2,479
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Application of carbon dots in food preservation: a critical review for packaging enhancers and food preservatives

, , &

References

  • Arul, V., T. N. J. I. Edison, Y. R. Lee, and M. G. Sethuraman. 2017. Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereus undatus. Journal of Photochemistry and Photobiology. B, Biology 168:142–8. doi: 10.1016/j.jphotobiol.2017.02.007.
  • Barlow, C., and D. Morgan. 2013. Polymer film packaging for food: An environmental assessment. Resources, Conservation and Recycling 78:74–80. doi: 10.1016/j.resconrec.2013.07.003.
  • Bayat, A., S. Masoum, and E. S. Hosseini. 2019. Natural plant precursor for the facile and eco-friendly synthesis of carbon nanodots with multifunctional aspects. Journal of Molecular Liquids 281:134–40. doi: 10.1016/j.molliq.2019.02.074.
  • Bing, W., H. Sun, Z. Yan, J. Ren, and X. Qu. 2016. Programmed bacteria death induced by carbon dots with different surface charge. Small (Weinheim an Der Bergstrasse, Germany) 12 (34):4713–8. doi: 10.1002/smll.201600294.
  • Chen, K., W. X. Qing, W. P. Hu, M. H. Lu, Y. Wang, and X. H. Liu. 2019. On-off-on fluorescent carbon dots from waste tea: Their properties, antioxidant and selective detection of CrO42-, Fe3+, ascorbic acid and L-cysteine in real samples. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 213:228–34. doi: 10.1016/j.saa.2019.01.066.
  • Chen, H-z, M. Zhang, B. Bhandari, and Z. Guo. 2018. Applicability of a colorimetric indicator label for monitoring freshness of fresh-cut green bell pepper. Postharvest Biology and Technology 140:85–92. doi: 10.1016/j.postharvbio.2018.02.011.
  • Chen, H-z, M. Zhang, B. Bhandari, and C-h Yang. 2019. Development of a novel colorimetric food package label for monitoring lean pork freshness. LWT–Food Science and Technology 99:43–9. doi: 10.1016/j.lwt.2018.09.048.
  • Chen, H-z, M. Zhang, B. Bhandari, and C-h Yang. 2020. Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocolloids 100:105438. doi: 10.1016/j.foodhyd.2019.105438.
  • Chitrakar, B., M. Zhang, and B. Bhandari. 2021. Improvement strategies of food supply chain through novel food processing technologies during COVID-19 pandemic. Food Control 125 (4):108010. doi: 10.1016/j.foodcont.2021.108010.
  • Chunduri, L. A. A., A. Kurdekar, S. Patnaik, B. V. Dev, T. M. Rattan, and V. Kamisetti. 2016. Carbon quantum dots from coconut husk: Evaluation for antioxidant and cytotoxic activity. Materials Focus 5 (1):55–61. doi: 10.1166/mat.2016.1289.
  • Das Purkayastha, M., A. K. Manhar, V. K. Das, A. Borah, M. Mandal, A. J. Thakur, and C. L. Mahanta. 2014. Antioxidative, hemocompatible, fluorescent carbon nanodots from an "end-of-pipe" agricultural waste: exploring its new horizon in the food-packaging domain. Journal of Agricultural and Food Chemistry 62 (20):4509–20. doi: 10.1021/jf500138f.
  • Das, B., P. Dadhich, P. Pal, P. K. Srivas, K. Bankoti, and S. Dhara. 2014. Carbon nanodots from date molasses: New nanolights for the in vitro scavenging of reactive oxygen species. Journal of Materials Chemistry. B 2 (39):6839–47. doi: 10.1039/c4tb01020e.
  • Das, P., S. Ganguly, S. Margel, and A. Gedanken. 2021. Immobilization of heteroatom-doped carbon dots onto nonpolar plastics for antifogging, antioxidant, and food monitoring applications. Langmuir: The ACS Journal of Surfaces and Colloids 37 (11):3508–20. doi: 10.1021/acs.langmuir.1c00471.
  • Dehvari, K., S.-H. Chiu, J.-S. Lin, W. M. Girma, Y.-C. Ling, and J.-Y. Chang. 2020. Heteroatom doped carbon dots with nanoenzyme like properties as theranostic platforms for free radical scavenging, imaging, and chemotherapy. Acta Biomaterialia 114:343–57. doi: 10.1016/j.actbio.2020.07.022.
  • Dong, X., W. Liang, M. J. Meziani, Y.-P. Sun, and L. Yang. 2020. Carbon dots as potent antimicrobial agents. Theranostics 10 (2):671–86. doi: 10.7150/thno.39863.
