. Antiproliferative effect of urolithin A, the ellagic acid-derived colonic metabolite, on hepatocellular carcinoma HepG2.2.15 cells by targeting Lin28a/let-7a axis. Brazilian Journal of Medical and Biological Research 51 (7):8. doi: 10.1590/1414-431x20187220.
  • Reddy, M. K., S. K. Gupta, M. R. Jacob, S. I. Khan, and D. Ferreira. 2007. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Medica 73 (5):461–467. doi: 10.1055/s-2007-967167.
  • Rinsch, C. L., W. Blanco-Bose, B. Schneider, L. Mouchiroud, D. Ryu, P. Andreux, and J. Auwerx. 2014. Enhancing autophagy or increasing longevity by administration of urolithins or precursors thereof. WO 2014004902A2, filed June 27, 2012, and issued January 3, 2014.
  • Romo Vaquero, M., R. Villalba, A. González-Sarrías, D. Beltran, F. Tomás-Barberán, J. C. Espín, and M. Selma. 2015. Interindividual variability in the human metabolism of ellagic acid: Contribution of Gordonibacter to urolithin production. Journal of Functional Foods 17 (15):785–791. doi: 10.1016/j.jff.2015.06.040.
  • Ryu, D., L. Mouchiroud, P. A. Andreux, E. Katsyuba, N. Moullan, A. A. Nicolet-Dit-Félix, E. G. Williams, P. Jha, G. Lo Sasso, D. Huzard, et al. 2016. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nature Medicine 22 (8):879–888. doi: 10.1038/nm.4132.
  • Saleem, Y. I. M., H. Albassam, and M. Selim. 2020. Urolithin A induces prostate cancer cell death in p53-dependent and in p53-independent manner. European Journal of Nutrition 59 (4):1607–1618. doi: 10.1007/s00394-019-02016-2.
  • Sanchez-Gonzalez, C., C. J. Ciudad, M. Izquierdo-Pulido, and V. Noe. 2016. Urolithin A causes p21 up-regulation in prostate cancer cells. European Journal of Nutrition 55 (3):1099–1112. doi: 10.1007/s00394-015-0924-z.
  • Sanchez-Gonzalez, C., C. Ciudad, V. Noe, and M. Izquierdo-Pulido. 2015. Urolithin A, walnut polyphenol metabolite, causes cell cycle arrest and apoptosis in prostate and breast cancer cells. Faseb Journal 29 (1):879–963. doi: 10.1096/fasebj.29.1_supplement.752.7.
  • Saucier, C., M. Jourdes, Y. Glories, and S. Quideau. 2006. Extraction, detection, and quantification of flavano-ellagitannins and ethylvescalagin in a bordeaux red wine aged in oak barrels. Journal of Agricultural and Food Chemistry 54 (19):7349–7354. doi: 10.1021/jf061724i.
  • Seeram, N. P., W. J. Aronson, Y. Zhang, S. M. Henning, A. Moro, R. P. Lee, M. Sartippour, D. M. Harris, M. Rettig, M. A. Suchard, et al. 2007. Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland. Journal of Agricultural and Food Chemistry 55 (19):7732–7737. doi: 10.1021/jf071303g.
  • Selma, M. V., D. Beltran, R. Garcia-Villalba, J. C. Espin, and F. A. Tomas-Barberan. 2014b. Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food & Function 5 (8):1779–1784. doi: 10.1039/c4fo00092g.
  • Selma, M. V., D. Beltran, M. C. Luna, M. Romo-Vaquero, R. Garcia-Villalba, A. Mira, J. C. Espin, and F. A. Tomas-Barberan. 2017. Isolation of human intestinal bacteria capable of producing the bioactive metabolite Isourolithin A from ellagic acid. Frontiers in Microbiology 8 (17):1521–1522. doi: 10.3389/fmicb.2017.01521.
  • Selma, M., J. C. Espin, and F. A. Tomas-Barberan. 2009. Interaction between phenolics and gut microbiota: Role in human health. Journal of Agricultural and Food Chemistry 57 (15):6485–6501. doi: 10.1021/jf902107d.
  • Selma, M. V., A. González-Sarrías, J. Salas-Salvadó, C. Andrés-Lacueva, C. Alasalvar, A. Örem, F. A. Tomás-Barberán, and J. C. Espín. 2018. The gut microbiota metabolism of pomegranate or walnut ellagitannins yields two urolithin-metabotypes that correlate with cardiometabolic risk biomarkers: Comparison between normoweight, overweight-obesity and metabolic syndrome. Clinical Nutrition (Edinburgh, Scotland) 37 (3):897–905. doi: 10.1016/j.clnu.2017.03.012.
