685
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Carnobacterium as a bioprotective and potential probiotic culture to improve food quality, food safety, and human health – a scoping review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Afzal, M. I., K. A. Boulahya, C. Paris, S. Delaunay, and C. Cailliez-Grimal. 2013. Effect of oxygen on the biosynthesis of flavor compound 3-methylbutanal from leucine catabolism during batch culture in Carnobacterium maltaromaticum LMA 28. Journal of Dairy Science 96 (1):352–9. doi: 10.3168/jds.2012-6088.
  • Afzal, M. I., T. Jacquet, S. Delaunay, F. Borges, J. B. Millière, A. M. Revol-Junelles, and C. Cailliez-Grimal. 2010. Carnobacterium maltaromaticum: Identification, isolation tools, ecology and technological aspects in dairy products. Food Microbiology 27 (5):573–9. doi: 10.1016/j.fm.2010.03.019.
  • Agriopoulou, S., E. Stamatelopoulou, M. Sachadyn-Król, and T. Varzakas. 2020. Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects. Microorganisms 8 (6):952. doi: 10.3390/microorganisms8060952.
  • Alves, V. F., E. C. P. De Martinis, M. T. Destro, B. F. Vogel, and L. Gram. 2005. Antilisterial activity of a Carnobacterium Piscicola isolated from Brazilian smoked fish (Surubim [Pseudoplatystoma Sp.]) and its activity against a persistent strain of listeria monocytogenes isolated from Surubim. Journal of Food Protection 68 (10):2068–77. doi: 10.4315/0362-028X-68.10.2068.
  • Anukam, K. C., and G. Reid. 2007. Probiotics: 100 years (1907–2007) after Elie Metchnikoff’s observation. In Communicating current research and educational topics and trends in applied microbiology, ed. A. Mendez-Vilas, 1st ed., 446–74. Badajoz: FORMATEX.
  • Aymerich, T., M. Rodríguez, M. Garriga, and S. Bover-Cid. 2019. Assessment of the bioprotective potential of lactic acid bacteria against listeria monocytogenes on vacuum-packed cold-smoked salmon stored at 8 °C. Food Microbiology 83 (April):64–70. doi: 10.1016/j.fm.2019.04.011.
  • Azad, M. A. K., M. Sarker, T. Li, and J. Yin. 2018. Probiotic species in the modulation of gut microbiota: An overview. BioMed Research International 2018:9478630–8. doi: 10.1155/2018/9478630.
  • Barakat, R. K., M. W. Griffiths, and L. J. Harris. 2000. Isolation and characterization of carnobacterium, lactococcus, and enterococcus spp. from cooked, modified atmosphere packaged, refrigerated, poultry meat. International Journal of Food Microbiology 62 (1–2):83–94. doi: 10.1016/S0168-1605(00)00381-0.
  • Bassi, D., S. Gazzola, E. Sattin, F. Dal Bello, B. Simionati, and P. S. Cocconcelli. 2020. Lactic acid bacteria adjunct cultures exert a mitigation effect against spoilage microbiota in fresh Cheese. Microorganisms 8 (8):1199–18. doi: 10.3390/microorganisms8081199.
  • Ben Said, L., H. Gaudreau, L. Dallaire, M. Tessier, and I. Fliss. 2019. Bioprotective culture: A new generation of food additives for the preservation of food quality and safety. Industrial Biotechnology 15 (3):138–47. doi: 10.1089/ind.2019.29175.lbs.
  • Binda, S., C. Hill, E. Johansen, D. Obis, B. Pot, M. E. Sanders, A. Tremblay, and A. C. Ouwehand. 2020. Criteria to qualify microorganisms as ‘probiotic’ in foods and dietary supplements. Frontiers in Microbiology 11 (July):1–9. doi: 10.3389/fmicb.2020.01662.
  • Bogucka, J., D. M. Ribeiro, M. Bogusławska‐Tryk, A. Dankowiakowska, R. P. R. Costa, and M. Bednarczyk. 2019. Microstructure of the small intestine in broiler chickens fed a diet with probiotic or synbiotic supplementation. Journal of Animal Physiology and Animal Nutrition 103 (6):1785–91. doi: 10.1111/jpn.13182.
  • Botthoulath, V., A. Upaichit, and U. Thumarat. 2018. Identification and in vitro assessment of potential probiotic characteristics and antibacterial effects of lactobacillus Plantarum subsp. plantarum ski19, a bacteriocinogenic strain isolated from Thai fermented pork sausage. Journal of Food Science and Technology 55 (7):2774–85. doi: 10.1007/s13197-018-3201-3.