  • Dong, L., Z. Xiong, X. Liu, D. Sheng, Y. Zhou, and Y. Yang. 2019. Synthesis of carbon quantum dots to fabricate ultraviolet-shielding poly(vinylidene fluoride) films. Journal of Applied Polymer Science 136 (25):47555. doi: 10.1002/app.47555.
  • Duan, X., M. Zhang, X. Li, and A. S. Mujumdar. 2008. Microwave freeze drying of sea cucumber coated with nanoscale silver. Drying Technology 26 (4):413–9. doi: 10.1080/07373930801929136.
  • Eskalen, H., Çeşme, M., Kerli, S. Özğan. Ş., and J. J. o C. R. 2020. Green synthesis of water-soluble fluorescent carbon dots from rosemary leaves: Applications in food storage capacity, fingerprint detection, and antibacterial activity. Journal of Chemical Research 45:428–435. doi: 10.1177/1747519820953823.
  • Fan, H. Z., M. Zhang, B. Bhandari, and C. H. Yang. 2020. Food waste as a carbon source in carbon quantum dots technology and their applications in food safety detection. Trends in Food Science & Technology 95:86–96. doi: 10.1016/j.tifs.2019.11.008.
  • Fan, K., M. Zhang, and H. Chen. 2020. Effect of ultrasound treatment combined with carbon dots coating on the microbial and physicochemical quality of fresh-cut cucumber. Food and Bioprocess Technology 13 (4):648–60. doi: 10.1007/s11947-020-02424-x.
  • Fan, K., M. Zhang, D. Fan, and F. Jiang. 2019. Effect of carbon dots with chitosan coating on microorganisms and storage quality of modified-atmosphere-packaged fresh-cut cucumber. Journal of the Science of Food and Agriculture 99 (13):6032–41. doi: 10.1002/jsfa.9879.
  • Fan, K., M. Zhang, and F. Jiang. 2019. Ultrasound treatment to modified atmospheric packaged fresh-cut cucumber: Influence on microbial inhibition and storage quality. Ultrasonics Sonochemistry 54:162–70. doi: 10.1016/j.ultsonch.2019.02.003.
  • Fatemeh, S., M. Mehran, T. Hossein, and M. Rahim. 2021. Optimization and characterization of eco-friendly antimicrobial nanocellulose sheet prepared using carbon dots of white mulberry (Morus alba L.). Journal of the Science of Food and Agriculture 101 (8):3439–47. doi: 10.1002/jsfa.10974.
  • Feng, X., Y. Zhao, Y. Jiang, M. Miao, S. Cao, and J. Fang. 2017. Use of carbon dots to enhance UV-blocking of transparent nanocellulose films. Carbohydrate Polymers 161:253–60. doi: 10.1016/j.carbpol.2017.01.030.
  • Gao, J., M. Zhu, H. Huang, Y. Liu, and Z. Kang. 2017. Advances, challenges and promises of carbon dots. Inorganic Chemistry Frontiers 4 (12):1963–86. doi: 10.1039/C7QI00614D.
  • Gokkurt, T., F. Findık, H. Unal, and A. Mimaroglu. 2012. Extension in shelf life of fresh food using nanomaterials food packages. Polymer-Plastics Technology and Engineering 51 (7):701–6. doi: 10.1080/03602559.2012.661899.
  • Gudimella, K. K., T. Appidi, H.-F. Wu, V. Battula, A. Jogdand, A. K. Rengan, and G. Gedda. 2021. Sand bath assisted green synthesis of carbon dots from citrus fruit peels for free radical scavenging and cell imaging. Colloids and Surfaces. B, Biointerfaces 197:111362 doi: 10.1016/j.colsurfb.2020.111362.
  • Guo, Y., T. Li, L. Xie, X. Tong, C. Tang, and S. Shi. 2021. Red pitaya peels-based carbon dots for real-time fluorometric and colorimetric assay of Au3+, cellular imaging, and antioxidant activity. Analytical and Bioanalytical Chemistry 413 (3):935–43. doi: 10.1007/s00216-020-03049-x.
  • Han, S., H. Zhang, Y. Xie, L. Liu, C. Shan, X. Li, W. Liu, and Y. Tang. 2015. Application of cow milk-derived carbon dots/Ag NPs composite as the antibacterial agent. Applied Surface Science 328:368–73. doi: 10.1016/j.apsusc.2014.12.074.
  • Havrdova, M., K. Hola, J. Skopalik, K. Tomankova, M. Petr, K. Cepe, K. Polakova, J. Tucek, A. B. Bourlinos, and R. Zboril. 2016. Toxicity of carbon dots: Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon 99:238–48. doi: 10.1016/j.carbon.2015.12.027.
