1,841
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Molecular imprinting technology and poly (ionic liquid)s: Promising tools with industrial application for the removal of acrylamide and furanic compounds from coffee and other foods

, &

References

  • Abraham, K., R. Gürtler, K. Berg, G. Heinemeyer, A. Lampen, and K. Appel. 2011. Toxicology and risk assessment of 5-hydroxymethylfurfural in food. Molecular Nutrition & Food Research 55 (5):667–78. doi: 10.1002/mnfr.201000564.
  • Akıllıoğlu, H. G., K. S. Bahçeci, and V. Gökmen. 2015. Investigation and kinetic evaluation of furan formation in tomato paste and pulp during heating. Food Research International (Ottawa, Ont.) 78:224–30. doi: 10.1016/j.foodres.2015.10.005.
  • Akıllıoglu, H. G., and V. Gökmen. 2014. Mitigation of acrylamide and hydroxymethyl furfural in instant coffee by yeast fermentation. Food Research International 61:252–6. doi: 10.1016/j.foodres.2013.07.057.
  • Altaki, M. S., F. J. Santos, and M. T. Galceran. 2011. Occurrence of furan in coffee from Spanish market: contribution of brewing and roasting. Food Chemistry 126 (4):1527–32. doi: 10.1016/j.foodchem.2010.11.134.
  • Alviz, P. L., and A. J. Alvarez. 2017. Comparative life cycle assessment of the use of an ionic liquid ([Bmim]Br) versus a volatile organic solvent in the production of acetylsalicylic acid. Journal of Cleaner Production 168:1614–24. doi: 10.1016/j.jclepro.2017.02.107.
  • Anese, M. 2015. Furan and other furanic compounds in coffee: occurrence, mitigation strategies, and importance of processing. In Processing and impact on active components in food, ed. V. Preedy, 541–47. London: Academic Press. doi: 10.1016/B978-0-12-404699-3.00065-2.
  • Anese, M. 2016. Acrylamide in coffee and coffee substitutes. In Acrylamide in food: analysis, content and potential health effects, ed. V. Gökmen, 181–95. London: Academic Press. doi: 10.1016/B978-0-12-802832-2.00009-7.
  • Anese, M., L. Manzocco, S. Calligaris, and M. C. Nicoli. 2013. Industrially applicable strategies for mitigating acrylamide, furan, and 5-hydroxymethylfurfural in food. Journal of Agricultural and Food Chemistry 61 (43):10209–14. doi: 10.1021/jf305085r.
  • Anese, M., and M. Suman. 2013. Mitigation strategies of furan and 5-hydroxymethylfurfural in food. Food Research International 51 (1):257–64. doi: 10.1016/j.foodres.2012.12.024.
  • Arabi, M., M. Ghaedi, and A. Ostovan. 2016. Development of dummy molecularly imprinted based on functionalized silica nanoparticles for determination of acrylamide in processed food by matrix solid phase dispersion. Food Chemistry 210:78–84. doi: 10.1016/j.foodchem.2016.04.080.
  • Arabi, M., A. Ostovan, M. Ghaedi, and M. K. Purkait. 2016. Novel strategy for synthesis of magnetic dummy molecularly imprinted nanoparticles based on functionalized silica as an efficient sorbent for the determination of acrylamide in potato chips: optimization by experimental design methodology. Talanta 154:526–32. doi: 10.1016/j.talanta.2016.04.010.
  • Arisseto, A. P., and E. Vicente. 2015. Chapter 65 – Estimate of acrylamide intake from coffee and health risk assessment. In Coffee in Health and Disease Prevention Preedy, ed. Victor R. B. T., 575–84. San Diego: Academic Press. doi: 10.1016/B978-0-12-409517-5.00065-6.
  • Arribas-Lorenzo, G., and F. J. Morales. 2010. Estimation of dietary intake of 5-hydroxymethylfurfural and related substances from coffee to Spanish population. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 48 (2):644–9. doi: 10.1016/j.fct.2009.11.046.
  • Bagheri, A. R., M. Arabi, M. Ghaedi, A. Ostovan, X. Wang, J. Li, and L. Chen. 2019. Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta 195:390–400. doi: 10.1016/j.talanta.2018.11.065.
  • Bedade, D. K., Y. B. Sutar, and R. S. Singhal. 2019. Chitosan coated calcium alginate beads for covalent immobilization of acrylamidase: process parameters and removal of acrylamide from coffee. Food Chemistry 275:95–104. doi: 10.1016/j.foodchem.2018.09.090.
  • Bedoya-Ramírez, D., A. Cilla, J. Contreras-Calderón, and A. Alegría-Torán. 2017. Evaluation of the antioxidant capacity, furan compounds and cytoprotective/cytotoxic effects upon caco-2 cells of commercial colombian coffee. Food Chemistry 219:364–72. doi: 10.1016/j.foodchem.2016.09.159.
  • BelBruno, J. J. 2019. Molecularly imprinted polymers. Chemical Reviews 119 (1):94–119. doi: 10.1021/acs.chemrev.8b00171.
  • Belitz, H. D., Grosch, W. 1999. Coffee, tea and cocoa. In Food Chemistry, ed. H. D. Belitz and W. Grosch, 874–904. Berlin: Springer. doi: 10.1007/978-3-662-07281-3_22.