  • Selma, M., M. Romo Vaquero, R. Villalba, A. González-Sarrías, F. Tomás-Barberán, and J. C. Espín. 2016. The human gut microbial ecology associated with overweight and obesity determines ellagic acid metabolism. Food & Function 7 (4):1769–1774. doi: 10.1039/c5fo01100k.
  • Selma, M., F. Tomás-Barberán, D. Beltran, R. Villalba, and J. C. Espín. 2014a. Gordonibacter urolithinfaciens sp. nov., a urolithin-producing bacterium isolated from the human gut. International Journal of Systematic and Evolutionary Microbiology 64 (Pt 7):2346–2352. doi: 10.1099/ijs.0.055095-0.
  • Sharma, M., L. Li, J. Celver, C. Killian, A. Kovoor, and N. P. Seeram. 2010. Effects of fruit ellagitannin extracts, ellagic acid, and their colonic metabolite, Urolithin A, on WNT signaling. Journal of Agricultural and Food Chemistry 58 (7):3965–3969. doi: 10.1021/jf902857v.
  • Shaw, R. J., and L. C. Cantley. 2006. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441 (7092):424–430. doi: 10.1038/nature04869.
  • Shen, P. X., X. Li, S. Y. Deng, L. Zhao, Y. Y. Zhang, X. Deng, B. Han, J. Yu, Y. Li, Z. Z. Wang, et al. 2021. Urolithin A ameliorates experimental autoimmune encephalomyelitis by targeting aryl hydrocarbon receptor. Ebiomedicine 64 (2021):103227. doi: 10.1016/j.ebiom.2021.103227.
  • Singh, R., S. Chandrashekharappa, S. R. Bodduluri, B. V. Baby, B. Hegde, N. G. Kotla, A. A. Hiwale, T. Saiyed, P. Patel, M. Vijay-Kumar, et al. 2019. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nature Communications 10 (1):2369–2379. doi: 10.1038/s41467-018-07859-7.
  • Srinivasan, S., V. Jala, K. Honnenahally, J. Castellanos, P. K. Vermula, M. VanSaun, N. Merchant, and N. Nagathihalli. 2017. Urolithin A prevents pancreatic tumor growth and increases survival by inhibiting PI3K/PDK1 and STAT3 signaling. Cancer Research 77 (13):1–5. doi: 10.1158/1538-7445.Am2017-5259.
  • Stanisławska, I. J., S. Granica, J. P. Piwowarski, J. Szawkało, K. Wiązecki, Z. Czarnocki, and A. K. Kiss. 2019. The activity of Urolithin A and M4 valerolactone, colonic microbiota metabolites of polyphenols, in a prostate cancer in vitro model. Planta Medica 85 (2):118–125. doi: 10.1055/a-0755-7715.
  • Stevens, J. F., and C. S. Maier. 2016. The chemistry of gut microbial metabolism of polyphenols. Phytochemistry Reviews: Proceedings of the Phytochemical Society of Europe 15 (3):425–444. doi: 10.1007/s11101-016-9459-z.
  • Talcott, S. T., and J.-H. Lee. 2002. Ellagic acid and flavonoid antioxidant content of muscadine wine and juice. Journal of Agricultural and Food Chemistry 50 (11):3186–3192. doi: 10.1021/jf011500u.
  • Tang, L., Y. L. Mo, Y. P. Li, Y. K. Zhong, S. F. He, Y. Zhang, Y. Tang, S. S. Fu, X. B. Wang, and A. H. Chen. 2017. Urolithin A alleviates myocardial ischemia/reperfusion injury via PI3K/Akt pathway. Biochemical and Biophysical Research Communications 486 (3):774–780. doi: 10.1016/j.bbrc.2017.03.119.
  • Tomás-Barberán, F. A., M. T. García-Conesa, M. Larrosa, B. Cerdá, R. González-Barrio, M. J. Bermúdez-Soto, A. González-Sarrías, and J. C. Espín. 2008. Recent advances in polyphenol research. In Bioavailability, metabolism, and bioactivity of food ellagic acid and related polyphenols, eds. F. Daayf, and V. Lattanzio, 1st ed, 263–277. Spain: Blackwell.