  • Boulares, M., M. Mankai, S. Sadok, and M. Hassouna. 2017. Anti-listerial inhibitory lactic acid bacteria in fresh farmed sea bass (Dicentrarchus Labrax) fillets during storage at 4 °C under vacuum-packed conditions. Journal of Food Safety 37 (3):e12323. doi: 10.1111/jfs.12323.
  • Brillet, A., M.-F. Pilet, H. Prevost, A. Bouttefroy, and F. Leroi. 2004. Biodiversity of listeria monocytogenes sensitivity to bacteriocin-producing carnobacterium strains and application in sterile cold-smoked salmon. Journal of Applied Microbiology 97 (5):1029–37. doi: 10.1111/j.1365-2672.2004.02383.x.
  • Brillet, A., M.-F. Pilet, H. Prevost, M. Cardinal, and F. Leroi. 2005. Effect of inoculation of carnobacterium divergens V41, a biopreservative strain against listeria monocytogenes risk, on the microbiological, chemical and sensory quality of cold-smoked salmon. International Journal of Food Microbiology 104 (3):309–24. doi: 10.1016/j.ijfoodmicro.2005.03.012.
  • Bubnov, R. V., L. P. Babenko, L. M. Lazarenko, V. V. Mokrozub, and M. Y. Spivak. 2018. Specific properties of probiotic strains: Relevance and benefits for the host. The EPMA Journal 9 (2):205–23. doi: 10.1007/s13167-018-0132-z.
  • Cailliez-Grimal, C., H. C. Edima, A. M. Revol-Junelles, and J. B. Millière. 2007. Short communication: Carnobacterium Maltaromaticum: The only carnobacterium species in French ripened soft cheeses as revealed by polymerase chain reaction detection. Journal of Dairy Science 90 (3):1133–8. doi: 10.3168/jds.S0022-0302(07)71599-0.
  • Cavalari, C., P. Imazaki, B. Pirard, R. Vanleyssem, S. Lebrun, S. Crevecoeur, G. Daube, R. Macedo, and A. Clinquart. 2019. Carnobacterium maltaromaticum as a bioprotective culture against spoilage bacteria in ground beef. In Book of abstracts – 65th International Congress of meat science and technology, 149–50. Potsdam/Berlin:ICoMST Organising Committee.
  • Chaillou, S., M. Ramaroson, G. Coeuret, A. Rossero, V. Anthoine, M. Champomier-Vergès, and N. Moriceau. 2020. Positive effect of combining high pressure and biopreservation treatments on lowering the bacterial growth during storage of diced cooked ham with reduced nitrite salt. BioRxiv:215863:1-25. doi: 10.1101/2020.07.22.215863.
  • Chen, K., J. Xin, G. Zhang, H. Xie, L. Luo, S. Yuan, Y. Bu, X. Yang, Y. Ge, and C. Liu. 2020. A combination of three probiotic strains for treatment of acute diarrhoea in hospitalised children: An open label, randomised controlled trial. Beneficial Microbes 11 (4):339–46. doi: 10.3920/BM2020.0046.
  • Choi, A. R., J. K. Patra, W. J. Kim, and S. S. Kang. 2018. Antagonistic activities and probiotic potential of lactic acid bacteria derived from a plant-based fermented food. Frontiers in Microbiology 9 (AUG):1963. doi: 10.3389/fmicb.2018.01963.
  • Cifuentes Bachmann, D. E., and F. Leroy. 2015. Use of bioprotective cultures in fish products. Current Opinion in Food Science 6 (December):19–23. doi: 10.1016/j.cofs.2015.11.009.
  • Corrêa, J. A. F., A. G. Evangelista, T. d M. Nazareth, and F. B. Luciano. 2019. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia 8 (December):100494. doi: 10.1016/j.mtla.2019.100494.
  • Corrêa, J. A. F., J. V. G. d Santos, A. G. Evangelista, A. C. S. M. Pinto, R. E. F. d Macedo, and F. B. Luciano. 2021. Combined application of phenolic acids and essential oil components against salmonella enteritidis and listeria monocytogenes in vitro and in ready-to-eat cooked ham. Lwt 149 (June):111881. doi: 10.1016/j.lwt.2021.111881.