  • Bermudez, J. 2020. ¿Cuáles Son Los Países Que Consumen Más Café En El Mundo? IAlimentos. Accessed October 15, 2021. https://www.revistaialimentos.com/cuales-son-los-paises-que-consumen-mas-cafe-en-el-mundo/.
  • Berthod, A., M. J. Ruiz-Ángel, and S. Carda-Broch. 2018. Recent advances on ionic liquid uses in separation techniques. Journal of Chromatography. A 1559:2–16. doi: 10.1016/j.chroma.2017.09.044.
  • Van Boekel, M. A. J. S. 1998. Effect of heating on maillard reactions in milk. Food Chemistry 62 (4):403. 14. doi: 10.1016/S0308-8146(98)00075-2.
  • Cagliero, C., T. D. Ho, C. Zhang, C. Bicchi, and J. L. Anderson. 2016. Determination of acrylamide in brewed coffee and coffee powder using polymeric ionic liquid-based sorbent coatings in solid-phase microextraction coupled to gas chromatography-mass spectrometry. Journal of Chromatography. A 1449:2–7. doi: 10.1016/j.chroma.2016.04.034.
  • Cagliero, C., H. Nan, C. Bicchi, and J. L. Anderson. 2016. Matrix-compatible sorbent coatings based on structurally-tuned polymeric ionic liquids for the determination of acrylamide in brewed coffee and coffee powder using solid-phase microextraction. Journal of Chromatography. A 1459:17–23. doi: 10.1016/j.chroma.2016.06.075.
  • Capuano, E., and V. Fogliano. 2011. Acrylamide and 5-hydroxymethylfurfural (HMF): a review on metabolism, toxicity, occurrence in food and mitigation strategies. Lwt - Food Science and Technology 44 (4):793–810. doi: 10.1016/j.lwt.2010.11.002.
  • Castaño, J., G. Quintero, and V. León. 2000. Caracterización de Rendimiento de Extracción y El Contenido de Sólidos Solubles En La Bebida de Café. Cenicafe 51 (3):185–95. doi: 10.1016/j.chroma.2016.06.075 https://biblioteca.cenicafe.org/handle/10778/1001.
  • Çebi, A. 2016. Acrylamide intake, its effects on tissues and cancer. In Acrylamide in Food, ed. V. Gökmen, 63–91. Singapore: World Scientific Publishing. doi: 10.1016/B978-0-12-802832-2.00004-8.
  • Cennamo, N., L. De Maria, G. D’Agostino, M. Pesavento, and L. Zeni. 2014. Combined molecularly imprinted polymer and surface plasmon resonance transduction in plastic optical fiber for monitoring oil-filled power transformers. Procedia Engineering 87:532–5. doi: 10.1016/j.proeng.2014.11.541.
  • Cennamo, N., L. De Maria, G. D’Agostino, L. Zeni, and M. Pesavento. 2015. Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform. Sensors (Basel, Switzerland) 15 (4):8499–511. doi: 10.3390/s150408499.
  • Cennamo, N., L. Zeni, B. Andò, S. Baglio, S. Graziani, V. Marletta, A. Pistorio, M. Pesavento, and S. Marchetti. 2018. A novel chemical optical sensor based on molecularly imprinted polymer, optical fibers and inkjet printing technology. In 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1–15. Texas: IEEE. doi: 10.1109/I2MTC.2018.8409619.
  • Cennamo, N., L. Zeni, M. Pesavento, S. Marchetti, V. Marletta, S. Baglio, S. Graziani, A. Pistorio, and B. Andò. 2019. A novel sensing methodology to detect furfural in water, exploiting MIPs, and inkjet-printed optical waveguides. IEEE Transactions on Instrumentation and Measurement 68 (5):1582–9. doi: 10.1109/TIM.2018.2879170.
  • Chaichi, M., V. Ghasemzadeh-Mohammadi, M. Hashemi, and A. Mohammadi. 2015. Furanic compounds and furfural in different coffee products by headspace liquid-phase micro-extraction followed by gas chromatography-mass spectrometry: survey and effect of brewing procedures. Food Additives & Contaminants. Part B, Surveillance 8 (1):73–80. doi: 10.1080/19393210.2014.981601.
  • Chávez-Servín, J. L., A. I. Castellote, and M. C. López-Sabater. 2005. Analysis of potential and free furfural compounds in milk-based formulae by high-performance liquid chromatography: evolution during storage. Journal of Chromatography A 1076 (1–2):133–40. doi: 10.1016/j.chroma.2005.04.046.
  • Chen, J., X. Huang, L. Wang, C. Ma, S. Wu, and H. Wang. 2020. The synthesis of a dual-template surface molecularly imprinted polymer based on silica gel and its application in the removal of pesticides from tea polyphenols. Analytical Methods 12 (7):996–1004. doi: 10.1039/C9AY02708D.
  • Chen, X., X. Jin, Y. Li, G. Chen, K. Chen, and J. Kan. 2018. Preparation and characterization of molecularly-imprinted polymers for extraction of sanshool acid amide compounds followed by their separation from pepper oil resin derived from Chinese prickly ash (Zanthoxylum bungeanum). Journal of Separation Science 41 (2):590–601. doi: 10.1002/jssc.201701014.
  • Chiappe, C., A. Marra, and A. Mele. 2010. Synthesis and applications of ionic liquids derived from natural sugars. In Carbohydrates in sustainable development II, ed. A. P. Rauter, P. Vogel, and Y. Queneau, 177–95. Berlin, Heidelberg: Springer. doi: 10.1007/128_2010_47.