  • Hess, S. C., F. A. Permatasari, H. Fukazawa, E. M. Schneider, R. Balgis, T. Ogi, K. Okuyama, and W. J. Stark. 2017. Direct synthesis of carbon quantum dots in aqueous polymer solution: One-pot reaction and preparation of transparent UV-blocking films. Journal of Materials Chemistry A 5 (10):5187–94. doi: 10.1039/C7TA00397H.
  • Huang, L-l, M. Zhang, W-q Yan, A. S. Mujumdar, and D-f Sun. 2009. Effect of coating on post-drying of freeze-dried strawberry pieces. Journal of Food Engineering 92 (1):107–11. doi: 10.1016/j.jfoodeng.2008.10.031.
  • Hu, M., X. Gu, Y. Hu, Y. Deng, and C. Wang. 2016. PVA/carbon dot nanocomposite hydrogels for simple introduction of Ag nanoparticles with enhanced antibacterial activity. Macromolecular Materials and Engineering 301 (11):1352–62. doi: 10.1002/mame.201600248.
  • Hu, J., J. Luo, M. Zhang, J. Wu, Y. Zhang, H. Kong, H. Qu, G. Cheng, and Y. Zhao. 2021. Protective effects of radix sophorae flavescentis carbonisata-based carbon dots against ethanol-induced acute gastric ulcer in rats: Anti-inflammatory and antioxidant activities. International Journal of Nanomedicine 16:2461–75. doi: 10.2147/ijn.S289515.
  • Jamróz, E., P. Kopel, J. Tkaczewska, D. Dordevic, S. Jancikova, P. Kulawik, V. Milosavljevic, K. Dolezelikova, K. Smerkova, P. Svec, et al. 2019. Nanocomposite furcellaran films-the influence of nanofillers on functional properties of furcellaran films and effect on linseed oil preservation. Polymers 11 (12):2046. doi: 10.3390/polym11122046.
  • Jia, J.,. B. Lin, Y. F. Gao, Y. Jiao, L. Li, C. Dong, and S. M. Shuang. 2019. Highly luminescent N-doped carbon dots from black soya beans for free radical scavenging, Fe3+ sensing and cellular imaging. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 211:363–72. doi: 10.1016/j.saa.2018.12.034.
  • Jian, H.-J., R.-S. Wu, T.-Y. Lin, Y.-J. Li, H.-J. Lin, S. G. Harroun, J.-Y. Lai, and C.-C. Huang. 2017. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. Acs Nano 11 (7):6703–16. doi: 10.1021/acsnano.7b01023.
  • Jiang, X., D. Valdeperez, M. Nazarenus, Z. Wang, F. Stellacci, W. J. Parak, and P. del Pino. 2015. Future perspectives towards the use of nanomaterials for smart food packaging and quality control. Particle & Particle Systems Characterization 32 (4):408–16. doi: 10.1002/ppsc.201400192.
  • Junka, K., J. Q. Guo, I. Filpponen, J. Laine, and O. J. Rojas. 2014. Modification of cellulose nanofibrils with luminescent carbon dots. Biomacromolecules 15 (3):876–81. doi: 10.1021/bm4017176.
  • Kalaiyarasan, G., and J. Joseph. 2019. Efficient dual-mode colorimetric/fluorometric sensor for the detection of copper ions and vitamin C based on pH-sensitive amino-terminated nitrogen-doped carbon quantum dots: Effect of reactive oxygen species and antioxidants. Analytical and Bioanalytical Chemistry 411 (12):2619–33. doi: 10.1007/s00216-019-01710-8.
  • Konwar, A., N. Gogoi, G. Majumdar, and D. Chowdhury. 2015. Green chitosan-carbon dots nanocomposite hydrogel film with superior properties. Carbohydrate Polymers 115:238–45. doi: 10.1016/j.carbpol.2014.08.021.
  • Koshy, R. R., J. T. Koshy, S. K. Mary, S. Sadanandan, S. Jisha, and L. A. Pothan. 2021. Preparation of pH sensitive film based on starch/carbon nano dots incorporating anthocyanin for monitoring spoilage of pork. Food Control 126:108039–108039. doi: 10.1016/j.foodcont.2021.108039.
  • Kou, E., W. Li, H. Zhang, X. Yang, Y. Kang, M. Zheng, S. Qu, and B. Lei. 2021. Nitrogen and sulfur co-doped carbon dots enhance drought resistance in tomato and mung beans. ACS Applied Bio Materials 4 (8):6093–102. doi: 10.1021/acsabm.1c00427.
  • Kousheh, S. A., M. Moradi, H. Tajik, and R. Molaei. 2020. Preparation of antimicrobial/ultraviolet protective bacterial nanocellulose film with carbon dots synthesized from lactic acid bacteria. International Journal of Biological Macromolecules 155:216–25. doi: 10.1016/j.ijbiomac.2020.03.230.