  • Tomás-Barberán, F., R. Villalba, A. González-Sarrías, M. Selma, and J. C. Espín. 2014. Ellagic acid metabolism by human gut microbiota: Consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. Journal of Agricultural and Food Chemistry 62 (28):6535–6538. doi: 10.1021/jf5024615.
  • Tomas-Barberan, F. A., M. V. Selma, and J. C. Espin. 2016. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Current Opinion in Clinical Nutrition and Metabolic Care 19 (6):471–476. doi: 10.1097/MCO.0000000000000314.
  • Toney, A. M., R. Fan, Y. B. Xian, V. Chaidez, A. E. Ramer-Tait, and S. Chung. 2019. Urolithin A, a gut metabolite, improves insulin sensitivity through augmentation of mitochondrial function and biogenesis. Obesity (Silver Spring, MD) 27 (4):612–620. doi: 10.1002/oby.22404.
  • Toney, A. M., D. Fox, V. Chaidez, A. E. Ramer-Tait, and S. Chung. 2021. Immunomodulatory role of Urolithin A on metabolic diseases. Biomedicines 9 (2):19.192. doi: 10.3390/biomedicines9020:.
  • Totiger, T. M., S. Srinivasan, V. R. Jala, P. Lamichhane, A. R. Dosch, A. A. Gaidarski, C. Joshi, S. Rangappa, J. Castellanos, P. K. Vemula, et al. 2019. Urolithin A, a novel natural compound to target PI3K/AKT/mTOR pathway in pancreatic cancer. Molecular Cancer Therapeutics 18 (2):301–311. doi: 10.1158/1535-7163.Mct-18-0464.
  • Tulipani, S., M. Urpi-Sarda, R. Villalba, M. Rabassa, P. J. López-Uriarte, M. Bulló, O. Jáuregui, F. Tomás-Barberán, J. Salas-Salvadó, J. C. Espín, et al. 2012. Urolithins are the main urinary microbial-derived phenolic metabolites discriminating a moderate consumption of nuts in free-living subjects with diagnosed metabolic syndrome. Journal of Agricultural and Food Chemistry 60 (36):8930–8940. doi: 10.1021/jf301509w.
  • Tuohetaerbaike, B., Y. Zhang, Y. L. Tian, N. N. Zhang, J. S. Kang, X. M. Mao, Y. Z. Zhang, and X. J. Li. 2020. Pancreas protective effects of Urolithin A on type 2 diabetic mice induced by high fat and streptozotocin via regulating autophagy and AKT/mTOR signaling pathway. Journal of Ethnopharmacology 250 (12):112479. doi: 10.1016/j.jep.2019.112479.
  • Velagapudi, R., I. Lepiarz, A. El-Bakoush, F. O. Katola, H. Bhatia, B. L. Fiebich, and O. A. Olajide. 2019. Induction of Autophagy and Activation of SIRT-1 deacetylation mechanisms mediate neuroprotection by the pomegranate metabolite Urolithin A in BV2 microglia and differentiated 3D human neural progenitor cells. Molecular Nutrition & Food Research 63 (10):9.1801237. doi: 10.1002/mnfr.20:.
  • Verzelloni, E., C. Pellacani, D. Tagliazucchi, S. Tagliaferri, L. Calani, L. G. Costa, F. Brighenti, G. Borges, A. Crozier, A. Conte, et al. 2011. Antiglycative and neuroprotective activity of colon-derived polyphenol catabolites. Molecular Nutrition & Food Research 55 (S1):S35–S43. doi: 10.1002/mnfr.201000525.
  • Vicinanza, R., Y. J. Zhang, S. M. Henning, Z. P. Li, and D. Heber. 2011. Urolithin A and ellagic acid inhibit prostate cancer through different molecular mechanisms: Implications of gut microbiome metabolism for cancer prevention. Faseb Journal 25 (1):235.4. doi: 10.1096/fasebj.25.1_supplement.235.4.
  • Villalba, R. G., D. Beltrán, M. D. Frutos, M. V. Selma, J. C. Espín, and F. A. Tomás-Barberán. 2020. Metabolism of different dietary phenolic compounds by the urolithin-producing human-gut bacteria Gordonibacter urolithinfaciens and Ellagibacter isourolithinifaciens. Food & Function 11 (8):7012–7022. doi: 10.1039/d0fo01649g.