  • Contreras-Calderón, J., D. Mejía-Díaz, M. Martínez-Castaño, D. Bedoya-Ramírez, N. López-Rojas, F. Gómez-Narváez, Y. Medina-Pinea, and O. Vega-Castro. 2016. Evaluation of antioxidant capacity in coffees marketed in colombia: relationship with the extent of non-enzymatic browning. Food Chemistry 209:162–70. doi: 10.1016/j.foodchem.2016.04.038.
  • Crews, C., D. Roberts, S. Lauryssen, and G. Kramer. 2009. Survey of furan in foods and coffees from five European Union countries. Food Additives and Contaminants: Part B 2 (2):95–8. doi: 10.1080/02652030903095408.
  • Das, R. N., and K. Roy. 2013. Advances in QSPR/QSTR models of ionic liquids for the design of greener solvents of the future. Molecular Diversity 17 (1):151–96. doi: 10.1007/s11030-012-9413-y.
  • Ding, S., Z. Lyu, X. Niu, Y. Zhou, D. Liu, M. Falahati, D. Dan, and Y. Lin. 2020. Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: a review. Biosensors & Bioelectronics 149:111830. doi: 10.1016/j.bios.2019.111830.
  • Doble, M., and A. K. Kruthiventi. 2007. Chapter 5 - Alternate solvents. In Green chemistry and engineering, ed. M. Doble and A. K. Kruthiventi, 93–104. Burlington: Academic Press. doi: 10.1016/B978-012372532-5/50006-7.
  • Dong, S. J., B. X. Zhang, Y. F. Gao, and X. M. Hu. 2015. An efficient process for pretreatment of lignocelluloses in functional ionic liquids. International Journal of Polymer Science 2015:1–6. doi: 10.1155/2015/978983.
  • Du, K., J. Li, Y. Bai, M. An, X. M. Gao, and Y. X. Chang. 2018. A green ionic liquid-based vortex-forced MSPD method for the simultaneous determination of 5-HMF and iridoid glycosides from fructus corni by ultra-high performance liquid chromatography. Food Chemistry 244:190–6. doi: 10.1016/j.foodchem.2017.10.057.
  • EFSA. 2004. Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the commission related to furfural and furfural diethylacetal. The EFSA Journal 67:1–27.
  • EFSA. 2005. Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to flavouring group evaluation 13 (FGE. 13); furfuryl and furan derivatives with and without additional side‐chain substituent. EFSA Journal 3 (7):215.
  • EFSA. 2011. Results on acrylamide levels in food from monitoring years 2007–2009. EFSA Journal 4 (9):2133. doi: 10.2903/j.efsa.2011.2133.
  • EFSA. 2012. Update on acrylamide levels in food from monitoring years 2007 to 2010. EFSA Journal 10 (10):2938. doi: 10.2903/j.efsa.2012.2938.
  • European Commission. 2017. Commission regulation (EU) 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Official Journal of the European Union L304:24–44. http://data.europa.eu/eli/reg/2017/2158/oj.
  • Fan, J. P., Z. Y. Tian, S. Tong, X. H. Zhang, Y. L. Xie, R. Xu, L. Qin, L. Li, J. H. Zhu, and X. K. Ouyang. 2013. A novel molecularly imprinted polymer of the specific ionic liquid monomer for selective separation of synephrine from methanol-water media. Food Chem 141 (4):3578–85. doi: 10.1016/j.foodchem.2013.06.040.
  • Felsot, A. S. 2002. Acrylamide Angst: Another Annoying Distraction about Food Safety Agrichemical and Environmental News: A Monthly Report on Environmental and Pesticide Related Issues. Washington, DC: Washington State University.
  • Fiscal-Ladino, J. A., M. Obando-Ceballos, D. F. Rosero-Moreano, M. Montaño, W. Cardona, L. F. Giraldo, and P. Richter. 2017. Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction. Analytica Chimica Acta 953:23–31. doi: 10.1016/j.aca.2016.11.067.
  • Folmer, B., A. Farah, L. Jones, and V. Fogliano. 2017. Human wellbeing—sociability, performance, and health. In The craft and science of coffee, ed. B. Former, 493–520. London: Academic Press. doi: 10.1016/B978-0-12-803520-7.00020-7.
  • Gökmen, V. 2015. Acrylamide in food: analysis, content and potential health effects. New York: Academic Press. doi: 10.1016/C2014-0-02160-0.
  • Gökmen, V., T. Kocadağlı, N. Göncüoğlu, and B. A. Mogol. 2012. Model studies on the role of 5-hydroxymethyl-2-furfural in acrylamide formation from asparagine. Food Chemistry 132 (1):168–74. doi: 10.1016/j.foodchem.2011.10.048.
  • Gökmen, V., and F. J. Morales. 2014. Processing contaminants: hydroxymethylfurfural. Encyclopedia of Food Safety 2:404–8. doi: 10.1016/B978-0-12-378612-8.00209-2.
  • Gozzo, F. C., L. S. Santos, R. Augusti, C. S. Consorti, J. Dupont, and M. N. Eberlin. 2004. Gaseous supramolecules of imidazolium ionic liquids: “magic” numbers and intrinsic strengths of hydrogen bonds . Chemistry (Weinheim an Der Bergstrasse, Germany) 10 (23):6187–93. doi: 10.1002/chem.200305742.