  • Danielski, G. M., A. G. Evangelista, F. B. Luciano, and R. E. F. de Macedo. 2022. Non-conventional cultures and metabolism-derived compounds for bioprotection of meat and meat products: A review. Critical Reviews in Food Science and Nutrition 62 (4):1105–14. doi: 10.1080/10408398.2020.1835818.
  • Danielski, G. M., P. H. Imazaki, C. M. de Andrade Cavalari, G. Daube, A. Clinquart, R. E. Freitas de Macedo, C. M. de Andrade Cavalari, G. Daube, A. Clinquart, and R. E. F. de Macedo. 2020. Carnobacterium maltaromaticum as bioprotective culture in vitro and in cooked ham. Meat Science 162 (April):108035. doi: 10.1016/j.meatsci.2019.108035.
  • dos Reis, F. B., V. M. de Souza, M. R. S. Thomaz, L. P. Fernandes, W. P. de Oliveira, and E. C. P. De Martinis. 2011. Use of carnobacterium maltaromaticum cultures and hydroalcoholic extract of lippia sidoides cham. against listeria monocytogenes in fish model systems. International Journal of Food Microbiology 146 (3):228–34. doi: 10.1016/j.ijfoodmicro.2011.02.012.
  • Evangelista, A. G., J. A. F. Corrêa, J. V. G. dos Santos, E. H. C. Matté, M. M. Milek, G. C. Biauki, L. B. Costa, and F. B. Luciano. 2021. Cell-free supernatants produced by lactic acid bacteria reduce salmonella population in vitro. Microbiology 167 (11):1–12. doi: 10.1099/mic.0.001102.
  • Evangelista, A. G., J. A. F. Corrêa, A. C. S. M. Pinto, and F. B. Luciano. 2021. The impact of essential oils on antibiotic use in animal production regarding antimicrobial resistance – A review. Critical Reviews in Food Science and Nutrition:1–17. doi: 10.1080/10408398.2021.1883548.
  • Evangelista, A. G., and F. B. Luciano. 2021. Presença de Salmonella Spp. Na Produção Animal e o Uso de Fermentados Bacterianos Para Mitigação Dos Riscos – Revisão de Literatura. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR 24 (1cont):1–7. doi: 10.25110/arqvet.v24i1cont.2021.8543.
  • FAO/WHO. 2006. Probiotics in food: Health and nutritional properties and guidelines for evaluation. Rome, Italy: FAO and WHO. http://www.fao.org/3/a0512e/a0512e.pdf.
  • García-Díez, J., and C. Saraiva. 2021. Use of starter cultures in foods from animal origin to improve their safety. International Journal of Environmental Research and Public Health 18 (5):2544–25. doi: 10.3390/ijerph18052544.
  • García-Ruiz, A., D. González de Llano, A. Esteban-Fernández, T. Requena, B. Bartolomé, and M. V. Moreno-Arribas. 2014. Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiology 44 (December):220–5. doi: 10.1016/j.fm.2014.06.015.
  • Geeraerts, W., L. De Vuyst, and F. Leroy. 2020. Ready-to-eat meat alternatives, a study of their associated bacterial communities. Food Bioscience 37 (October):100681. doi: 10.1016/j.fbio.2020.100681.
  • Ghanbari, M., M. Jami, K. J. Domig, and W. Kneifel. 2013. Seafood biopreservation by Lactic acid bacteria – A review. LWT – Food Science and Technology 54 (2):315–24. doi: 10.1016/j.lwt.2013.05.039.
  • Gildberg, A., H. Mikkelsen, E. Sandaker, and E. Ringø. 1997. Probiotic effect of lactic acid bacteria in the feed on growth and survival of fry of Atlantic cod (Gadus Morhua). Hydrobiologia 352 (1/3):279–85. doi: 10.1023/A:1003052111938.
  • Groth Laursen, B., L. Bay, I. Cleenwerck, M. Vancanneyt, J. Swings, P. Dalgaard, and J. J. Leisner. 2005. Carnobacterium divergens and Carnobacterium maltaromaticum as spoilers or protective cultures in meat and seafood: Phenotypic and genotypic characterization. Systematic and Applied Microbiology 28 (2):151–64. doi: 10.1016/j.syapm.2004.12.001.
