302
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

A cross talk based critical analysis of solvent free microwave extraction to accentuate it as the new normal for extraction of essential oil: an attempt to overhaul the science of distillation through a comprehensive tutelage

ORCID Icon, ORCID Icon, , , & ORCID Icon

References

  • Abdel-Hameed, E. S. S., M. S. Salman, M. A. Fadl, A. Elkhateeb, and M. A. El-Awady. 2018. Chemical composition of hydrodistillation and solvent free microwave extraction of essential oils from Mentha piperita L. growing in Taif, Kingdom of Saudi Arabia, and their anticancer and antimicrobial activity. Oriental Journal of Chemistry 34 (1):222–33. doi: 10.13005/ojc/340125.
  • Abdelhadi, M., A. Meullemiestre, A. Gelicus, A. Hassani, and S. A. Rezzoug. 2015. Intensification of Hypericum perforatum L. oil isolation by solvent-free microwave extraction. Chemical Engineering Research and Design 93:621–31. doi: 10.1016/j.cherd.2014.04.012.
  • Adeogun, O. O., A. Maroyi, and A. J. Afolayan. 2018. Variation in the chemical composition of essential oils from Artemisia afra (Jacq) ex-wild leaf obtained by different methods and the effect of oil extracts on Artemia salina L. Tropical Journal of Pharmaceutical Research 17 (3):519–28. doi: 10.4314/tjpr.v17i3.19.
  • Ajayi, E. O., A. P. Sadimenko, and A. J. Afolayan. 2016. GC-MS ­evaluation of cymbopogon citratus (DC) stapf oil obtained using modified hydrodistillation and microwave extraction methods. Food Chemistry 209:262–6. doi: 10.1016/j.foodchem.2016.04.071.
  • Alexandre, E. M. C., L. M. G. Castro, S. A. Moreira, M. Pintado, and J. A. Saraiva. 2017. Comparison of emerging technologies to extract high-added value compounds from fruit residues: Pressure- and electro-based technologies. Food Engineering Reviews 9 (3):190–212. doi: 10.1007/s12393-016-9154-2.
  • Arafat, Y., A. Altemimi, S. A. Ibrahim, and L. S. Badwaik. 2020. Valorization of sweet lime peel for the extraction of essential oil by solvent free microwave extraction enhanced with ultrasound pretreatment. Molecules 25 (18):4072. doi: 10.3390/molecules25184072.
  • Benmoussa, H., A. Farhat, M. Romdhane, and J. Bouajila. 2019. Enhanced dolvent-free microwave extraction of Foeniculum vulgare Mill. essential oil seeds using double walled reactor. Arabian Journal of Chemistry 12 (8):3863–70. doi: 10.1016/j.arabjc.2016.02.010.
  • Binello, A., L. Orio, G. Pignata, S. Nicola, F. Chemat, and G. Cravotto. 2014. Effect of microwaves on the is situ hydrodistillation of four different lamiaceae. Comptes Rendus Chimie 17 (3):181–6. doi: 10.1016/j.crci.2013.11.007.
  • Boukroufa, M., C. Boutekedjiret, L. Petigny, N. Rakotomanomana, and F. Chemat. 2015. Bio-refinery of orange peels waste: A new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrasonics Sonochemistry 24:72–9. doi: 10.1016/j.ultsonch.2014.11.015.
  • Carović-Stanko, K., M. Petek, M. Grdiša, J. Pintar, D. Bedeković, M. H. Ćustić, and Z. Satovic. 2016. Medicinal plants of the family Lamiaceae as functional foods—A review. Czech Journal of Food Sciences 34 (5):377–90. doi: 10.17221/504/2015-CJFS.
  • Chemat, F., M. Abert-Vian, A. S. Fabiano-Tixier, J. Strube, L. Uhlenbrock, V. Gunjevic, and G. Cravotto. 2019. Green extraction of natural products. origins, current status, and future challenges. TrAC - Trends in Analytical Chemistry 118:248–63. doi: 10.1016/j.trac.2019.05.037.
  • Essential Oil (All Fields) AND Microwave (All Fields)—1,191—Web of Science Core Collection. Accessed November 27, 2021. https://www.webofscience.com/wos/woscc/summary/4e4b4121-886e-41ae-a83a-6b796aafc4cb-171e119d/relevance/1.
  • Essential Oils Market Size, Share & Growth Report [2021–2028]. Foutune Business Insight. 2021. Accessed November 27, 2021. https://www.fortunebusinessinsights.com/industry-reports/essential-oils-market-101063.