  • Guenther, H., K. Hoenicke, S. Biesterveld, E. Gerhard-Rieben, and I. Lantz. 2010. Furan in coffee: pilot studies on formation during roasting and losses during production steps and consumer handling. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 27 (3):283–90. doi: 10.1080/19440040903317505.
  • Gunasekara, R. W., and Y. Zhao. 2017. A general method for selective recognition of monosaccharides and oligosaccharides in water. Journal of the American Chemical Society 139 (2):829–35. doi: 10.1021/jacs.6b10773.
  • Hartmann, D. O., and C. S. Pereira. 2016. Toxicity of ionic liquids: past, present, and future. In Ionic liquids in lipid processing and analysis, ed. X. Xu, Z. Guo, and L. Z. Cheong, 403–21. London: AOCS Press. doi: 10.1016/B978-1-63067-047-4.00013-1.
  • Hashemi-Moghaddam, H., and M. Ahmadifard. 2016. Novel molecularly-imprinted solid-phase microextraction fiber coupled with gas chromatography for analysis of furan. Talanta 150:148–54. doi: 10.1016/j.talanta.2015.08.044.
  • He, Z., M. Meng, L. Yan, W. Zhu, F. Sun, Y. Yan, Y. Liu, and S. Liu. 2015. Fabrication of new cellulose acetate blend imprinted membrane assisted with ionic liquid ([BMIM] Cl) for selective adsorption of salicylic acid from industrial wastewater. Separation and Purification Technology 145:63–74. doi: 10.1016/j.seppur.2015.03.005.
  • Henle, T., H. Walter, and H. Klostermeyer. 1991. Evaluation of the extent of the early Maillard-reaction in milk products by direct measurement of the Amadori-product lactuloselysine. Zeitschrift Fur Lebensmittel-Untersuchung und -Forschung 193 (2):119–22. doi: 10.1007/BF01193359.
  • Ho, C. 1996. Thermal Generation of maillard aromas. In The Maillard reaction consequences for the chemical and life sciences, ed. R. Irank, 27–53. Chichester, United Kingdom: John Wiley & Sons.
  • Hospido, A., and H. Rodríguez. 2019. Life cycle assessment (LCA) of ionic liquids. In Encyclopedia of ionic liquids, ed. S. Zhang, 1–9. Singapore: Springer. doi: 10.1007/978-981-10-6739-6_54-1.
  • Hou, X. D., Q. P. Liu, T. J. Smith, N. Li, and M. H. Zong. 2013. Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids. PloS One 8 (3):e59145. doi: 10.1371/journal.pone.0059145.
  • Huang, D. L., R. Z. Wang, Y. G. Liu, G. M. Zeng, C. Lai, P. Xu, B. A. Lu, J. J. Xu, C. Wang, and C. Huang. 2015. Application of molecularly imprinted polymers in wastewater treatment: a review. Environmental Science and Pollution Research International 22 (2):963–77. doi: 10.1007/s11356-014-3599-8.
  • IARC. 1996. Dry cleaning, some chlorinated solvents and other industrial chemicals IARC monographs on the evaluation of carcinogenic risks to humans. Cancer Causes Control 63:289–91. https://aplicacionesbiblioteca.udea.edu.co:2399/10.1007/BF00051307.
  • JECFA. 1996. Toxicological evaluation of certain food additives. The forty‐fourth meeting of the joint fao/who expert committee on food additives and contaminants. In WHO Food Additives Series. Geneva: IFCS WHO.
  • Jia, M., Z. Zhang, J. Li, X. Ma, L. Chen, and X. Yang. 2018. Molecular imprinting technology for microorganism analysis. TrAC Trends in Analytical Chemistry 106:190–201. doi: 10.1016/j.trac.2018.07.011.
  • Kartal, F., and A. Denizli. 2020. Molecularly imprinted cryogel beads for cholesterol removal from milk samples. Colloids and Surfaces. B, Biointerfaces 190:110860. doi: 10.1016/j.colsurfb.2020.110860.
  • Khan, A. S., Z. Man, A. Nasrullah, Z. Ullah, N. Muhammad, A. Rahim, A. Bustam, A. Idris, and M. Uroos. 2020. Conversion of biomass to chemicals using ionic liquids. In Green sustainable process for chemical and environmental engineering and science, ed. A. M. A. Asiri and S Kanchi, 1–30. India: Elsevier. doi: 10.1016/B978-0-12-817386-2.00001-9.
  • Kirchhecker, S., and D. Esposito. 2016. Amino acid based ionic liquids: a green and sustainable perspective. Current Opinion in Green and Sustainable Chemistry 2:28–33. doi: 10.1016/j.cogsc.2016.09.001.
  • Kissoudi, M., and V. Samanidou. 2018. Recent advances in applications of ionic liquids in miniaturized microextraction techniques. Molecules 23 (6):1437. doi: 10.3390/molecules23061437.
  • Knutsen, H. K., J. Alexander, L. Barregård, M. Bignami, B. Brüschweiler, S. Ceccatelli, B. Cottrill, M. Dinovi, L. Edler, B. Grasl-Kraupp, et al. 2017. Risks for public health related to the presence of furan and methylfurans in food. EFSA Journal. European Food Safety Authority 15 (10):e05005. doi: 10.2903/j.efsa.2017.5005.