  • Guan, C., X. Chen, X. Jiang, R. Zhao, Y. Yuan, D. Chen, C. Zhang, M. Lu, Z. Lu, and R. Gu. 2020. In vitro studies of adhesion properties of six lactic acid bacteria isolated from the longevous population of China. RSC Advances 10 (41):24234–40. doi: 10.1039/D0RA03517C.
  • Hammes, W. P., and C. Hertel. 2006. The genera lactobacillus and carnobacterium. In The Prokaryotes, 320–403. New York, NY: Springer US. doi: 10.1007/0-387-30744-3_10.
  • Hammi, I., F. Delalande, R. Belkhou, E. Marchioni, S. Cianferani, and S. Ennahar. 2016. Maltaricin CPN, a new class IIa bacteriocin produced by Carnobacterium maltaromaticum CPN isolated from mould-ripened Cheese. Journal of Applied Microbiology 121 (5):1268–74. doi: 10.1111/jam.13248.
  • Hu, Z. Y., D. Balay, Y. Hu, L. M. McMullen, and M. G. Gänzle. 2019. Effect of Chitosan, and bacteriocin – Producing Carnobacterium maltaromaticum on survival of Escherichia coli and Salmonella Typhimurium on beef. International Journal of Food Microbiology 290 (February):68–75. doi: 10.1016/j.ijfoodmicro.2018.10.003.
  • Imazaki, P., A., Tahiri, F. N. Ekolo, G. Daub, and A. Linquart. 2014. Morphological and functional characterization of Carnobacterium Maltaromaticum isolated from vacuum-packed beef with long shelf life. In Book of Abstracts – 60th International Congress of Meat Science and Technology, 1–4. Punta del Este: ICoMST Organising Committee.
  • Irianto, A., and B. Austin. 2002. Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus Mykiss (Walbaum). Journal of Fish Diseases 25 (6):333–42. doi: 10.1046/j.1365-2761.2002.00375.x.
  • Iskandar, C. F., F. Borges, B. Taminiau, G. Daube, M. Zagorec, B. Remenant, J. J. Leisner, M. A. Hansen, S. J. Sørensen, C. Mangavel, et al. 2017. Comparative genomic analysis reveals ecological differentiation in the genus carnobacterium. Frontiers in Microbiology 8 (March):311–340. doi: 10.3389/fmicb.2017.00357.
  • Izuchukwu, N. 2017. Comparative application of different strategies of bacteriocins produced by Carnobacterium Maltaromaticium MMF-32 for inhibition of listeria monocytogenes ATCC 19114 in cold-smoked haddock. American Academic Scientific Research Journal for Engineering, Technology, and Sciences 38 (2):311–40.
  • Jackson, S. A., J. L. Schoeni, C. Vegge, M. Pane, B. Stahl, M. Bradley, V. S. Goldman, P. Burguière, J. B. Atwater, and M. E. Sanders. 2019. Improving end-user trust in the quality of commercial probiotic products. Frontiers in Microbiology 10 (April):1–15. doi: 10.3389/fmicb.2019.00739.
  • Jöborn, A., J. C. Olsson, A. Westerdahl, P. L. Conway, and S. Kjelleberg. 1997. Colonization in the fish intestinal tract and production of inhibitory substances in intestinal mucus and faecal extracts by Carnobacterium Sp. Strain K1. Journal of Fish Diseases 20 (5):383–92. doi: 10.1046/j.1365-2761.1997.00316.x.
  • Kasra-Kermanshahi, R., and E. Mobarak-Qamsari. 2015. Inhibition effect of lactic acid bacteria against food born pathogen, listeria monocytogenes. Applied Food Biotechnology 2 (4):11–9. doi: 10.22037/afb.v2i4.8894.
  • Kim, D.-H., and B. Austin. 2006. Innate immune responses in rainbow trout (Oncorhynchus Mykiss, Walbaum) induced by probiotics. Fish & Shellfish Immunology 21 (5):513–24. doi: 10.1016/j.fsi.2006.02.007.
  • Kim, D.-H., and B. Austin. 2008. Characterization of probiotic carnobacteria isolated from rainbow trout (Oncorhynchus Mykiss) intestine. Letters in Applied Microbiology 47 (3):141–7. doi: 10.1111/j.1472-765X.2008.02401.x.
  • Koné, A. P., J. M. V. Zea, D. Gagné, D. Cinq-Mars, F. Guay, and L. Saucier. 2018. Application of Carnobacterium maltaromaticum as a feed additive for weaned rabbits to improve meat microbial quality and safety. Meat Science 135 (January):174–88. doi: 10.1016/j.meatsci.2017.09.017.