  • Farhat, A., A. Sylvie Fabiano-Tixier, F. Visinoni, M. Romdhane, and F. Chemat. 2010. A surprising method for green extraction of essential oil from dry spices: Microwave dry-diffusion and gravity. Journal of Chromatography. A 1217 (47):7345–50. doi: 10.1016/j.chroma.2010.09.062.
  • Ferreira, D. F., B. N. Lucas, M. Voss, D. Santos, P. A. Mello, R. Wagner, G. Cravotto, and J. S. Barin. 2020. Solvent-free simultaneous extraction of volatile and non-volatile antioxidants from rosemary (Rosmarinus officinalis L.) by microwave hydrodiffusion and gravity. Industrial Crops and Products 145:112094. doi: 10.1016/j.indcrop.2020.112094.
  • Filly, A., A. S. Fabiano-Tixier, C. Louis, X. Fernandez, and F. Chemat. 2016. Water as a green solvent combined with different techniques for extraction of essential oil from lavender flowers. Comptes Rendus Chimie 19 (6):707–17. doi: 10.1016/j.crci.2016.01.018.
  • Filly, A., X. Fernandez, M. Minuti, F. Visinoni, G. Cravotto, and F. Chemat. 2014. Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale. Food Chemistry 150:193–8. doi: 10.1016/j.foodchem.2013.10.139.
  • Ikram, R., K. H. Low, N. B. Hashim, W. Ahmad, and M. N. A. Nasharuddin. 2019. Characterization of sulfur-compounds as chemotaxonomic markers in the essential oils of Allium species by solvent-free microwave extraction and gas chromatography–mass spectrometry. Analytical Letters 52 (4):563–74. doi: 10.1080/00032719.2018.1479411.
  • Jiang, C., Y. Sun, X. Zhu, Y. Gao, L. Wang, J. Wang, L. Wu, and D. Song. 2010. Solvent-free microwave extraction coupled with headspace single-drop microextraction of essential oils from flower of Eugenia caryophyllata Thunb. Journal of Separation Science 33 (17–18):2784–90. doi: 10.1002/jssc.201000148.
  • Jing, C. L., R. H. Huang, Y. Su, Y. Q. Li, and C. S. Zhang. 2019. Variation in chemical composition and biological activities of Flos Chrysanthemi Indici essential oil under different extraction methods. Biomolecules 9 (10):518. doi: 10.3390/biom9100518.
  • Kala, H. K., R. Mehta, K. K. Sen, R. Tandey, and V. Mandal. 2016. Critical analysis of research trends and issues in microwave assisted extraction of phenolics: Have we really done enough. TrAC - Trends in Analytical Chemistry 85:140–52. doi: 10.1016/j.trac.2016.09.007.
  • Kala, H. K., R. Mehta, K. K. Sen, R. Tandey, and V. Mandal. 2017. Strategizing method optimization of microwave-assisted extraction of plant phenolics by developing standard working principles for universal robust optimization. Analytical Methods 9 (13):2089–103. doi: 10.1039/C7AY00098G.
  • Karpiński, T. M. 2020. Essential oils of Lamiaceae family plants as antifungals. Biomolecules 10 (1):103. doi: 10.3390/biom10010103.
  • Kusuma, H., D. Putri, I. Dewi, and M. Mahfud. 2016. Solvent-free microwave extraction as the useful tool. Chemistry & Chemical Technology 10 (2):213–8. doi: 10.23939/chcht10.02.213.
  • Kusuma, H. S., A. Altway, and M. Mahfud. 2018. Solvent-free microwave extraction of essential oil from dried patchouli (Pogostemon cablin benth) leaves. Journal of Industrial and Engineering Chemistry 58:343–8. doi: 10.1016/j.jiec.2017.09.047.
  • Kusuma, H. S., D. Kharisma, Y. Putri, I. Ekawati, P. Dewi, and M. Mahfud. 2018. Solvent-free microwave extraction of essential oil from dried basil (Ocimum basilicum L.) leaves. Chemistry & Chemical Technology 12 (4):543–8. doi: 10.23939/chcht12.04.543.
  • Kusuma, H. S., and M. Mahfud. 2017a. Comparison of kinetic models of oil extraction from sandalwood by microwave-assisted hydrodistillation. International Food Research Journal 24 (4):1697–702.
  • Kusuma, H. S., and M. Mahfud. 2017b. Microwave-assisted hydrodistillation for extraction of essential oil from patchouli (Pogostemon cablin) leaves. Periodica Polytechnica Chemical Engineering 61 (2):82–92. doi: 10.3311/PPch.8676.
