834
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

A novel bioactive postbiotics: from microbiota-derived extracellular nanoparticles to health promoting

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Acevedo, R., S. Fernández, C. Zayas, A. Acosta, M. E. Sarmiento, V. A. Ferro, E. Rosenqvist, C. Campa, D. Cardoso, L. Garcia, et al. 2014. Bacterial outer membrane vesicles and vaccine applications. Frontiers in Immunology 5:121. doi: 10.3389/fimmu.2014.00121.
  • Aguilar-Toalá, J., R. Garcia-Varela, H. Garcia, V. Mata-Haro, A. González-Córdova, B. Vallejo-Cordoba, and A. Hernández-Mendoza. 2018. Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology 75:105–14. doi: 10.1016/j.tifs.2018.03.009.
  • Akers, J. C., D. Gonda, R. Kim, B. S. Carter, and C. C. Chen. 2013. Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. Journal of Neuro-Oncology 113 (1):1–11. doi: 10.1007/s11060-013-1084-8.
  • Alkasir, R., J. Li, X. Li, M. Jin, and B. Zhu. 2017. Human gut microbiota: The links with dementia development. Protein & Cell 8 (2):90–102. doi: 10.1007/s13238-016-0338-6.
  • Allocati, N., M. Masulli, C. Di Ilio, and V. De Laurenzi. 2015. Die for the community: An overview of programmed cell death in bacteria. Cell Death & Disease 6:e1609–e1609.
  • Al‐Nedawi, K., M. F. Mian, N. Hossain, K. Karimi, Y. K. Mao, P. Forsythe, K. K. Min, A. M. Stanisz, W. A. Kunze, and J. Bienenstock. 2015. Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems. FASEB Journal : official Publication of the Federation of American Societies for Experimental Biology 29 (2):684–95. doi: 10.1096/fj.14-259721.
  • Alvarez, C.-S., J. Badia, M. Bosch, R. Giménez, and L. Baldomà. 2016. Outer membrane vesicles and soluble factors released by probiotic Escherichia coli Nissle 1917 and commensal ECOR63 enhance barrier function by regulating expression of tight junction proteins in intestinal epithelial cells. Frontiers in Microbiology 7:1981.
  • Ashrafian, F., A. Shahriary, A. Behrouzi, H. R. Moradi, S. Keshavarz Azizi Raftar, A. Lari, S. Hadifar, R. Yaghoubfar, S. Ahmadi Badi, S. Khatami, et al. 2019. Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice. Frontiers in Microbiology 10:2155.
  • Badi, S. A., S. Khatami, S. Irani, and S. D. Siadat. 2019. Induction effects of bacteroides fragilis derived outer membrane vesicles on toll like receptor 2, toll like receptor 4 genes expression and cytokines concentration in human intestinal epithelial cells. Cell Journal (Yakhteh) 21:57.
  • Behzadi, E., H. M. Hosseini, and A. A. I. Fooladi. 2017. The inhibitory impacts of Lactobacillus rhamnosus GG-derived extracellular vesicles on the growth of hepatic cancer cells. Microbial Pathogenesis 110:1–6. doi: 10.1016/j.micpath.2017.06.016.
  • Berleman, J., and M. Auer. 2013. The role of bacterial outer membrane vesicles for intra- and interspecies delivery . Environmental Microbiology 15 (2):347–54. doi: 10.1111/1462-2920.12048.
  • Biondo, C., A. Malara, A. Costa, G. Signorino, F. Cardile, A. Midiri, R. Galbo, S. Papasergi, M. Domina, M. Pugliese, et al. 2012. Recognition of fungal RNA by TLR7 has a nonredundant role in host defense against experimental candidiasis. European Journal of Immunology 42 (10):2632–43. doi: 10.1002/eji.201242532.
  • Bittel, M., P. Reichert, I. Sarfati, A. Dressel, S. Leikam, S. Uderhardt, I. Stolzer, T. A. Phu, M. Ng, N. K. Vu, et al. 2021. Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication in vivo . Journal of Extracellular Vesicles 10 (12):e12159. doi: 10.1002/jev2.12159.
  • Bitto, N. J., R. Chapman, S. Pidot, A. Costin, C. Lo, J. Choi, T. D’Cruze, E. C. Reynolds, S. G. Dashper, L. Turnbull, et al. 2017. Bacterial membrane vesicles transport their DNA cargo into host cells. Scientific Reports 7 (1):1–11. doi: 10.1038/s41598-017-07288-4.
  • Blenkiron, C., D. Simonov, A. Muthukaruppan, P. Tsai, P. Dauros, S. Green, J. Hong, C. G. Print, S. Swift, and A. R. Phillips. 2016. Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA. PLoS One 11 (8):e0160440. doi: 10.1371/journal.pone.0160440.
  • Briaud, P., and R. K. Carroll. 2020. Extracellular vesicle biogenesis and functions in gram-positive bacteria. Infection and Immunity 88 (12):e00433–00420. doi: 10.1128/IAI.00433-20.