  • Kobayashi, T., P. S. Reddy, M. Ohta, M. Abe, and N. Fujii. 2002. Molecularly imprinted polysulfone membranes having acceptor sites for donor dibenzofuran as novel membrane adsorbents: charge transfer interaction as recognition origin. Chemistry of Materials 14 (6):2499–505. doi: 10.1021/cm0109692.
  • Kosheleva, R. I., A. C. Mitropoulos, and G. Z. Kyzas. 2019. New trends in molecular imprinting techniques. In Advanced low-cost separation techniques in interface science, ed. G. Z. Kyzas and A. C. Mitropoulos, 151–72. London: Academic Press. doi: 10.1016/B978-0-12-814178-6.00007-8.
  • Krupadam, R. J., M. S. Khan, and S. R. Wate. 2010. Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contaminated water using molecularly imprinted polymer. Water Research 44 (3):681–8. doi: 10.1016/j.watres.2009.09.044.
  • Li, G., Y. Dai, X. Wang, and K. Row. 2019. Molecularly imprinted polymers modified by deep eutectic solvents and ionic liquids with two templates for the simultaneous solid-phase extraction of fucoidan and laminarin from marine kelp. Analytical Letters 52 (3):511–25. doi: 10.1080/00032719.2018.1471697.
  • López-Darias, J., J. L. Anderson, V. Pino, and A. M. Afonso. 2011. Developing qualitative extraction profiles of coffee aromas utilizing polymeric ionic liquid sorbent coatings in headspace solid-phase microextraction gas chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry 401 (9):2965–76. doi: 10.1007/s00216-011-5394-4.
  • Lu, X., Y. Yang, Y. Zeng, L. Li, and X. Wu. 2018. Rapid and reliable determination of P-nitroaniline in wastewater by molecularly imprinted fluorescent polymeric ionic liquid microspheres. Biosensors & Bioelectronics 99:47–55. doi: 10.1016/j.bios.2017.07.041.
  • Luo, X., R. Dong, S. Luo, Y. Zhan, X. Tu, and L. Yang. 2013. Preparation of water‐compatible molecularly imprinted polymers for caffeine with a novel ionic liquid as a functional monomer. Journal of Applied Polymer Science 127 (4):2884–90. doi: 10.1002/app.36792.
  • Luo, X., Y. Zhan, Y. Huang, L. Yang, X. Tu, and S. Luo. 2011. Removal of water-soluble acid dyes from water environment using a novel magnetic molecularly imprinted polymer. Journal of Hazardous Materials 187 (1–3):274–82. doi: 10.1016/j.jhazmat.2011.01.009.
  • Ma, W., and K. H. Row. 2018. Solid-phase extraction of chlorophenols in seawater using a magnetic ionic liquid molecularly imprinted polymer with incorporated silicon dioxide as a sorbent. Journal of Chromatography. A 1559:78–85. doi: 10.1016/j.chroma.2018.01.013.
  • Madikizela, L. M., N. T. Tavengwa, H. Tutu, and L. Chimuka. 2018. Green aspects in molecular imprinting technology: from design to environmental application. Trends in Environmental Analytical Chemistry 17:14–22. doi: 10.1016/j.teac.2018.01.001.
  • Maillard, L. C. 1912. Action Des Acides Aminés Sur Les Sucres: Formation Des Mélanoidines Par Voie Méthodique. Comptes Rendus de l’ Academie Des Sciences Serie IIa. Sciences de. La Terre et Des Planets 154:66–8.
  • Marcinkowska, R., K. Konieczna, Ł. Marcinkowski, J. Namieśnik, and A. Kloskowski. 2019. Application of ionic liquids in microextraction techniques: current trends and future perspectives. Trac Trends in Analytical Chemistry 119:115614. doi: 10.1016/j.trac.2019.07.025.
  • Martins, P. L. G., A. R. Braga, and V. V. de Rosso. 2017. Can ionic liquid solvents be applied in the food industry? Trends in Food Science & Technology 66:117–24. doi: 10.1016/j.tifs.2017.06.002.
  • Mehrkesh, A, and A. T. Karunanithi. 2016. New quantum chemistry-based descriptors for better prediction of melting point and viscosity of ionic liquids. Fluid Phase Equilibria 427:498–503. doi:10.1016/j.fluid.2016.07.006.
  • Mei, M., X. Huang, and L. Chen. 2019. Recent development and applications of poly (ionic liquid)s in microextraction techniques. Trac Trends in Analytical Chemistry 112:123–34. doi: 10.1016/j.trac.2019.01.003.
  • de Melo, M. M., A. J. Silvestre, I. Portugal, and C. M. Silva. 2017. Emerging technologies for the recovery of valuable compounds from coffee processing by-products. In Handbook of coffee processing by-products, 141–69. London: Academic Press. doi: 10.1016/B978-0-12-811290-8.00005-0.
  • Monien, B. H., W. Engst, G. Barknowitz, A. Seidel, and H. Glatt. 2012. Mutagenicity of 5-hydroxymethylfurfural in V79 cells expressing human SULT1A1: identification and mass spectrometric quantification of DNA adducts formed. Chemical Research in Toxicology 25 (7):1484–92. doi: 10.1021/tx300150n.
  • Monsalve-Atencio, R., K. Sanchez, J. Camaño, S. Lopera-Cardona, and B. Ortiz-Reyes. 2021. Determination of ochratoxin a in coffee by ELISA method and its relationship with the physical, physicochemical and microbiological properties. Vitae (2 SE-Foods: Science, Engineering and Technology) 28: 1–12. doi: 10.17533/udea.vitae.v28n2a343838.