  • Koutsoumanis, K., A. Allende, A. Alvarez‐Ordóñez, D. Bolton, S. Bover‐Cid, M. Chemaly, R. Davies, A. De Cesare, F. Hilbert, R. Lindqvist, EFSA Panel on Biological Hazards (BIOHAZ), et al. 2021. Update of the list of QPS‐recommended Biological agents intentionally added to food or feed as notified to EFSA 14: Suitability of taxonomic units notified to EFSA until March 2021. EFSA Journal 19 (7):1–41. doi: 10.2903/j.efsa.2021.6689.
  • Kristiansen, M., D. L. Merrifield, J. L. Gonzalez Vecino, R. Myklebust, and E. Ringø. 2011. Evaluation of prebiotic and probiotic effects on the intestinal gut microbiota and histology of Atlantic Salmon (Salmo Salar L.). Journal of Aquaculture Research & Development s1:1-8. doi: 10.4172/2155-9546.S1-009.
  • Kumar, V., and S. Kumar Tiwari. 2017. Halocin HA1: An Archaeocin produced by the haloarchaeon Haloferax Larsenii HA1. Process Biochemistry 61:202–8. doi: 10.1016/j.procbio.2017.06.010.
  • Lean, M. E. J. 2006. Milk and dairy products. Fox and Cameron’s Food Science, Nutrition & Health:76–87. doi: 10.1201/b13442-11.
  • Leisner, J. J., B. G. Laursen, H. Prévost, D. Drider, and P. Dalgaard. 2007. Carnobacterium: Positive and negative effects in the environment and in foods. FEMS Microbiology Reviews 31 (5):592–613. doi: 10.1111/j.1574-6976.2007.00080.x.
  • Leroi, F., J. Cornet, F. Chevalier, M. Cardinal, G. Coeuret, S. Chaillou, and J. J. Joffraud. 2015. Selection of bioprotective cultures for preventing cold-smoked salmon spoilage. International Journal of Food Microbiology 213:79–87. doi: 10.1016/j.ijfoodmicro.2015.05.005.
  • Liao, C., and L. Wang. 2021. Evaluation of the bacterial populations present in spring mix salad and their impact on the behavior of Escherichia Coli O157:H7. Food Control. 124:107865. doi: 10.1016/j.foodcont.2021.107865.
  • Lilly, D. M., and R. H. Stillwell. 1965. Probiotics: Growth-promoting factors produced by microorganisms. Science (New York, N.Y.) 147 (3659):747–8. doi: 10.1126/science.147.3659.747.
  • Maillet, A., P. Denojean, A. Bouju-Albert, E. Scaon, S. Leuillet, X. Dousset, E. Jaffrès, J. Combrisson, and H. Prévost. 2021. Characterization of bacterial communities of cold-smoked salmon during storage. Foods 10 (2):362. doi: 10.3390/foods10020362.
  • Martinsen, L. L., W. Salma, R. Myklebust, T. M. Mayhew, and E. Ringø. 2011. Carnobacterium MAltaromaticum vs. Vibrio (Listonella) Anguillarum in the midgut of Atlantic cod (Gadus Morhua L.): An ex vivo study. Aquaculture Research 42 (12):1830–9. doi: 10.1111/j.1365-2109.2010.02784.x.
  • Mazurkiewicz, J., A. Przyby, A. Sip, and W. Grajek. 2007. Effect of Carnobacterium Divergens and Enterococcus Hirae as Probiotic Bacteria in Feed for Common Carp, Cyprinus Carpio L. Archives of Polish Fisheries 15 (2):93–102.
  • Metchnikoff, E. 1908. The prolongation of life: Optimistic studies. Philadelphia, PA: Franklin Classics Trade Press.
  • Mu, D., Z. Wang, and Y. Yin. 2010. Changes of intestinal microflora in Hepialus Gonggaensis larvae after feeding with Carnobacterium Sp. Hg4-03 as a probiotic strain. Wei Sheng Wu Xue Bao = Acta Microbiologica Sinica 50 (2):251–5. http://www.ncbi.nlm.nih.gov/pubmed/20387469.
  • Nilsson, L., T. B. Hansen, P. Garrido, C. Buchrieser, P. Glaser, S. Knochel, L. Gram, and A. Gravesen. 2005. Growth inhibition of listeria monocytogenes by a nonbacteriocinogenic Carnobacterium piscicola. Journal of Applied Microbiology 98 (1):172–83. doi: 10.1111/j.1365-2672.2004.02438.x.