  • Brown, L., J. M. Wolf, R. Prados-Rosales, and A. Casadevall. 2015. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nature Reviews. Microbiology 13 (10):620–30. doi: 10.1038/nrmicro3480.
  • Caruana, J. C., and S. A. Walper. 2020. Bacterial membrane vesicles as mediators of microbe–microbe and microbe–host community interactions. Frontiers in Microbiology 11:432.
  • Castro-Bravo, N., J. M. Wells, A. Margolles, and P. Ruas-Madiedo. 2018. Interactions of surface exopolysaccharides from Bifidobacterium and Lactobacillus within the intestinal environment. Frontiers in Microbiology 9:2426.
  • Chatterjee, S., and J. Das. 1967. Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. Microbiology 49:1–11.
  • Chelakkot, C.,. Y. Choi, D.-K. Kim, H. T. Park, J. Ghim, Y. Kwon, J. Jeon, M.-S. Kim, Y.-K. Jee, Y. S. Gho, et al. 2018. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Experimental & Molecular Medicine 50 (2):e450–e450. doi: 10.1038/emm.2017.282.
  • Choi, J.-W., S.-C. Kim, S.-H. Hong, and H.-J. Lee. 2017. Secretable small RNAs via outer membrane vesicles in periodontal pathogens. Journal of Dental Research 96 (4):458–66. doi: 10.1177/0022034516685071.
  • Choi, Y., Y. Kwon, D.-K. Kim, J. Jeon, S. C. Jang, T. Wang, M. Ban, M.-H. Kim, S. G. Jeon, M.-S. Kim, et al. 2015. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle. Scientific Reports 5:15878–11. doi: 10.1038/srep15878.
  • Choi, J. H., C. M. Moon, T.-S. Shin, E. K. Kim, A. McDowell, M.-K. Jo, Y. H. Joo, S.-E. Kim, H.-K. Jung, K.-N. Shim, et al. 2020. Lactobacillus paracasei-derived extracellular vesicles attenuate the intestinal inflammatory response by augmenting the endoplasmic reticulum stress pathway. Experimental & Molecular Medicine 52 (3):423–37. doi: 10.1038/s12276-019-0359-3.
  • Chronopoulos, A., and R. Kalluri. 2020. Emerging role of bacterial extracellular vesicles in cancer. Oncogene 39 (46):6951–60. doi: 10.1038/s41388-020-01509-3.
  • Chu, H., A. Khosravi, I. P. Kusumawardhani, A. H. K. Kwon, A. C. Vasconcelos, L. D. Cunha, A. E. Mayer, Y. Shen, W.-L. Wu, A. Kambal, et al. 2016. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science (New York, N.Y.) 352 (6289):1116–20. doi: 10.1126/science.aad9948.
  • Cuesta, C. M., C. Guerri, J. Ureña, and M. Pascual. 2021. Role of Microbiota-Derived Extracellular Vesicles in Gut-Brain Communication. International Journal of Molecular Sciences 22 (8):4235. doi: 10.3390/ijms22084235.
  • Cuevas-González, P., A. Liceaga, and J. Aguilar-Toalá. 2020. Postbiotics and paraprobiotics: From concepts to applications. Food Research International (Ottawa, Ont.) 136:109502. doi: 10.1016/j.foodres.2020.109502.
  • Dean, S. N., M. A. Rimmer, K. B. Turner, D. A. Phillips, J. C. Caruana, W. J. Hervey, IV, D. H. Leary, and S. A. Walper. 2020. Lactobacillus acidophilus membrane vesicles as a vehicle of bacteriocin delivery. Frontiers in Microbiology 11:710.
  • Dhaliwal, J., D. Singh, S. Singh, A. K. Pinnaka, R. Boparai, M. Bishnoi, K. Kondepudi, and K. Chopra. 2018. Lactobacillus plantarum MTCC 9510 supplementation protects from chronic unpredictable and sleep deprivation-induced behaviour, biochemical and selected gut microbial aberrations in mice. Journal of Applied Microbiology 125 (1):257–69. doi: 10.1111/jam.13765.
  • Díaz‐Garrido, N., J. Badia, and L. Baldomà. 2021. Microbiota-derived extracellular vesicles in interkingdom communication in the gut . Journal of Extracellular Vesicles 10 (13):e12161. doi: 10.1002/jev2.12161.
  • Diaz-Garrido, N., M.-J. Fábrega, R. Vera, R. Giménez, J. Badia, and L. Baldomà. 2019. Membrane vesicles from the probiotic Nissle 1917 and gut resident Escherichia coli strains distinctly modulate human dendritic cells and subsequent T cell responses. Journal of Functional Foods 61:103495. doi: 10.1016/j.jff.2019.103495.
  • Díaz-Garrido, N., S. Bonnin, M. Riera, R. Gíménez, J. Badia, and L. Baldomà. 2020. Transcriptomic microRNA profiling of dendritic cells in response to gut microbiota-secreted vesicles. Cells 9 (6):1534. doi: 10.3390/cells9061534.