  • Moro, S., J. K. Chipman, J. W. Wegener, C. Hamberger, W. Dekant, and A. Mally. 2012. Furan in heat-treated foods: formation, exposure, toxicity, and aspects of risk assessment. Molecular Nutrition & Food Research 56 (8):1197–211. doi: 10.1002/mnfr.201200093.
  • Mussatto, S. I., E. M. Machado, S. Martins, and J. A. Teixeira. 2011. Production, composition, and application of coffee and its industrial residues. Food and Bioprocess Technology 4 (5):661–72. doi: 10.1007/s11947-011-0565-z.
  • Nawała, J., B. Dawidziuk, D. Dziedzic, D. Gordon, and S. Popiel. 2018. Applications of ionic liquids in analytical chemistry with a particular emphasis on their use in solid-phase microextraction. TrAC Trends in Analytical Chemistry 105:18–36. doi: 10.1016/j.trac.2018.04.010.
  • Ncube, S., P. Kunene, N. T. Tavengwa, H. Tutu, H. Richards, E. Cukrowska, and L. Chimuka. 2017. Synthesis and characterization of a molecularly imprinted polymer for the isolation of the 16 US-EPA priority polycyclic aromatic hydrocarbons (PAHs) in solution. Journal of Environmental Management 199:192–200. doi: 10.1016/j.jenvman.2017.05.041.
  • Ning, F., T. Qiu, Q. Wang, H. Peng, Y. Li, X. Wu, Z. Zhang, L. Chen, and H. Xiong. 2017. Dummy-surface molecularly imprinted polymers on magnetic graphene oxide for rapid and selective quantification of acrylamide in heat-processed (including fried) foods. Food Chemistry 221:1797–804. doi: 10.1016/j.foodchem.2016.10.101.
  • Nursten, H. 2005. The maillard reaction – chemistry, biochemistry and implications. Cambridge: The Royal Society of Chemistry.
  • O’Brien, J., A. G. Renwick, A. Constable, E. Dybing, D. J. G. Müller, J. Schlatter, W. Slob, W. Tueting, J. van Benthem, G. M. Williams, A, et al. 2006. Approaches to the risk assessment of genotoxic carcinogens in food: a critical appraisal. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 44 (10):1613–35. doi: 10.1016/j.fct.2006.07.004.
  • Ozokwelu, D., S. Zhang, O. Okafor, W. Cheng, and N. Litombe. 2017a. Preparation and characterization of ionic liquids. In Novel catalytic and separation processes based on ionic liquids, ed. D. Ozokwelu, S. Zhang, O. Okafor, W. Cheng, and N. Litombe, 13–44. India: Elsevier. doi: 10.1016/B978-0-12-802027-2.00002-9.
  • Ozokwelu, D., S. Zhang, O. Okafor, W. Cheng, and N. Litombe. 2017b. Properties of ionic liquids. In Novel catalytic and separation processes based on ionic liquids, 45–110. Elsevier. doi: 10.1016/B978-0-12-802027-2.00003-0.
  • Patinha, D. J. S., A. J. D. Silvestre, and I. M. Marrucho. 2019. Poly(ionic liquids) in solid phase microextraction: recent advances and perspectives. Progress in Polymer Science 98:101148. doi: 10.1016/j.progpolymsci.2019.101148.
  • Pavesi, A., E. Vicente, M. Soares-Ueno, S. A. Verdiani-Tfouni, and M. C. De Figueiredo-Toledo. 2011. Furan levels in coffee as influenced by species, roast degree, and brewing procedures. Journal of Agricultural and Food Chemistry 59 (7):3118–24. doi: 10.1021/jf104868g.
  • Peng, N., F. C. Yan, L. Chen, and X. S. Huang. 2010. Preparation and binding characteristics of molecularly imprinted polymers for furan. Chinese Journal of Analytical Chemistry 4.
  • Pesavento, M., N. Cennamo, G. Alberti, S. Marchetti, and L. Zeni. 2019. Sensing of furfural by molecularly imprinted polymers on plasmonic and electrochemical platforms. Proceedings 15 (1):48-50. doi: 10.3390/proceedings2019015048.
  • Pesavento, M., S. Marchetti, L. De Maria, L. Zeni, and N. Cennamo. 2019. Sensing by molecularly imprinted polymer: evaluation of the binding properties with different techniques. Sensors 19 (6):1344. doi: 10.3390/s19061344.
  • Pichon, V., N. Delaunay, and A. Combès. 2020. Sample preparation using molecularly imprinted polymers. Analytical Chemistry 92 (1):16–33. doi: 10.1021/acs.analchem.9b04816.
  • Poisson, L., I. Blank, A. Dunkel, and T. Hofmann. 2017. The chemistry of roasting-decoding flavor formation. In The craft and science of coffee, ed. B. Folmer, 273–309. London: Academic Press. doi: 10.1016/B978-0-12-803520-7.00012-8.
  • Qu, Y., L. Qin, X. Liu, and Y. Yang. 2020. Reasonable design and sifting of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. Chemosphere 251:126376. doi: 10.1016/j.chemosphere.2020.126376.
  • Quarta, B., and M. Anese. 2012. Furfurals removal from roasted coffee powder by vacuum treatment. Food Chemistry 130 (3):610–4. doi: 10.1016/j.foodchem.2011.07.083.