  • Nilsson, L., Y. Y. Ng, J. N. Christiansen, B. L. Jørgensen, D. Grótinum, and L. Gram. 2004. The contribution of bacteriocin to inhibition of listeria monocytogenes by Carnobacterium piscicola strains in cold-smoked salmon systems. Journal of Applied Microbiology 96 (1):133–43. doi: 10.1046/j.1365-2672.2003.02129.x.
  • Østlie, H. M., D. Porcellato, G. Kvam, and T. Wicklund. 2021. Investigation of the microbiota associated with ungerminated and germinated norwegian barley cultivars with focus on lactic acid bacteria. International Journal of Food Microbiology 341 (March):109059. doi: 10.1016/j.ijfoodmicro.2021.109059.
  • Papadimitriou, K., G. Zoumpopoulou, B. Foligné, V. Alexandraki, M. Kazou, B. Pot, and E. Tsakalidou. 2015. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Frontiers in Microbiology 6 (February):58. doi: 10.3389/fmicb.2015.00058.
  • Perrone, G., A. Rodriguez, D. Magistà, and N. Magan. 2019. Insights into existing and future fungal and mycotoxin contamination of cured meats. Current Opinion in Food Science 29 (October):20–7. doi: 10.1016/j.cofs.2019.06.012.
  • Pilchová, T., M.-F. Pilet, J.-M. Cappelier, J. Pazlarová, and O. Tresse. 2016. Protective effect of carnobacterium spp. against listeria monocytogenes during host cell invasion using in vitro HT29 model. Frontiers in Cellular and Infection Microbiology 6 (August):1–9. doi: 10.3389/fcimb.2016.00088.
  • Pinto, A., J. Barbosa, H. Albano, J. Isidro, and P. Teixeira. 2020. Screening of bacteriocinogenic lactic acid bacteria and their characterization as potential probiotics. Microorganisms 8 (3):393. doi: 10.3390/microorganisms8030393.
  • Portella, A. C. F., S. Karp, G. N. Scheidt, A. L. Woiciechwski, J. L. Parada, and C. R. Soccol. 2009. Modelling antagonic effect of lactic acid bacteria supernatants on some pathogenic bacteria. Brazilian Archives of Biology and Technology 52 (spe):29–36. doi: 10.1590/S1516-89132009000700004.
  • Prestes, R. J., and A. G. Evangelista. 2021. O Direito Humano à Alimentação Adequada: Uma Abordagem Multidisciplinar Sobre Melhoradores de Desempenho Na Produção Animal. In Ciências Sociais Aplicadas: A Sociedade Em Sua Integridade, ed. Frederico Celestino Barbosa, 1st ed., 218. Piracanjuba: Conhecimento Livre. doi: 10.37423/210804643.
  • Puvanendran, V., I. Rud, B. Msw, J. A. Arnesen, and L. Axelsson. 2021. Probiotic Carnobacterium divergens increase growth parameters and disease resistance in farmed Atlantic Cod (Gadus Morhua) larvae without influencing the microbiota. Aquaculture 532 (February):736072. doi: 10.1016/j.aquaculture.2020.736072.
  • Rahman, A., M. Gleinser, M.-C. Lanhers, C. U. Riedel, B. Foligné, M. Hanse, F. T. Yen, A. Klouj, M. I. Afzal, A. Back, et al. 2014. Adaptation of the lactic acid bacterium carnobacterium Maltaromaticum LMA 28 to the mammalian gastrointestinal tract: From survival in mice to interaction with human cells. International Dairy Journal 34 (1):93–9. doi: 10.1016/j.idairyj.2013.07.003.
  • Ramaroson, M., S. Guillou, A. Rossero, S. Rezé, V. Anthoine, N. Moriceau, J. L. Martin, F. Duranton, and M. Zagorec. 2018. Selection procedure of bioprotective cultures for their combined use with high pressure processing to control spore-forming bacteria in cooked ham. International Journal of Food Microbiology 276 (April):28–38. doi: 10.1016/j.ijfoodmicro.2018.04.010.
  • Richard, C., A. Brillet, M. F. Pilet, H. Prévost, and D. Drider. 2003. Evidence on inhibition of listeria monocytogenes by Divercin V41 action. Letters in Applied Microbiology 36 (5):288–92. doi: 10.1046/j.1472-765X.2003.01310.x.