  • Dorward, D. W., and C. F. Garon. 1990. DNA is packaged within membrane-derived vesicles of Gram-negative but not Gram-positive bacteria. Applied and Environmental Microbiology 56 (6):1960–2. doi: 10.1128/aem.56.6.1960-1962.1990.
  • Eigenbrod, T., and A. H. Dalpke. 2015. Bacterial RNA: An underestimated stimulus for innate immune responses. Journal of Immunology (Baltimore, MD: 1950) 195 (2):411–8. doi: 10.4049/jimmunol.1500530.
  • Elmi, A., F. Nasher, H. Jagatia, O. Gundogdu, M. Bajaj‐Elliott, B. Wren, and N. Dorrell. 2016. Campylobacter jejuni outer membrane vesicle-associated proteolytic activity promotes bacterial invasion by mediating cleavage of intestinal epithelial cell E-cadherin and occludin. Cellular Microbiology 18 (4):561–72. doi: 10.1111/cmi.12534.
  • Fábrega, M.-J., A. Rodríguez-Nogales, J. Garrido-Mesa, F. Algieri, J. Badía, R. Giménez, J. Gálvez, and L. Baldomà. 2017. Intestinal anti-inflammatory effects of outer membrane vesicles from Escherichia coli Nissle 1917 in DSS-experimental colitis in mice. Frontiers in Microbiology 8:1274. doi: 10.3389/fmicb.2017.01274.
  • Fischbach, M. A., and J. A. Segre. 2016. Signaling in host-associated microbial communities. Cell 164 (6):1288–300. doi: 10.1016/j.cell.2016.02.037.
  • Garcia-Silva, M. R., R. F. C. das Neves, F. Cabrera-Cabrera, J. Sanguinetti, L. C. Medeiros, C. Robello, H. Naya, T. Fernandez-Calero, T. Souto-Padron, W. de Souza, et al. 2014. Extracellular vesicles shed by Trypanosoma cruzi are linked to small RNA pathways, life cycle regulation, and susceptibility to infection of mammalian cells. Parasitology Research 113 (1):285–304. doi: 10.1007/s00436-013-3655-1.
  • Geller, L. T., M. Barzily-Rokni, T. Danino, O. H. Jonas, N. Shental, D. Nejman, N. Gavert, Y. Zwang, Z. A. Cooper, K. Shee, et al. 2017. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science (New York, N.Y.) 357 (6356):1156–60. doi: 10.1126/science.aah5043.
  • Gopalakrishnan, V., B. A. Helmink, C. N. Spencer, A. Reuben, and J. A. Wargo. 2018a. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33 (4):570–80. doi: 10.1016/j.ccell.2018.03.015.
  • Gopalakrishnan, V., C. N. Spencer, L. Nezi, A. Reuben, M. C. Andrews, T. V. Karpinets, P. A. Prieto, D. Vicente, K. Hoffman, S. C. Wei, et al. 2018b. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 359 (6371):97–103. doi: 10.1126/science.aan4236.
  • Gu, Z., F. Li, Y. Liu, M. Jiang, L. Zhang, L. He, D. W. Wilkey, M. Merchant, X. Zhang, Z. ‐B. Deng, et al. 2021. Exosome‐Like Nanoparticles From Lactobacillus rhamnosus GG Protect Against Alcohol‐Associated Liver Disease Through Intestinal Aryl Hydrocarbon Receptor in Mice. Hepatology Communications 5 (5):846–64. doi: 10.1002/hep4.1679.
  • Gui, M., S. Dashper, N. Slakeski, Y. Y. Chen, and E. Reynolds. 2016. Spheres of influence: Porphyromonas gingivalis outer membrane vesicles. Molecular Oral Microbiology 31 (5):365–78. doi: 10.1111/omi.12134.
  • Ha, J. Y., S.-Y. Choi, J. H. Lee, S.-H. Hong, and H.-J. Lee. 2020. Delivery of periodontopathogenic extracellular vesicles to brain monocytes and microglial IL-6 promotion by RNA cargo. Frontiers in Molecular Biosciences 7:596366. doi: 10.3389/fmolb.2020.596366.
  • Han, E. C., S. Y. Choi, Y. Lee, J. W. Park, S. H. Hong, and H. J. Lee. 2019. Extracellular RNAs in periodontopathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood-brain barrier in mice . FASEB Journal : official Publication of the Federation of American Societies for Experimental Biology 33 (12):13412–22. doi: 10.1096/fj.201901575R.
  • Han, H.,. Y. Jiang, M. Wang, M. Melaku, L. Liu, Y. Zhao, N. Everaert, B. Yi, and H. Zhang. 2021. Intestinal dysbiosis in nonalcoholic fatty liver disease (NAFLD): focusing on the gut–liver axis. Critical Reviews in Food Science and Nutrition:1–18. doi: 10.1080/10408398.2021.1966738.