  • Li, J., and H. A. Chase. 2010. Applications of membrane techniques for purification of natural products. Biotechnology Letters 32 (5):601–8. doi: 10.1007/s10529-009-0199-7.
  • Li, Y., A. S. Fabiano-Tixier, M. A. Vian, and F. Chemat. 2013. Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. TrAC - Trends in Analytical Chemistry 47:1–11. doi: 10.1016/j.trac.2013.02.007.
  • Liu, L., G. Song, and Y. Hu. 2007. GC-MS analysis of the essential oils of Piper nigrum L. and Piper longum L. Chromatographia 66 (9–10):785–90. doi: 10.1365/s10337-007-0408-2.
  • Lucchesi, M. E., F. Chemat, and J. Smadja. 2004a. Solvent-free microwave extraction of essential oil from aromatic herbs: Comparison with conventional hydro-distillation. Journal of Chromatography. A 1043 (2):323–7. doi: 10.1016/j.chroma.2004.05.083.
  • Lucchesi, M. E., F. Chemat, and J. Smadja. 2004b. An original solvent free microwave extraction of essential oils from spices. Flavour and Fragrance Journal 19 (2):134–8. doi: 10.1002/ffj.1274.
  • Lucchesi, M. E., J. Smadja, S. Bradshaw, W. Louw, and F. Chemat. 2007. Solvent free microwave extraction of Elletaria cardamomum L.: A multivariate study of a new technique for the extraction of essential oil. Journal of Food Engineering 79 (3):1079–86. doi: 10.1016/j.jfoodeng.2006.03.029.
  • Ma, C. H., L. Yang, Y. G. Zu, and T. T. Liu. 2012. Optimization of conditions of solvent-free microwave extraction and study on antioxidant capacity of essential oil from Schisandra chinensis (Turcz.) Baill. Food Chemistry 134 (4):2532–9. doi: 10.1016/j.foodchem.2012.04.080.
  • Manouchehri, R., M. J. Saharkhiz, A. Karami, and M. Niakousari. 2018. Extraction of essential oils from damask rose using green and conventional techniques: Microwave and ohmic assisted hydrodistillation versus hydrodistillation. Sustainable Chemistry and Pharmacy 8:76–81. doi: 10.1016/j.scp.2018.03.002.
  • Masoudi, S. 2018. Volatile constituents from different parts of three Lamiacea herbs from Iran. Iranian Journal of Pharmaceutical Research 17 (1):365–76. doi: 10.22037/ijpr.2018.2163.
  • Meullemiestre, A., I. Kamal, Z. Maache-Rezzoug, F. Chemat, and S. A. Rezzoug. 2014. Antioxidant activity and total phenolic content of oils extracted from Pinus pinaster sawdust waste. Screening of different innovative isolation techniques. Waste and Biomass Valorization 5 (2):283–92. doi: 10.1007/s12649-013-9237-8.
  • Moridi Farimani, M., F. Mirzania, A. Sonboli, and F. M. Moghaddam. 2017. Chemical composition and antibacterial activity of Dracocephalum kotschyi essential oil obtained by microwave extraction and hydrodistillation. International Journal of Food Properties 20 (sup1):306–15. doi: 10.1080/10942912.2017.1295987.
  • Navarrete, A., M. Herrero, A. Martín, M. J. Cocero, and E. Ibáñez. 2011. Valorization of solid wastes from essential oil industry. Journal of Food Engineering 104 (2):196–201. doi: 10.1016/j.jfoodeng.2010.10.033.
  • Okoh, O. O., A. P. Sadimenko, and A. J. Afolayan. 2010. Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chemistry 120 (1):308–12. doi: 10.1016/j.foodchem.2009.09.084.
  • Pandey, A. K., P. Kumar, P. Singh, N. N. Tripathi, and V. K. Bajpai. 2016. Essential oils: Sources of antimicrobials and food preservatives. Frontiers in Microbiology 7:2161–14. doi: 10.3389/fmicb.2016.02161.
  • Périno, S., J. T. Pierson, K. Ruiz, G. Cravotto, and F. Chemat. 2016. Laboratory to pilot scale: Microwave extraction for polyphenols lettuce. Food Chemistry 204:108–14. doi: 10.1016/j.foodchem.2016.02.088.
  • Raut, J. S., and S. M. Karuppayil. 2014. A status review on the medicinal properties of essential oils. Industrial Crops and Products 62:250–64. doi: 10.1016/j.indcrop.2014.05.055.
  • Reichling, J. 2021. Antiviral and virucidal properties of essential oils and isolated compounds—A scientific approach. Planta Medica. e-pub ahead of print. doi: 10.1055/a-1382-2898.