  • Sanders, M. E., A. Benson, S. Lebeer, D. J. Merenstein, and T. R. Klaenhammer. 2018. Shared mechanisms among probiotic taxa: Implications for general probiotic claims. Current Opinion in Biotechnology 49 (February):207–16. doi: 10.1016/j.copbio.2017.09.007.
  • Santos, D. I. J.M. A., Saraiva, A. A. Vicent, and M. Moldão-Martins. 2019. Methods for determining bioavailability and bioaccessibility of bioactive compounds and nutrients. In Innovative thermal and non-thermal processing, bioaccessibility and bioavailability of nutrients and bioactive compounds, 23–54. Sawston, UK: Woodhead Publishing. doi: 10.1016/B978-0-12-814174-8.00002-0.
  • Saraoui, T., J. Cornet, E. Guillouet, M. F. Pilet, F. Chevalier, J. J. Joffraud, and F. Leroi. 2017. Improving simultaneously the quality and safety of cooked and peeled shrimp using a cocktail of bioprotective lactic acid bacteria. International Journal of Food Microbiology 241:69–77. doi: 10.1016/j.ijfoodmicro.2016.09.024.
  • Schöbitz, R., V. Suazo, M. Costa, and L. Ciampi. 2003. Effects of a bacteriocin-like inhibitory substance from carnobacterium piscicola against human and salmon isolates of listeria monocytogenes. International Journal of Food Microbiology 84 (2):237–44. doi: 10.1016/S0168-1605(02)00406-3.
  • Sharma, R., P. Garg, P. Kumar, S. K. Bhatia, and S. Kulshrestha. 2020. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 6 (4):106. doi: 10.3390/fermentation6040106.
  • Shekh, R., K. Upadhyay, S. M. Singh, and U. Roy. 2009. Inhibition of Candida albicans and two selected gram-negative pathogens by polar Enterococcus faecalis and Carnobacterium Sp. Research Journal of Microbiology 4 (3):138–42. doi: 10.3923/jm.2009.138.142.
  • Singh, T. P., G. Kaur, S. Kapila, and R. K. Malik. 2017. Antagonistic activity of Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. Frontiers in Microbiology 8 (March):1–8. doi: 10.3389/fmicb.2017.00486.
  • Smialek, M., S. Burchardt, and A. Koncicki. 2018. The influence of probiotic supplementation in broiler chickens on population and carcass contamination with campylobacter spp. – Field study. Research in Veterinary Science 118 (June):312–6. doi: 10.1016/j.rvsc.2018.03.009.
  • Spanu, C., F. Piras, A. M. Mocci, G. Nieddu, E. P. L. De Santis, and C. Scarano. 2018. Use of Carnobacterium Spp protective culture in MAP packed ricotta Fresca cheese to control Pseudomonas Spp. Food Microbiology 74 (September):50–6. doi: 10.1016/j.fm.2018.02.020.
  • Stupar, J., I. Grimsbo Holøymoen, S. Hoel, J. Lerfall, A. N. Jakobsen, and T. Rustad. 2021. Diversity and antimicrobial activity towards Listeria Spp. and Escherichia Coli among lactic acid bacteria isolated from ready-to-eat seafood. Foods 10 (2):271. doi: 10.3390/foods10020271.
  • Sun, Z., H. M. B. Harris, A. McCann, C. Guo, S. Argimón, W. Zhang, X. Yang, I. B. Jeffery, J. C. Cooney, T. F. Kagawa, et al. 2015. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nature Communications 6 (1):8322. doi: 10.1038/ncomms9322.
  • Tarnecki, A. M., M. Wafapoor, R. N. Phillips, and N. R. Rhody. 2019. Benefits of a Bacillus probiotic to larval fish survival and transport stress resistance. Scientific Reports 9 (1):4892. doi: 10.1038/s41598-019-39316-w.
  • Tricco, A. C., E. Lillie, W. Zarin, K. O’Brien, H. Colquhoun, M. Kastner, D. Levac, C. Ng, J. P. Sharpe, K. Wilson, et al. 2016. A scoping review on the conduct and reporting of scoping reviews. BMC Medical Research Methodology 16 (1):15. doi: 10.1186/s12874-016-0116-4.
  • Van Tassell, M. L., and M. J. Miller. 2011. Lactobacillus adhesion to mucus. Nutrients 3 (5):613–36. doi: 10.3390/nu3050613.