  • Hasler, C. M. 2002. Functional foods: Benefits, concerns and challenges-a position paper from the american council on science and health. The Journal of Nutrition 132 (12):3772–81. doi: 10.1093/jn/132.12.3772.
  • Hooper, L. V., D. R. Littman, and A. J. Macpherson. 2012. Interactions between the microbiota and the immune system. Science (New York, N.Y.) 336 (6086):1268–73. doi: 10.1126/science.1223490.
  • Jones, E. J., C. Booth, S. Fonseca, A. Parker, K. Cross, A. Miquel-Clopés, I. Hautefort, U. Mayer, T. Wileman, R. Stentz, et al. 2020. The uptake, trafficking, and biodistribution of Bacteroides thetaiotaomicron generated outer membrane vesicles. Frontiers in Microbiology 11:57.
  • Kang, C.-S., M. Ban, E.-J. Choi, H.-G. Moon, J.-S. Jeon, D.-K. Kim, S.-K. Park, S. G. Jeon, T.-Y. Roh, S.-J. Myung, et al. 2013. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PloS One 8 (10):e76520. doi: 10.1371/journal.pone.0076520.
  • Kaparakis, M., L. Turnbull, L. Carneiro, S. Firth, H. A. Coleman, H. C. Parkington, L. Le Bourhis, A. Karrar, J. Viala, J. Mak, et al. 2010. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cellular Microbiology 12 (3):372–85. doi: 10.1111/j.1462-5822.2009.01404.x.
  • Kaparakis-Liaskos, M., and R. L. Ferrero. 2015. Immune modulation by bacterial outer membrane vesicles. Nature Reviews Immunology 15 (6):375–87. doi: 10.1038/nri3837.
  • Kawamura, Y., Y. Yamamoto, T. A. Sato, and T. Ochiya. 2017. Extracellular vesicles as trans-genomic agents: Emerging roles in disease and evolution. Cancer Science 108 (5):824–30. doi: 10.1111/cas.13222.
  • Keestra-Gounder, A. M., and R. M. Tsolis. 2017. NOD1 and NOD2: Beyond peptidoglycan sensing. Trends in Immunology 38 (10):758–67. doi: 10.1016/j.it.2017.07.004.
  • Kim, M. H., S. J. Choi, H. I. Choi, J. P. Choi, H. K. Park, E. K. Kim, M. J. Kim, B. S. Moon, T. K. Min, M. Rho, et al. 2018. Lactobacillus plantarum-derived extracellular vesicles protect atopic dermatitis induced by Staphylococcus aureus-derived extracellular vesicles. Allergy, Asthma & Immunology Research 10 (5):516–32.
  • Kim, K. W., S.-S. Kang, S.-J. Woo, O.-J. Park, K. B. Ahn, K.-D. Song, H.-K. Lee, C.-H. Yun, and S. H. Han. 2017a. Lipoteichoic acid of probiotic Lactobacillus plantarum attenuates poly I:C-Induced IL-8 Production in Porcine Intestinal Epithelial Cells . Frontiers in Microbiology 8:1827. doi: 10.3389/fmicb.2017.01827.
  • Kim, O. Y., H. T. Park, N. T. H. Dinh, S. J. Choi, J. Lee, J. H. Kim, S.-W. Lee, and Y. S. Gho. 2017b. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nature Communications 8 (1):9. doi: 10.1038/s41467-017-00729-8.
  • Kim, J. H., J. Lee, J. Park, and Y. S. Gho. 2015. Gram-negative and Gram-positive bacterial extracellular vesicles. Paper presented at: Seminars in Cell & Developmental Biology (Elsevier). doi: 10.1016/j.semcdb.2015.02.006.
  • Konstantinov, S. R., E. J. Kuipers, and M. P. Peppelenbosch. 2013. Functional genomic analyses of the gut microbiota for CRC screening. Nature Reviews. Gastroenterology & Hepatology 10 (12):741–5.
  • Krishnapura, P. R., P. D. Belur, and S. Subramanya. 2016. A critical review on properties and applications of microbial l-asparaginases. Critical Reviews in Microbiology 42:720–37.
  • Lahtinen, S. J. 2012. Probiotic viability–does it matter? Microbial Ecology in Health and Disease 23:18567.
  • Lambertz, U., M. E. O. Ovando, E. J. Vasconcelos, P. J. Unrau, P. J. Myler, and N. E. Reiner. 2015. Small RNAs derived from tRNAs and rRNAs are highly enriched in exosomes from both old and new world Leishmania providing evidence for conserved exosomal RNA Packaging. BMC Genomics. 16 (1):1–26. doi: 10.1186/s12864-015-1260-7.
  • Laursen, M. F., M. Sakanaka, N. von Burg, U. Mörbe, D. Andersen, J. M. Moll, C. T. Pekmez, A. Rivollier, K. F. Michaelsen, C. Mølgaard, et al. 2021. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nature Microbiology 6 (11):1367–16. doi: 10.1038/s41564-021-00970-4.