  • Kovačova, M., E. Špitalská, Z. Markovic, and Z. Špitálský. 2020. Carbon quantum dots as antibacterial photosensitizers and their polymer nanocomposite applications. Particle & Particle Systems Characterization 37 (1):1900348. doi: 10.1002/ppsc.201900348.
  • Kovacova, M., Z. M. Markovic, P. Humpolicek, M. Micusik, H. Svajdlenkova, A. Kleinova, … Z. Spitalsky. 2018. Carbon quantum dots modified polyurethane nanocomposite as effective photocatalytic and antibacterial agents. Acs Biomaterials Science & Engineering 4 (12):3983–93. doi: 10.1021/acsbiomaterials.8b00582.
  • Li, Y., H. Chen, Y. M. Dong, K. Li, L. Li, and J. Z. Li. 2016. Carbon nanoparticles/soy protein isolate bio-films with excellent mechanical and water barrier properties. Industrial Crops and Products 82:133–40. doi: 10.1016/j.indcrop.2015.11.072.
  • Li, M., Q. Feng, H. Liu, Y. Wu, and Z. Wang. 2021. In situ growth of nano-ZnO/GQDs on cellulose paper for dual repelling function against water and bacteria. Materials Letters 283:128838. doi: 10.1016/j.matlet.2020.128838.
  • Li, F., T. Li, C. Sun, J. Xia, Y. Jiao, and H. Xu. 2017. Selenium-doped carbon quantum dots for free-radical scavenging. Angewandte Chemie (International ed. in English) 56 (33):9910–4. doi: 10.1002/anie.201705989.
  • Li, Y., F. Liu, J. Cai, X. Huang, L. Lin, Y. Lin, H. Yang, and S. Li. 2019. Nitrogen and sulfur co-doped carbon dots synthesis via one step hydrothermal carbonization of green alga and their multifunctional applications. Microchemical Journal 147:1038–47. J. doi: 10.1016/j.microc.2019.04.015.
  • Li, Y., W. Li, X. Yang, Y. Kang, H. Zhang, Y. Liu, and B. Lei. 2021. Salvia miltiorrhiza-derived carbon dots as scavengers of reactive oxygen species for reducing oxidative damage of plants. ACS Applied Nano Materials 4 (1):113–20. doi: 10.1021/acsanm.0c02419.
  • Lin, J.-S., Y.-W. Tsai, K. Dehvari, C.-C. Huang, and J.-Y. Chang. 2019. A carbon dot based theranostic platform for dual-modal imaging and free radical scavenging. Nanoscale 11 (43):20917–31. doi: 10.1039/c9nr05746c.
  • Liu, Q., M. Zhang, B. Bhandari, J. Xu, and C. Yang. 2020. Effects of nanoemulsion-based active coatings with composite mixture of star anise essential oil, polylysine, and nisin on the quality and shelf life of ready-to-eat Yao meat products. Food Control 107 (106771):106771. doi: 10.1016/j.foodcont.2019.106771.
  • Lu, F., X. Ye, and D. Liu. 2009. Review of antimicrobial food packaging. Transactions of the Chinese Society of Agricultural Machinery 40 (6):138–42.
  • Luo, X., Y. Han, X. Chen, W. Tang, T. Yue, and Z. Li. 2020. Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review. Trends in Food Science & Technology 95:149–61. doi: 10.1016/j.tifs.2019.11.017.
  • Murru, C., R. Badia-Laino, and M. E. Diaz-Garcia. 2020. Synthesis and characterization of green carbon dots for scavenging radical oxygen species in aqueous and oil samples. Antioxidants 9 (11):1147. doi: 10.3390/antiox9111147.
  • Namdari, P., B. Negahdari, and A. Eatemadi. 2017. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 87:209–22.
  • O’ Callaghan, K. A. M., and J. P. Kerry. 2016. Consumer attitudes towards the application of smart packaging technologies to cheese products. Food Packaging and Shelf Life 9:1–9. doi: 10.1016/j.fpsl.2016.05.001.
  • Omerović, N., M. Djisalov, K. Živojević, M. Mladenović, J. Vunduk, I. Milenković, N. Ž. Knežević, I. Gadjanski, and J. Vidić. 2021. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Comprehensive Reviews in Food Science and Food Safety 20 (3):2428–54. doi: 10.1111/1541-4337.12727.
  • Passaretti, M. G., M. D. Ninago, C. d Anibal, C. Pacheco, D. A. Vega, M. A. Villar, and O. V. Lopez. 2019. Composite films with UV barrier capacity to minimize flavored waters degradation. Food Packaging and Shelf Life 21:100334. doi: 10.1016/j.fpsl.2019.100334.