  • Rahn, A., and C. Yeretzian. 2019. Impact of consumer behavior on furan and furan-derivative exposure during coffee consumption. A comparison between brewing methods and drinking preferences. Food Chemistry 272:514–22. doi: 10.1016/j.foodchem.2018.08.078.
  • Rannou, C., D. Laroque, E. Renault, C. Prost, and T. Sérot. 2016. Mitigation strategies of acrylamide, furans, heterocyclic amines and browning during the Maillard reaction in foods. Food Research International (Ottawa, Ont.) 90:154–76. doi: 10.1016/j.foodres.2016.10.037.
  • Bagheri, A. R., M. Arabi, M. Ghaedi, A. Ostovan, X. Wang, J. Li, and L. Chen. 2019. Dummy Molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta 195:390–400. doi: 10.1016/j.talanta.2018.11.065.
  • Richarme, G., E. Marguet, P. Forterre, S. Ishino, and Y. Ishino. 2016. DJ-1 family maillard deglycases prevent acrylamide formation. Biochemical and Biophysical Research Communications 478 (3):1111–6. doi: 10.1016/j.bbrc.2016.08.077.
  • Rodrigues, N. P., and N. Bragagnolo. 2013. Identification and quantification of bioactive compounds in coffee brews by HPLC–DAD–MSn. Journal of Food Composition and Analysis 32 (2):105–15. doi: 10.1016/j.jfca.2013.09.002.
  • Rodrigues, R.,. L. de Almeida, and E. Spers. 2020. Coffee and health in the perspective of young consumers. In Coffee consumption and industry strategies in brazil, ed. L. F. de Almeida and E. E. Spers, 343–66. India: Woodhead Publishing. doi: 10.1016/B978-0-12-814721-4.00017-2.
  • Schenker, S., and T. Rothgeb. 2017. The roast-creating the Beans’ signature. In The craft and science of coffee, ed. B. Folmer, 245–71. London: Academic Press. doi: 10.1016/B978-0-12-803520-7.00011-6.
  • Schubert, T. 2017. Current and future. Ionic liquid markets. In Ionic liquids: current state and future directions, 35–65. Washington, DC: American Chemical Society.
  • Sharma, G., and B. Kandasubramanian. 2020. Molecularly imprinted polymers for selective recognition and extraction of heavy metal ions and toxic dyes. Journal of Chemical & Engineering Data 65 (2):396–418. doi: 10.1021/acs.jced.9b00953.
  • Shen, X., C. Xu, and L. Ye. 2013. Molecularly imprinted polymers for clean water: analysis and purification. Industrial & Engineering Chemistry Research 52 (39):13890–9. doi: 10.1021/ie302623s.
  • Singh, S. K., and A. W. Savoy. 2020. Ionic liquids synthesis and applications: an overview. Journal of Molecular Liquids 297:112038. doi: 10.1016/j.molliq.2019.112038.
  • Soares, C. M. D., R. C. Alves, M. Beatriz, and P. P. Oliveira. 2015. Chapter 24 - Factors affecting acrylamide levels in coffee beverages. In Coffee in health and disease prevention, ed. V. R. Preedy, 217–24. San Diego: Academic Press. doi: 10.1016/B978-0-12-409517-5.00024-3.
  • Sorribes-Soriano, A., R. Arráez-González, F. A. Esteve-Turrillas, S. Armenta, and J. M. Herrero-Martínez. 2019. Development of a molecularly imprinted monolithic polymer disk for agitation-extraction of ecgonine methyl ester from environmental water. Talanta 199:388–95. doi: 10.1016/j.talanta.2019.02.077.
  • Speltini, A., A. Scalabrini, F. Maraschi, M. Sturini, and A. Profumo. 2017. Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: a review. Analytica Chimica Acta 974:1–26. doi: 10.1016/j.aca.2017.04.042.
  • Stadler, R., F. Robert, S. Riediker, N. Varga, T. Davidek, S. Devaud, T. Goldmann, J. Hau, and I. Blank. 2004. In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction. Journal of Agricultural and Food Chemistry 52 (17):5550–8. doi: 10.1021/jf0495486.
  • Tao, G. H., L. He, N. Sun, and Y. Kou. 2005. New generation ionic liquids: cations derived from amino acids. Chemical Communications 28 (28):3562–4. doi: 10.1039/b504256a.
  • Tian, M., W. Bi, and K. H. Row. 2011. Molecular imprinting in ionic liquid-modified porous polymer for recognitive separation of three tanshinones from Salvia miltiorrhiza bunge. Analytical and Bioanalytical Chemistry 399 (7):2495–502. doi: 10.1007/s00216-010-4641-4.
  • Toledo-Hijo, A. A., G. J. Maximo, M. C. Costa, E. A. Batista, and A. J. Meirelles. 2016. Applications of Ionic Liquids in the Food and Bioproducts Industries. ACS Sustainable Chemistry & Engineering 4 (10):5347–69. doi: 10.1021/acssuschemeng.6b00560.
  • Toledo, B. R., L. W. Hantao, T. D. Ho, F. Augusto, and J. L. Anderson. 2014. A chemometric approach toward the detection and quantification of coffee adulteration by solid-phase microextraction using polymeric ionic liquid sorbent coatings. Journal of Chromatography. A 1346:1–7. doi: 10.1016/j.chroma.2014.04.035.