  • Lee, E. Y., D. S. Choi, K. P. Kim, and Y. S. Gho. 2008. Proteomics in gram-negative bacterial outer membrane vesicles . Mass Spectrometry Reviews 27 (6):535–55. doi: 10.1002/mas.20175.
  • Lee, K.-E., J.-K. Kim, S.-K. Han, D. Y. Lee, H.-J. Lee, S.-V. Yim, and D.-H. Kim. 2020. The extracellular vesicle of gut microbial Paenalcaligenes hominis is a risk factor for vagus nerve-mediated cognitive impairment. Microbiome 8 (1):1–18. doi: 10.1186/s40168-020-00881-2.
  • Li, M., K. Lee, M. Hsu, G. Nau, E. Mylonakis, and B. Ramratnam. 2017. Lactobacillus-derived extracellular vesicles enhance host immune responses against vancomycin-resistant enterococci. BMC Microbiology 17 (1):66–8. doi: 10.1186/s12866-017-0977-7.
  • Lightfoot, Y. L., K. Selle, T. Yang, Y. J. Goh, B. Sahay, M. Zadeh, J. L. Owen, N. Colliou, E. Li, T. Johannssen, et al. 2015. SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis . The EMBO Journal 34 (7):881–95. doi: 10.15252/embj.201490296.
  • Liu, Y., K. A. Defourny, E. J. Smid, and T. Abee. 2018. Gram-positive bacterial extracellular vesicles and their impact on health and disease. Frontiers in Microbiology 9:1502.
  • López, P., I. González-Rodríguez, B. Sánchez, M. Gueimonde, A. Margolles, and A. Suárez. 2012. Treg-inducing membrane vesicles from Bifidobacterium bifidum LMG13195 as potential adjuvants in immunotherapy. Vaccine 30 (5):825–9. doi: 10.1016/j.vaccine.2011.11.115.
  • Lozupone, C. A., J. I. Stombaugh, J. I. Gordon, J. K. Jansson, and R. Knight. 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489 (7415):220–30. doi: 10.1038/nature11550.
  • Luo, Z., Y. Ji, H. Gao, F. C. Gomes Dos Reis, G. Bandyopadhyay, Z. Jin, C. Ly, Y.-J. Chang, D. Zhang, D. Kumar, et al. 2021b. CRIg + macrophages prevent gut microbial DNA-containing extracellular vesicle-induced tissue inflammation and insulin resistance. Gastroenterology 160 (3):863–74. doi: 10.1053/j.gastro.2020.10.042.
  • Luo, Z.-W., K. Xia, Y.-W. Liu, J.-H. Liu, S.-S. Rao, X.-K. Hu, C.-Y. Chen, R. Xu, Z.-X. Wang, and H. Xie. 2021a. Extracellular vesicles from Akkermansia muciniphila elicit antitumor immunity against prostate cancer via modulation of CD8+ T cells and macrophages. International Journal of Nanomedicine 16:2949–63. doi: 10.2147/IJN.S304515.
  • MacDonald, I. A., and M. J. Kuehn. 2012. Offense and defense: Microbial membrane vesicles play both ways. Research in Microbiology 163 (9–10):607–18. doi: 10.1016/j.resmic.2012.10.020.
  • Macia, L., R. Nanan, E. Hosseini-Beheshti, and G. E. Grau. 2019. Host-and microbiota-derived extracellular vesicles, immune function, and disease development. International Journal of Molecular Sciences 21 (1):107. doi: 10.3390/ijms21010107.
  • Matson, V., J. Fessler, R. Bao, T. Chongsuwat, Y. Zha, M.-L. Alegre, J. J. Luke, and T. F. Gajewski. 2018. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science (New York, N.Y.) 359 (6371):104–8. doi: 10.1126/science.aao3290.
  • Mayer, S., M.-K. Raulf, and B. Lepenies. 2017. C-type lectins: Their network and roles in pathogen recognition and immunity. Histochemistry and Cell Biology 147 (2):223–37. doi: 10.1007/s00418-016-1523-7.
  • Miller, S. I., and N. R. Salama. 2018. The gram-negative bacterial periplasm: Size matters. PLoS Biology 16 (1):e2004935. doi: 10.1371/journal.pbio.2004935.
  • Molina-Tijeras, J. A., J. Gálvez, and M. E. Rodríguez-Cabezas. 2019. The immunomodulatory properties of extracellular vesicles derived from probiotics: A novel approach for the management of gastrointestinal diseases. Nutrients 11 (5):1038. doi: 10.3390/nu11051038.
  • Moradi, M.,. K. Mardani, and H. Tajik. 2019. Characterization and application of postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in food models. LWT 111:457–64. doi: 10.1016/j.lwt.2019.05.072.
  • Murofushi, Y., J. Villena, K. Morie, P. Kanmani, M. Tohno, T. Shimazu, H. Aso, Y. Suda, K. Hashiguchi, T. Saito, et al. 2015. The toll-like receptor family protein RP105/MD1 complex is involved in the immunoregulatory effect of exopolysaccharides from Lactobacillus plantarum N14. Molecular Immunology 64 (1):63–75. doi: 10.1016/j.molimm.2014.10.027.