  • Patil, A. S., R. D. Waghmare, S. P. Pawar, S. T. Salunkhe, G. B. Kolekar, D. Sohn, and A. H. Gore. 2020. Photophysical insights of highly transparent, flexible and re-emissive PVA @ WTR-CDs composite thin films: A next generation food packaging material for UV blocking applications. Journal of Photochemistry and Photobiology A: Chemistry 400:112647. doi: 10.1016/j.jphotochem.2020.112647.
  • Periyayya, U., M. S, R. Khan, V.-D. Dao, V.-H. Tran, and I.-H. Lee. 2015. Carbon quantum dots decorated leaf-like CuO nanosheets and their improved dispersion for an excellent UV-shielding properties in polymer films. RSC Advances 5 (88):71968–71972. doi: 10.1039/C5RA13681D.
  • Phuhongsung, P.,. M. Zhang, and B. Bhandari. 2020. 4D printing of products based on soy protein isolate via microwave heating for flavor development. Food Research International 137:109605. doi: 10.1016/j.foodres.2020.109605.
  • Piergiovanni, L., and S. Limbo. 2016. Plastic packaging materials Food packaging materials (33–49. Switzerland: Springer.
  • Qu, J.-H., Q. Wei, and D.-W. Sun. 2018. Carbon dots: Principles and their applications in food quality and safety detection. Critical Reviews in Food Science and Nutrition 58 (14):2466–2475. doi: 10.1080/10408398.2018.1437712.
  • Rajamanikandan, S., M. Biruntha, and G. Ramalingam. 2021. Blue emissive carbon quantum dots (CQDs) from bio-waste peels and its antioxidant activity. Journal of Cluster Science doi: 10.1007/s10876-021-02029-0.
  • Rani, S., K. D. Kumar, S. Mandal, and R. Kumar. 2020. Functionalized carbon dot nanoparticles reinforced soy protein isolate biopolymeric film. Journal of Polymer Research 27 (10):1–10. doi: 10.1007/s10965-020-02276-1.
  • Razavi, R.,. R. Molaei, M. Moradi, H. Tajik, P. Ezati, and A. Shafipour Yordshahi. 2020. Biosynthesis of metallic nanoparticles using mulberry fruit (Morus alba L.) extract for the preparation of antimicrobial nanocellulose film. Applied Nanoscience 10 (2):465–476. doi: 10.1007/s13204-019-01137-8.
  • Rosenkrans, Z. T., T. Sun, D. Jiang, W. Chen, T. E. Barnhart, Z. Zhang, C. A. Ferreira, X. Wang, J. W. Engle, P. Huang, et al. 2020. Selenium-doped carbon quantum dots act as broad-spectrum antioxidants for acute kidney injury management. Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 7 (12)2000420. doi: 10.1002/advs.20:.
  • Rossi, M., D. Passeri, A. Sinibaldi, M. Angjellari, E. Tamburri, A. Sorbo, E. Carata, and L. Dini. 2017. Nanotechnology for food packaging and food quality assessment. Advances in Food and Nutrition Research 82:149–204.
  • Roy, S., P. Ezati, and J. W. Rhim. 2021. Gelatin/carrageenan-based functional films with carbon dots from enoki mushroom for active food packaging applications. Applied Polymer Materials 3:12,
  • Ruiz, V., L. Yate, I. Garcia, G. Cabanero, and H. J. Grande. 2017. Tuning the antioxidant activity of graphene quantum dots: Protective nanomaterials against dye decoloration. Carbon 116:366–374. doi: 10.1016/j.carbon.2017.01.090.
  • Sachdev, A., and P. Gopinath. 2015. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. The Analyst 140 (12):4260–4269. doi: 10.1039/c5an00454c.
  • Shahid, S.,. S. Mohiyuddin, and G. Packirisamy. 2020. Synthesis of multi-color fluorescent carbon dots from mint leaves: A robust bioimaging agent with potential antioxidant activity. Journal of Nanoscience and Nanotechnology 20 (10):6305–6316. doi: 10.1166/jnn.2020.17899.
  • Sharma, N., G. S. Das, and K. Yun. 2020. Green synthesis of multipurpose carbon quantum dots from red cabbage and estimation of their antioxidant potential and bio-labeling activity. Applied Microbiology and Biotechnology 104 (16):7187–7200. doi: 10.1007/s00253-020-10726-5.
  • Shen, J., S. Shang, X. Chen, D. Wang, and Y. Cai. 2017. Highly fluorescent N, S-co-doped carbon dots and their potential applications as antioxidants and sensitive probes for Cr (VI) detection. Sensors and Actuators B: Chemical 248:92–100. doi: 10.1016/j.snb.2017.03.123.