  • Turiel, E., and A. Martín- Esteban. 2020. Molecularly imprinted polymers. In Solid-phase extraction, ed. C. F. Poole, 215–33. Cambridge, USA: Elsevier. doi: 10.1016/B978-0-12-816906-3.00008-X.
  • Van, M. 2006. Formation of flavour compounds in the Maillard reaction. Biotechnology Advances 24 (2):230–3. doi: 10.1016/j.biotechadv.2005.11.004.
  • Vegro, C. L., and L. F. de Almeida. 2020. Global coffee market: socio-economic and cultural dynamics. In Coffee consumption and industry strategies in Brazil, ed. L. F. Almeida and E. E. Sper, 3–19. India: Woodhead Publishing. doi: 10.1016/B978-0-12-814721-4.00001-9.
  • Vraneš, M., A. Tot, J. Panić, S. Papović, S. Gadžurić, and D. Četojević-Simin. 2019. Towards edible ionic liquids-cholinium taurate. Journal of the Serbian Chemical Society 84 (9):991–1004. doi: 10.2298/JSC190413047V.
  • Wackerlig, J., and R. Schirhagl. 2016. Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: a review. Analytical Chemistry 88 (1):250–61. doi: 10.1021/acs.analchem.5b03804.
  • Wei, X., Y. Wang, J. Chen, R. Ni, J. Meng, Z. Liu, F. Xu, and Y. Zhou. 2019. Ionic liquids skeleton typed magnetic core-shell molecularly imprinted polymers for the specific recognition of lysozyme. Analytica Chimica Acta 1081:81–92. doi: 10.1016/j.aca.2019.07.025.
  • WHO. 2005. Summary report of the sixty-fourth meeting of the joint FAO/WHO expert committee on food additive (JECFA). Rome, Italy. Washington DC: The ILSI Press International Life Sciences Institute.
  • Wrodnigg, T. M., and B. Eder. 2001. The Amadori and Heyns rearrangements: landmarks in the history of carbohydrate chemistry or unrecognized synthetic opportunities?. In Glycoscience: epimerisation, isomerisation and rearrangement reactions of carbohydrates, ed. A. E. Stütz, 115–52. Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/3-540-44422-X_6.
  • Xu, L., X. Qiao, Y. Ma, X. Zhang, and Z. Xu. 2012. Preparation of a hydrophilic molecularly imprinted polymer and its application in solid-phase extraction to determine of trace acrylamide in foods coupled with high-performance liquid chromatography. Food Analytical Methods 6 (3):838–44. doi: 10.1007/s12161-012-9491-6.
  • Xu, W., Q. Dai, Y. Wang, X. Hu, P. Xu, R. Ni, and J. Meng. 2018. Creating magnetic ionic liquid-molecularly imprinted polymers for selective extraction of lysozyme. RSC Advances 8 (39):21850–6. doi: 10.1039/C8RA03818J.
  • Xu, X.,. R. Liu, P. Guo, Z. Luo, X. Cai, H. Shu, Y. Ge, C. Chang, and Q. Fu. 2018. Fabrication of a novel magnetic mesoporous molecularly imprinted polymer based on pericarpium granati-derived carrier for selective absorption of bromelain. Food Chemistry 256:91–7. doi: 10.1016/j.foodchem.2018.02.118.
  • Yang, W., P. Ma, T. Fan, Z. Zhou, H. Liu, and W. Xu. 2015. Optimal design of an imprinted preassembled system by quantum chemical calculations and preparation of a surface‐imprinted material for the selective removal of quinoline. Journal of Applied Polymer Science 132 (15): 41730:1–41730:10. doi: 10.1002/app.41730.
  • Yuan, J., and M. Antonietti. 2011. Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer 52 (7):1469–82. doi: 10.1016/j.polymer.2011.01.043.
  • Zeng, H., X. Yu, J. Wan, and X. Cao. 2020. Rational design and synthesis of molecularly imprinted polymers (MIP) for purifying tylosin by seeded precipitation polymerization. Process Biochemistry 94:329–39. doi: 10.1016/j.procbio.2020.03.025.
  • Zhang, C., C. Cagliero, S. A. Pierson, and J. L. Anderson. 2017. Rapid and sensitive analysis of polychlorinated biphenyls and acrylamide in food samples using ionic liquid-based in situ dispersive liquid-liquid microextraction coupled to headspace gas chromatography. Journal of Chromatography. A 1481:1–11. doi: 10.1016/j.chroma.2016.12.013.
  • Zhang, C., X. Shi, F. Yu, and Y. Quan. 2020. Preparation of dummy molecularly imprinted polymers based on dextran-modified magnetic nanoparticles Fe3O4 for the selective detection of acrylamide in potato chips. Food Chemistry 317:126431. doi: 10.1016/j.foodchem.2020.126431.
  • Zhang, Y., X. Qu, J. Yu, L. Xu, Z. Zhang, H. Hong, and C. Liu. 2014. 13C NMR aided design of molecularly imprinted adsorbents for selectively preparative separation of erythromycin. J Mater Chem B 2 (10):1390–9. doi: 10.1039/c3tb21636e.
  • Zhao, F., Y. Meng, and J. L. Anderson. 2008. Polymeric ionic liquids as selective coatings for the extraction of esters using solid-phase microextraction. Journal of Chromatography. A 1208 (1–2):1–9. doi: 10.1016/j.chroma.2008.08.071.