  • Nagpal, J., and J. F. Cryan. 2021. Microbiota-brain interactions: Moving toward mechanisms in model organisms. Neuron 109 (24):3930–53. doi: 10.1016/j.neuron.2021.09.036.
  • Ñahui Palomino, R. A., C. Vanpouille, P. E. Costantini, and L. Margolis. 2021. Microbiota-host communications: Bacterial extracellular vesicles as a common language. PLoS Pathogens 17 (5):e1009508. doi: 10.1371/journal.ppat.1009508.
  • Nataraj, B. H., S. A. Ali, P. V. Behare, and H. Yadav. 2020. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microbial Cell Factories 19 (1):1–22. doi: 10.1186/s12934-020-01426-w.
  • O’donoghue, E. J., and A. M. Krachler. 2016. Mechanisms of outer membrane vesicle entry into host cells. Cellular Microbiology 18 (11):1508–17. doi: 10.1111/cmi.12655.
  • Palomino, R. A. Ñ., C. Vanpouille, L. Laghi, C. Parolin, K. Melikov, P. Backlund, B. Vitali, and L. Margolis. 2019. Extracellular vesicles from symbiotic vaginal lactobacilli inhibit HIV-1 infection of human tissues. Nature Communications 10 (1):1–14. doi: 10.1038/s41467-019-13468-9.
  • Park, J.-Y., J. Choi, Y. Lee, J.-E. Lee, E.-H. Lee, H.-J. Kwon, J. Yang, B.-R. Jeong, Y.-K. Kim, and P.-L. Han. 2017. Metagenome analysis of bodily microbiota in a mouse model of Alzheimer disease using bacteria-derived membrane vesicles in blood. Experimental Neurobiology 26 (6):369–79. doi: 10.5607/en.2017.26.6.369.
  • Patil, S., S. Sawant, K. Hauff, and G. Hampp. 2019. Validated postbiotic screening confirms presence of physiologically-active metabolites, such as short-chain fatty acids, amino acids and vitamins in Hylak® Forte. Probiotics and Antimicrobial Proteins 11 (4):1124–31. doi: 10.1007/s12602-018-9497-5.
  • Perez, R. H., T. Zendo, and K. Sonomoto. 2014. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microbial Cell Factories 13 (S1):1–13. doi: 10.1186/1475-2859-13-S1-S3.
  • Perez-Cruz, C.,. L. Delgado, C. Lopez-Iglesias, and E. Mercade. 2015. Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria. PLoS One 10 (1):e0116896. doi: 10.1371/journal.pone.0116896.
  • Pleguezuelos-Manzano, C., J. Puschhof, A. Rosendahl Huber, A. van Hoeck, H. M. Wood, J. Nomburg, C. Gurjao, F. Manders, G. Dalmasso, P. B. Stege, Genomics England Research Consortium, et al. 2020. Mutational signature in colorectal cancer caused by genotoxic pks + E. coli. Nature 580 (7802):269–73. doi: 10.1038/s41586-020-2080-8.
  • Pokusaeva, K., C. Johnson, B. Luk, G. Uribe, Y. Fu, N. Oezguen, R. K. Matsunami, M. Lugo, A. Major, Y. Mori-Akiyama, et al. 2017. GABA‐producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterology & Motility 29 (1):e12904. doi: 10.1111/nmo.12904.
  • Poore, G. D., E. Kopylova, Q. Zhu, C. Carpenter, S. Fraraccio, S. Wandro, T. Kosciolek, S. Janssen, J. Metcalf, S. J. Song, et al. 2020. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579 (7800):567–74. doi: 10.1038/s41586-020-2095-1.
  • Poste, G., and D. Papahadjopoulos. 1976. Lipid vesicles as carriers for introducing materials into cultured cells: Influence of vesicle lipid composition on mechanism(s) of vesicle incorporation into cells. Proceedings of the National Academy of Sciences of the United States of America 73 (5):1603–7. doi: 10.1073/pnas.73.5.1603.
  • Pushalkar, S., M. Hundeyin, D. Daley, C. P. Zambirinis, E. Kurz, A. Mishra, N. Mohan, B. Aykut, M. Usyk, L. E. Torres, et al. 2018. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discovery 8 (4):403–16. doi: 10.1158/2159-8290.CD-17-1134.
  • Qin, J., Y. Li, Z. Cai, S. Li, J. Zhu, F. Zhang, S. Liang, W. Zhang, Y. Guan, D. Shen, et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490 (7418):55–60. doi: 10.1038/nature11450.
  • Riquelme, E., Y. Zhang, L. Zhang, M. Montiel, M. Zoltan, W. Dong, P. Quesada, I. Sahin, V. Chandra, A. San Lucas, et al. 2019. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178 (4):795–806.e712. doi: 10.1016/j.cell.2019.07.008.