  • Shen, J., T. Zhang, Y. Cai, X. Chen, S. Shang, and J. Li. 2017. Highly fluorescent N,S-co-doped carbon dots: Synthesis and multiple applications. New Journal of Chemistry 41 (19):11125–11137. doi: 10.1039/C7NJ00505A.
  • Shi, X., W. Wei, Z. Fu, W. Gao, C. Zhang, Q. Zhao, F. Deng, and X. Lu. 2019. Review on carbon dots in food safety applications. Talanta 194:809–821. doi: 10.1016/j.talanta.2018.11.005.
  • Son, M. H., S. W. Park, and Y. K. Jung. 2021. Antioxidant and anti-aging carbon quantum dots using tannic acid. Nanotechnology 32 (41):415102. doi: 10.1088/1361-6528/ac027b.
  • Stanković, N. K., M. Bodik, P. Šiffalovič, M. Kotlar, M. Mičušik, Z. Špitalsky, M. Danko, D. D. Milivojević, A. Kleinova, P. Kubat, et al. 2018. Antibacterial and antibiofouling properties of light triggered fluorescent hydrophobic carbon quantum dots Langmuir-Blodgett thin films. ACS Sustainable Chemistry & Engineering 6 (3):4154–4163. doi: 10.1021/acssuschemeng.7b04566.
  • Su, R. N., J. Shi, Y. Pu, J. X. Wang, D. Wang, and J. F. Chen. 2020. Synthesis of ultrasmall and monodisperse selenium-doped carbon dots from amino acids for free radical scavenging. Industrial & Engineering Chemistry Research 59 (38):16876–16883. doi: 10.1021/acs.iecr.0c03402.
  • Sun, Y., M. Zhang, B. Bhandari, and C. Yang. 2020. Recent development of carbon quantum dots: biological toxicity, antibacterial properties and application in foods. Food Reviews International 1–20. doi: 10.1080/87559129.2020.1818255.
  • Sun, Q., M. Zhang, and A. S. Mujumdar. 2019. Recent developments of artificial intelligence in drying of fresh food: A review. Critical Reviews in Food Science and Nutrition 59 (14):2258–2275. doi: 10.1080/10408398.2018.1446900.
  • Surendran, P., A. Lakshmanan, S. S. Priya, P. Geetha, P. Rameshkumar, K. Kannan, T. A. Hegde, and G. Vinitha. 2021. Fluorescent carbon quantum dots from Ananas comosus waste peels: A promising material for NLO behaviour, antibacterial, and antioxidant activities. Inorganic Chemistry Communications 124:108397. doi: 10.1016/j.inoche.2020.108397.
  • Swathi, R., G. B. Reddy, B. Rajkumar, and P. Y. Swamy. 2021. Rapid fabrication of carbon dots from babul seed powder as green precursor: Antioxidant activity and multicolor imaging. Materials Today: Proceedings 43:1389–1397. doi: 10.1016/j.matpr.2020.09.174.
  • Tadesse, A., N. Belachew, M. Hagos, and K. Basavaiah. 2021. Synthesis of fluorescent nitrogen and phosphorous co-doped carbon quantum dots for sensing of iron, cell imaging and antioxidant activities. Journal of Fluorescence 31 (3):763–774. doi: 10.1007/s10895-021-02696-2.
  • Travlou, N. A., D. A. Giannakoudakis, M. Algarra, A. M. Labella, E. Rodriguez-Castellon, and T. J. Bandosz. 2018. S- and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity. Carbon 135:104–111. doi: 10.1016/j.carbon.2018.04.018.
  • Uthirakumar, P., M. Devendiran, T. H. Kim, and I.-H. Lee. 2018. A convenient method for isolating carbon quantum dots in high yield as an alternative to the dialysis process and the fabrication of a full-band UV blocking polymer film. New Journal of Chemistry 42 (22):18312–18317. doi: 10.1039/C8NJ04615H.
  • Uthirakumar, P., M. Devendiran, J.-H. Yun, G. C. Kim, S. Kalaiarasan, and I.-H. Lee. 2018. Role of carbon quantum dots and film thickness on enhanced UV shielding capability of flexible polymer film containing carbon quantum dots/N-doped ZnO nanoparticles. Optical Materials 84:771–777. doi: 10.1016/j.optmat.2018.08.016.
  • V, R., V. Gujar, H. Pathan, S. Islam, M. Tawre, K. Pardesi, M. K. Santra, and D. Ottoor. 2019. Bioimaging applications of carbon dots (C. dots) and its cystamine functionalization for the sensitive detection of Cr(VI) in aqueous samples. Journal of Fluorescence 29 (6):1381–1392. doi: 10.1007/s10895-019-02448-3.