  • Samadi, M., Z. Zainal Abidin, H. Yoshida, R. Yunus, and D. R. Awang Biak. 2020. Towards higher oil yield and quality of essential oil extracted from Aquilaria malaccensis wood via the subcritical technique. Molecules 25 (17):3872. doi: 10.3390/molecules25173872.
  • Shah, M., and S. K. Garg. 2014. Application of 2 k full factorial design in optimization of solvent-free microwave extraction of ginger essential oil. Journal of Engineering (United Kingdom) 2014:1–5. doi: 10.1155/2014/828606.
  • Sharifi-Rad, J., A. Sureda, G. Tenore, M. Daglia, M. Sharifi-Rad, M. Valussi, R. Tundis, M. Sharifi-Rad, M. Loizzo, A. Ademiluyi, et al. 2017. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 22 (1):70. doi: 10.3390/molecules22010070.
  • Shishov, A., A. Bulatov, M. Locatelli, S. Carradori, and V. Andruch. 2017. Application of deep eutectic solvents in analytical chemistry. A review. Microchemical Journal 135:33–8. doi: 10.1016/j.microc.2017.07.015.
  • Singh Chouhan, K. B., R. Tandey, K. K. Sen, R. Mehta, and V. Mandal. 2019a. A unique model of gravity assisted solvent free microwave based extraction of essential oil from mentha leaves ensuring biorefinery of leftover waste biomass for extraction of nutraceuticals: Towards cleaner and greener technology. Journal of Cleaner Production 225:587–98. doi: 10.1016/j.jclepro.2019.03.325.
  • Singh Chouhan, K. B., R. Tandey, K. K. Sen, R. Mehta, and V. Mandal. 2019b. Critical analysis of microwave hydrodiffusion and gravity as a green tool for extraction of essential oils: Time to replace traditional distillation. Trends in Food Science & Technology 92:12–21. doi: 10.1016/j.tifs.2019.08.006.
  • Vian, M. A., X. Fernandez, F. Visinoni, and F. Chemat. 2008. Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils. Journal of Chromatography A 1190 (1–2):14–7. doi: 10.1016/j.chroma.2008.02.086.
  • Wang, Z. M., L. Ding, L. Wang, J. Feng, T. C. Li, X. Zhou, and H. Q. Zhang. 2006. Fast determination of essential oil from dried menthol mint and orange peel by solvent free microwave extraction using carbonyl iron powder as the microwave absorption medium. Chinese Journal of Chemistry 24 (5):649–52. doi: 10.1002/cjoc.200690124.
  • Wianowska, D., and M. Gil. 2019. New insights into the application of MSPD in various fields of analytical chemistry. TrAC - Trends in Analytical Chemistry 112:29–51. doi: 10.1016/j.trac.2018.12.028.
  • Xu, F. X., J. Y. Zhang, J. Jin, Z. G. Li, Y. B. She, and M. R. Lee. 2021. Microwave-assisted natural deep eutectic solvents pretreatment followed by hydrodistillation ccoupled with GC-MS for analysis of essential oil from turmeric (Curcuma longa L.). Journal of Oleo Science 70 (10):1481–94. doi: 10.5650/jos.ess20368.
  • Ye, H., J. Ji, C. Deng, N. Yao, N. Li, and X. Zhang. 2006. Rapid analysis of the essential oil of Acorus tatarinowii Schott by microwave distillation, SPME, and GC-MS. Chromatographia 63 (11–12):591–4. doi: 10.1365/s10337-006-0796-8.
  • Yu, G. W., Q. Cheng, J. Nie, P. Wang, X. J. Wang, Z. G. Li, and M. R. Lee. 2017. DES-based microwave hydrodistillation coupled with GC-MS for analysis of essential oil from black pepper (Piper nigrum) and white pepper. Analytical Methods 9 (48):6777–84. doi: 10.1039/C7AY02072D.
  • Zanousi, M. B. P., M. Nekoei, and M. Mohammadhosseini. 2017. Chemical compositions of the essential oils from stems, leaves and fruits of Artemisia tschernieviana and exploring quantitative structure-retention relationships (QSRRs) for prediction of corresponding retention indices. Journal of Essential Oil Bearing Plants 20 (3):672–87. doi: 10.1080/0972060X.2017.1329669.
  • Zhao, Y., P. Wang, W. Zheng, G. Yu, Z. Li, Y. She, and M. Lee. 2019. Three-stage microwave extraction of cumin (Cuminum cyminum L.) seed essential oil with natural deep eutectic solvents. Industrial Crops and Products 140:111660. doi: 10.1016/j.indcrop.2019.111660.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.