  • Routy, B., E. Le Chatelier, L. Derosa, C. P. M. Duong, M. T. Alou, R. Daillère, A. Fluckiger, M. Messaoudene, C. Rauber, M. P. Roberti, et al. 2018. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science (New York, N.Y.) 359 (6371):91–7. doi: 10.1126/science.aan3706.
  • Salminen, S.,. M. C. Collado, A. Endo, C. Hill, S. Lebeer, E. M. Quigley, M. E. Sanders, R. Shamir, J. R. Swann, and H. Szajewska. 2021. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology 18 (9):649–667. doi: 10.1038/s41575-021-00440-6
  • Sawada, D., T. Sugawara, Y. Ishida, K. Aihara, Y. Aoki, I. Takehara, K. Takano, and S. Fujiwara. 2016. Effect of continuous ingestion of a beverage prepared with Lactobacillus gasseri CP2305 inactivated by heat treatment on the regulation of intestinal function. Food Research International 79:33–9. doi: 10.1016/j.foodres.2015.11.032.
  • Schertzer, J. W., and M. Whiteley. 2012. A bilayer-couple model of bacterial outer membrane vesicle biogenesis. MBio 3 (2):e00297–00211. doi: 10.1128/mBio.00297-11.
  • Schetters, S. T. T., W. S. P. Jong, S. K. Horrevorts, L. J. W. Kruijssen, S. Engels, D. Stolk, M. H. Daleke-Schermerhorn, J. Garcia-Vallejo, D. Houben, W. W. J. Unger, et al. 2019. Outer membrane vesicles engineered to express membrane-bound antigen program dendritic cells for cross-presentation to CD8+ T cells. Acta Biomaterialia 91:248–57. doi: 10.1016/j.actbio.2019.04.033.
  • Schwechheimer, C., and M. J. Kuehn. 2013. Synthetic effect between envelope stress and lack of outer membrane vesicle production in Escherichia coli. Journal of Bacteriology 195 (18):4161–73. doi: 10.1128/JB.02192-12.
  • Seo, M., E. Park, S. Ko, E. Choi, and S. Kim. 2018. Therapeutic effects of kefir grain Lactobacillus-derived extracellular vesicles in mice with 2,4,6-trinitrobenzene sulfonic acid-induced inflammatory bowel disease . Journal of Dairy Science 101 (10):8662–71. doi: 10.3168/jds.2018-15014.
  • Shen, Y., M. L. G. Torchia, G. W. Lawson, C. L. Karp, J. D. Ashwell, and S. K. Mazmanian. 2012. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host & Microbe 12 (4):509–20.
  • Shenderov, B. A., A. V. Sinitsa, M. M. Zakharchenko, and C. Lang. 2020. Cellular metabiotics and metabolite metabiotics. In Metabiotics, chapter 14, 63–75. Springer.
  • Skelly, A. N., Y. Sato, S. Kearney, and K. Honda. 2019. Mining the microbiota for microbial and metabolite-based immunotherapies. Nature Reviews. Immunology 19 (5):305–23. doi: 10.1038/s41577-019-0144-5.
  • Sommer, F., J. M. Anderson, R. Bharti, J. Raes, and P. Rosenstiel. 2017. The resilience of the intestinal microbiota influences health and disease. Nature Reviews. Microbiology 15 (10):630–8. doi: 10.1038/nrmicro.2017.58.
  • Teame, T.,. A. Wang, M. Xie, Z. Zhang, Y. Yang, Q. Ding, C. Gao, R. E. Olsen, C. Ran, and Z. Zhou. 2020. Paraprobiotics and postbiotics of probiotic Lactobacilli, their positive effects on the host and action mechanisms: A review. Frontiers in Nutrition 7:570344. doi: 10.3389/fnut.2020.570344.
  • Toyofuku, M., K. Morinaga, Y. Hashimoto, J. Uhl, H. Shimamura, H. Inaba, P. Schmitt-Kopplin, L. Eberl, and N. Nomura. 2017. Membrane vesicle-mediated bacterial communication. The ISME Journal 11 (6):1504–9. doi: 10.1038/ismej.2017.13.
  • Toyofuku, M., Y. Tashiro, Y. Hasegawa, M. Kurosawa, and N. Nomura. 2015. Bacterial membrane vesicles, an overlooked environmental colloid: Biology, environmental perspectives and applications. Advances in Colloid and Interface Science 226 (Pt A):65–77. doi: 10.1016/j.cis.2015.08.013.
  • Tsatsaronis, J. A., S. Franch-Arroyo, U. Resch, and E. Charpentier. 2018. Extracellular vesicle RNA: A universal mediator of microbial communication? Trends in Microbiology 26 (5):401–10. doi: 10.1016/j.tim.2018.02.009.
  • Tulkens, J., O. De Wever, and A. Hendrix. 2020a. Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization. Nature Protocols 15 (1):40–67. doi: 10.1038/s41596-019-0236-5.
  • Tulkens, J., G. Vergauwen, J. Van Deun, E. Geeurickx, B. Dhondt, L. Lippens, M.-A. De Scheerder, I. Miinalainen, P. Rappu, B. G. De Geest, et al. 2020b. Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction. Gut 69 (1):191–3. doi: 10.1136/gutjnl-2018-317726.