  • Wang, J., J. Tavakoli, and Y. Tang. 2019. Bacterial cellulose production, properties and applications with different culture methods–A review. Carbohydrate Polymers 219:63–76. doi: 10.1016/j.carbpol.2019.05.008.
  • Wang, H. T., Y. S. Xie, X. K. Na, J. R. Bi, S. Liu, L. J. Zhang, and M. Q. Tan. 2019. Fluorescent carbon dots in baked lamb: Formation, cytotoxicity and scavenging capability to free radicals. Food Chemistry 286:405–412. doi: 10.1016/j.foodchem.2019.02.034.
  • Wang, H., D. Yu, J. Fang, Y. Zhou, D. Li, Z. Liu, J. Ren, and X. Qu. 2020. Phenol-like group functionalized graphene quantum dots structurally mimicking natural antioxidants for highly efficient acute kidney injury treatment. Chemical Science 11 (47):12721–12730. doi: 10.1039/d0sc03246h.
  • Wang, H., M. Zhang, Y. Ma, B. Wang, H. Huang, Y. Liu, M. Shao, and Z. Kang. 2020. Carbon dots derived from citric acid and glutathione as a highly efficient intracellular reactive oxygen species scavenger for alleviating the lipopolysaccharide-induced inflammation in macrophages. ACS Applied Materials & Interfaces 12 (37):41088–41095. doi: 10.1021/acsami.0c11735.
  • Watts, P. C. P., P. K. Fearon, W. K. Hsu, N. C. Billingham, H. W. Kroto, and D. R. M. Walton. 2003. Carbon nanotubes as polymer antioxidants. Journal of Materials Chemistry 13 (3):491–495. doi: 10.1039/b211328g.
  • Wei, X., L. Li, J. Liu, L. Yu, H. Li, F. Cheng, X. Yi, J. He, and B. Li. 2019. Green synthesis of fluorescent carbon dots from gynostemma for bioimaging and antioxidant in zebrafish. ACS Applied Materials & Interfaces 11 (10):9832–9840. doi: 10.1021/acsami.9b00074.
  • Wongrerkdee, S., and P. Pimpang. 2020. Ultraviolet-shielding and water resistance properties of graphene quantum dots/polyvinyl alcohol composite-based film. Journal of Metals Materials and Minerals 30 (4):90–96. doi: 10.14456/jmmm.2020.56.
  • Wu, L.-T., I. L. Tsai, Y.-C. Ho, Y.-H. Hang, C. Lin, M.-L. Tsai, and F.-L. Mi. 2021. Active and intelligent gellan gum-based packaging films for controlling anthocyanins release and monitoring food freshness. Carbohydrate Polymers 254:117410–117410. doi: 10.1016/j.carbpol.2020.117410.
  • Xiao, D., H. Pu, H. Tian, D. Yang, Y. Yang, and H. Li. 2019. Application of carbon dots-chitosan coating in preservation of mango. Food and Fermentation Industries 45 (22):130–135. doi: 10.13995/j.cnki.11-1802/ts.019172.
  • Xu, Y., Y. Fan, L. Zhang, Q. Wang, H. Fu, and Y. She. 2019. A novel enhanced fluorescence method based on multifunctional carbon dots for specific detection of Hg2+ in complex samples. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 220:117109. doi: 10.1016/j.saa.2019.05.014.
  • Xu, N., S. Gao, C. Xu, Y. Fang, L. Xu, and W. Zhang. 2021. Carbon quantum dots derived from waste acorn cups and its application as an ultraviolet absorbent for polyvinyl alcohol film. Applied Surface Science 556:149774. doi: 10.1016/j.apsusc.2021.149774.
  • Xu, Z.-Q., J.-Y. Lan, J.-C. Jin, P. Dong, F.-L. Jiang, and Y. Liu. 2015. Highly photoluminescent nitrogen-doped carbon nanodots and their protective effects against oxidative stress on cells. ACS Applied Materials & Interfaces 7 (51):28346–28352. doi: 10.1021/acsami.5b08945.
  • Xu, L., Y. Li, S. Gao, Y. Niu, H. Liu, C. Mei, J. Cai, and C. Xu. 2020. Preparation and properties of cyanobacteria-based carbon quantum dots/polyvinyl alcohol/nanocellulose composite. Polymers 12 (5):1143. doi: 10.3390/polym12051143.
  • Xu, Y., D. Yang, S. Huo, J. Ren, N. Gao, Z. Chen, Y. Liu, Z. Xie, S. Zhou, and X. Qu. 2021. Carbon dots and ruthenium doped oxygen sensitive nanofibrous membranes for monitoring the respiration of agricultural products. Polymer Testing 93:106957. doi: 10.1016/j.polymertesting.2020.106957.