  • Vasilopoulos, C., E. De Mey, L. Dewulf, H. Paelinck, A. De Smedt, F. Vandendriessche, L. De Vuyst, and F. Leroy. 2010. Interactions between bacterial isolates from modified-atmosphere-packaged artisan-type cooked ham in view of the development of a bioprotective culture. Food Microbiol 27 (8):1086–94. doi: 10.1016/j.fm.2010.07.013.
  • von Schillde, M.-A., G. Hörmannsperger, M. Weiher, C.-A. Alpert, H. Hahne, C. Bäuerl, K. van Huynegem, L. Steidler, T. Hrncir, G. Pérez-Martínez, et al. 2012. Lactocepin secreted by lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host & Microbe 11 (4):387–96. doi: 10.1016/j.chom.2012.02.006.
  • Wang, Y., Y. Wu, Y. Wang, H. Xu, X. Mei, D. Yu, Y. Wang, and W. Li. 2017. Antioxidant properties of probiotic bacteria. Nutrients 9 (5):521. doi: 10.3390/nu9050521.
  • Whon, T. W., D.-W. Hyun, Y.-D. Nam, M.-S. Kim, E.-J. Song, Y. K. Jang, E. S. Jung, N.-R. Shin, S. J. Oh, P. S. Kim, et al. 2015. Genomic and phenotypic analyses of carnobacterium jeotgali strain MS3T, a lactate-producing candidate biopreservative bacterium isolated from salt-fermented shrimp. FEMS Microbiology Letters 362 (10):2–6. doi: 10.1093/femsle/fnv058.
  • Wiernasz, N., F. Leroi, F. Chevalier, J. Cornet, M. Cardinal, J. Rohloff, D. Passerini, S. Skırnisdóttir, and M. F. Pilet. 2020. Salmon gravlax biopreservation with lactic acid bacteria: A polyphasic approach to assessing the impact on organoleptic properties, microbial ecosystem and volatilome composition. Frontiers in Microbiology 10 (January): 1–20. doi: 10.3389/fmicb.2019.03103.
  • Woo, J., and J. Ahn. 2013. Probiotic-mediated competition, exclusion and displacement in biofilm formation by food-borne pathogens. Letters in Applied Microbiology 56 (4):307–13. doi: 10.1111/lam.12051.
  • Yamazaki, K., M. Suzuki, Y. Kawai, N. Inoue, and T. J. Montville. 2003. Inhibition of listeria monocytogenes in cold-smoked salmon by Carnobacterium piscicola CS526 isolated from frozen Surimi. Journal of Food Protection 66 (8):1420–5. doi: 10.4315/0362-028X-66.8.1420.
  • Zendeboodi, F., N. Khorshidian, A. M. Mortazavian, and A. G. da Cruz. 2020. Probiotic: Conceptualization from a new approach. Current Opinion in Food Science 32 (April):103–23. doi: 10.1016/j.cofs.2020.03.009.
  • Zhang, P., M. Gänzle, and X. Yang. 2019. Complementary antibacterial effects of bacteriocins and organic acids as revealed by comparative analysis of Carnobacterium Spp. from meat. In Applied and Environmental Microbiology, ed. Christopher A. Elkins, vol. 85, iss. 20, 1-15. doi: 10.1128/AEM.01227-19.
  • Zhang, P., M. Kaur, J. Bowman, D. Ratkowsky, and M. Tamplin. 2017. Effect of environmental factors on intra-specific inhibitory activity of Carnobacterium maltaromaticum. Microorganisms 5 (3):59. doi: 10.3390/microorganisms5030059.
  • Zhang, C., S. Zhang, W. Liu, T. Guo, R. Gu, and J. Kong. 2019. Potential application and bactericidal mechanism of lactic acid-hydrogen peroxide consortium. Applied Biochemistry and Biotechnology 189 (3):822–33. doi: 10.1007/s12010-019-03031-z.
  • Zheng, J., S. Wittouck, E. Salvetti, C. M. A. P. Franz, H. M. B. Harris, P. Mattarelli, P. W. O’Toole, B. Pot, P. Vandamme, J. Walter, et al. 2020. A taxonomic note on the genus lactobacillus: Description of 23 novel genera, emended description of the genus lactobacillus Beijerinck 1901, and union of lactobacillaceae and leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology 70 (4):2782–858. doi: 10.1099/ijsem.0.004107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.