  • Turnbull, L., M. Toyofuku, A. L. Hynen, M. Kurosawa, G. Pessi, N. K. Petty, S. R. Osvath, G. Cárcamo-Oyarce, E. S. Gloag, R. Shimoni, et al. 2016. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nature Communications 7:11220–13. doi: 10.1038/ncomms11220.
  • Van Niel, G., G. d’Angelo, and G. Raposo. 2018. Shedding light on the cell biology of extracellular vesicles. Nature Reviews. Molecular Cell Biology 19 (4):213–28. doi: 10.1038/nrm.2017.125.
  • Visser, L., M.-J. Melief, D. van Riel, M. van Meurs, E. A. Sick, S. Inamura, J. J. Bajramovic, S. Amor, R. Q. Hintzen, L. A. Boven, et al. 2006. Phagocytes containing a disease-promoting Toll-like receptor/Nod ligand are present in the brain during demyelinating disease in primates. The American Journal of Pathology 169 (5):1671–85. doi: 10.2353/ajpath.2006.060143.
  • Volgers, C., P. H. Savelkoul, and F. R. Stassen. 2018. Gram-negative bacterial membrane vesicle release in response to the host-environment: Different threats, same trick? Critical Reviews in Microbiology 44 (3):258–73. doi: 10.1080/1040841X.2017.1353949.
  • Wang, X., C. D. Thompson, C. Weidenmaier, and J. C. Lee. 2018. Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nature Communications 9 (1):1–13. doi: 10.1038/s41467-018-03847-z.
  • Wegh, C. A., S. Y. Geerlings, J. Knol, G. Roeselers, and C. Belzer. 2019. Postbiotics and their potential applications in early life nutrition and beyond. International Journal of Molecular Sciences 20:4673. doi: 10.3390/ijms20194673.
  • Wei, C.-L., S. Wang, J.-T. Yen, Y.-F. Cheng, C.-L. Liao, C.-C. Hsu, C.-C. Wu, and Y.-C. Tsai. 2019. Antidepressant-like activities of live and heat-killed Lactobacillus paracasei PS23 in chronic corticosterone-treated mice and possible mechanisms. Brain Research 1711:202–13. doi: 10.1016/j.brainres.2019.01.025.
  • Wilson, M. R., Y. Jiang, P. W. Villalta, A. Stornetta, P. D. Boudreau, A. Carrá, C. A. Brennan, E. Chun, L. Ngo, L. D. Samson, et al. 2019. The human gut bacterial genotoxin colibactin alkylates DNA. Science 363 (6428):eaar7785. doi: 10.1126/science.aar7785.
  • Yáñez-Mó, M.,. P. R.-M. Siljander, Z. Andreu, A. B. Zavec, F. E. Borràs, E. I. Buzas, K. Buzas, E. Casal, F. Cappello, J. Carvalho, et al. 2015. Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles 4:27066. doi: 10.3402/jev.v4.27066.
  • Yang, J., E. K. Kim, A. McDowell, and Y.-K. Kim. 2018. Microbe-derived extracellular vesicles as a smart drug delivery system. Translational and Clinical Pharmacology 26 (3):103–10. doi: 10.12793/tcp.2018.26.3.103.
  • Yi, M., D. Jiao, S. Qin, Q. Chu, A. Li, and K. Wu. 2019. Manipulating gut microbiota composition to enhance the therapeutic effect of cancer immunotherapy. Integrative Cancer Therapies 18:1534735419876351. doi: 10.1177/1534735419876351.
  • Zhang, X., X. Cai, and X. Zheng. 2021. Gut microbiome-oriented therapy for metabolic diseases: Challenges and opportunities towards clinical translation. Trends in Pharmacological Sciences 42 (12):984–7. doi: 10.1016/j.tips.2021.09.003.
  • Zhao, L., Y. Ye, L. Gu, Z. Jian, C. M. Stary, and X. Xiong. 2021. Extracellular vesicle-derived miRNA as a novel regulatory system for bi-directional communication in gut-brain-microbiota axis. Journal of Translational Medicine 19 (1):202–12. doi: 10.1186/s12967-021-02861-y.
  • Zhou, M., L. J. Johnston, C. Wu, and X. Ma. 2021. Gut microbiota and its metabolites: Bridge of dietary nutrients and obesity-related diseases. Critical Reviews in Food Science and Nutrition:1–18. doi: 10.1080/10408398.2021.1986466.
  • Zmora, N., J. Suez, and E. Elinav. 2019. You are what you eat: Diet, health and the gut microbiota. Nature Reviews. Gastroenterology & Hepatology 16 (1):35–56.
  • Żółkiewicz, J., A. Marzec, M. Ruszczyński, and W. Feleszko. 2020. Postbiotics—a step beyond pre-and probiotics. Nutrients 12 (8):2189. doi: 10.3390/nu12082189.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.