  • Xu, L., Y. Zhang, H. Pan, N. Xu, C. Mei, H. Mao, W. Zhang, J. Cai, and C. Xu. 2019. Preparation and performance of radiata-pine-derived polyvinyl alcohol/carbon quantum dots fluorescent films. Materials 13 (1):67. doi: 10.3390/ma13010067.
  • Yang, D., L. Li, L. Cao, Z. Chang, Q. Mei, R. Yan, M. Ge, C. Jiang, and W.-F. Dong. 2020. Green synthesis of lutein-based carbon dots applied for free-radical scavenging within cells. Materials 13 (18)4146. doi: 10.3390/ma1318:.
  • Yang, J., X. Zhang, Y.-H. Ma, G. Gao, X. Chen, H.-R. Jia, Y.-H. Li, Z. Chen, and F.-G. Wu. 2016. Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Applied Materials & Interfaces 8 (47):32170–32181. doi: 10.1021/acsami.6b10398.
  • Yin, J., and B. Deng. 2015. Polymer-matrix nanocomposite membranes for water treatment. Journal of Membrane Science 479:256–275. doi: 10.1016/j.memsci.2014.11.019.
  • You, Y.,. H. Zhang, Y. Liu, and B. Lei. 2016. Transparent sunlight conversion film based on carboxymethyl cellulose and carbon dots. Carbohydrate Polymers 151:245–250. doi: 10.1016/j.carbpol.2016.05.063.
  • Zhang, X., H. Wang, C. Ma, N. Niu, Z. Chen, S. Liu, J. Li, and S. Li. 2018. Seeking value from biomass materials: Preparation of coffee bean shell-derived fluorescent carbon dots via molecular aggregation for antioxidation and bioimaging applications. Materials Chemistry Frontiers 2 (7):1269–1275. doi: 10.1039/C8QM00030A.
  • Zhang, X., H. Wang, N. Niu, Z. Chen, S. Li, S.-X. Liu, and J. Li. 2020. Fluorescent poly(vinyl alcohol) films containing chlorogenic acid carbon nanodots for food monitoring. ACS Applied Nano Materials 3 (8):7611–7620. doi: 10.1021/acsanm.0c01229.
  • Zhao, D. L., and T.-S. Chung. 2018. Applications of carbon quantum dots (CQDs) in membrane technologies: A review. Water Research 147:43–49. doi: 10.1016/j.watres.2018.09.040.
  • Zhao, S., M. Lan, X. Zhu, H. Xue, T.-W. Ng, X. Meng, C.-S. Lee, P. Wang, and W. Zhang. 2015. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl Mater Interfaces 7 (31):17054–17060. doi: 10.1021/acsami.5b03228.
  • Zhao, L., Y. Wang, and Y. Li. 2019. Antioxidant activity of graphene quantum dots prepared in different electrolyte environments. Nanomaterials 9 (12):1708. doi: 10.3390/nano9121708.
  • Zhao, L., M. Zhang, B. Bhandari, and B. Bai. 2020. Microbial and quality improvement of boiled gansi dish using carbon dots combined with radio frequency treatment. International Journal of Food Microbiology 334:108835 doi: 10.1016/j.ijfoodmicro.2020.108835.
  • Zhao, L., M. Zhang, H. Wang, and S. Devahastin. 2020a. Effect of addition of carbon dots to the frying oils on oxidative stabilities and quality changes of fried meatballs during refrigerated storage. Meat Sci 185:108715–108715. doi: 10.1016/j.meatsci.2021.108715.
  • Zhao, L., M. Zhang, H. Wang, and S. Devahastin. 2020b. Effect of carbon dots in combination with aqueous chitosan solution on shelf life and stability of soy milk. International Journal of Food Microbiology 326:108650 doi: 10.1016/j.ijfoodmicro.2020.108650.
  • Zhao, L., M. Zhang, H. Wang, and S. Devahastin. 2021. Effects of carbon dots in combination with rosemary-inspired carnosic acid on oxidative stability of deep frying oils. Food Control. 125 (9):107968. doi: 10.1016/j.foodcont.2021.107968.
  • Zhou, D. L., H. Huang, J. R. Yu, and Z. M. Hu. 2021. Lysosome-targetable selenium-doped carbon nanodots for in situ scavenging free radicals in living cells and mice. Microchimica Acta 188 (7):1–8. doi: 10.1007/s00604-021-04883-1.
  • Zu, F., F. Yan, Z. Bai, J. Xu, Y. Wang, Y. Huang, and X. Zhou. 2017. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchimica Acta 184 (7):1899–1914. doi: 10.1007/s00604-017-2318-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.