  • Villalba, R., M. Selma, J. C. Espín, and F. Tomás-Barberán. 2019. Identification of novel urolithin metabolites in human feces and urine after the intake of a pomegranate extract. Journal of Agricultural and Food Chemistry 67 (40):11099–11107. doi: 10.1021/acs.jafc.9b04435.
  • Waltz, T. B., E. M. Fivenson, M. Morevati, C. Li, K. G. Becker, V. A. Bohr, and E. F. Fang. 2018. Sarcopenia, aging and prospective interventional strategies. Current Medicinal Chemistry 25 (40):5588–5596. doi: 10.2174/0929867324666170801095850.
  • Wang, Y., H. P. Huang, Y. W. Jin, K. Z. Shen, X. Y. Chen, Z. J. Xu, B. Y. Jin, and H. Pan. 2019. Role of TFEB in autophagic modulation of ischemia reperfusion injury in mice kidney and protection by urolithin A. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 131 (8):110591. doi: 10.1016/j.fct.2019.110591.
  • Wang, Y., Z. Qiu, B. Zhou, C. Liu, J. Ruan, Q. Yan, J. Liao, and F. Zhu. 2015. In vitro antiproliferative and antioxidant effects of urolithin A, the colonic metabolite of ellagic acid, on hepatocellular carcinomas HepG2 cells. Toxicology in Vitro: An International Journal Published in Association with BIBRA 29 (5):1107–1115. doi: 10.1016/j.tiv.2015.04.008.
  • Wong, M. H., A. Xue, R. C. Baxter, N. Pavlakis, and R. C. Smith. 2016. Upstream and downstream co-inhibition of mitogen-activated protein kinase and PI3K/Akt/mTOR pathways in pancreatic ductal adenocarcinoma. Neoplasia (New York, NY) 18 (7):425–435. doi: 10.1016/j.neo.2016.06.001.
  • Xia, B., X. C. Shi, B. C. Xie, M. Q. Zhu, Y. Chen, X. Y. Chu, G. H. Cai, M. Liu, S. Z. Yang, G. A. Mitchell, et al. 2020. Urolithin A exerts antiobesity effects through enhancing adipose tissue thermogenesis in mice. PLoS Biology 18 (3):e3000688. doi: 10.1371/journal.pbio.3000688.
  • Yang, J. P., S. M. Henning, R. Lee, M. Hsu, E. M. Grojean, A. Ly, D. Heber, and Z. P. Li. 2016. Effects of pomegranate extract on high fat/high sucrose diet induced obesity are dependent on the intestinal formation of Urolithin A. Faseb Journal 30 (2): 691.28. doi: 10.1096/fasebj.30.1_supplement.691.28.
  • Yeh, C. T., and G. C. Yen. 2006. Modulation of hepatic phase II phenol sulfotransferase and antioxidant status by phenolic acids in rats. The Journal of Nutritional Biochemistry 17 (8):561–569. doi: 10.1016/j.jnutbio.2005.10.008.
  • Zhang, W., J. H. Chen, I. Aguilera-Barrantes, C. W. Shiau, X. G. Sheng, L. S. Wang, G. D. Stoner, and Y. W. Huang. 2016. Urolithin A suppresses the proliferation of endometrial cancer cells by mediating estrogen receptor-α-dependent gene expression. Molecular Nutrition & Food Research 60 (11):2387–2395. doi: 10.1002/mnfr.201600048.
  • Zhao, W. H., F. Q. Shi, Z. K. Guo, J. J. Zhao, X. Y. Song, and H. Yang. 2018. Metabolite of ellagitannins, urolithin A induces autophagy and inhibits metastasis in human sw620 colorectal cancer cells. Molecular Carcinogenesis 57 (2):193–200. doi: 10.1002/mc.22746.
  • Zhou, B. H., J. Wang, G. H. Zheng, and Z. P. Qiu. 2016. Methylated urolithin A, the modified ellagitannin-derived metabolite, suppresses cell viability of DU145 human prostate cancer cells via targeting miR-21. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 97:375–384. doi: 10.1016/j.fct.2016.10.005.
  • Zhou, J. X., C. Zhang, G. H. Zheng, and Z. P. Qiu. 2018. Emblic leafflower (Phyllanthus emblica L.) fruits ameliorate vascular smooth muscle cell dysfunction in hyperglycemia: An underlying mechanism involved in ellagitannin metabolite Urolithin A. Evidence-Based Complementary and Alternative Medicine: eCAM 2018:8478943. doi: 10.1155/2018/8478943.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.