741
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Red and white cabbages: An updated comparative review of bioactives, extraction methods, processing practices, and health benefits

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Abdallah, H. M., M. A. Farag, M. M. Algandaby, M. Z. Nasrullah, A. B. Abdel-Naim, B. G. Eid, M. K. Safo, A. E. Koshak, and A. M. Malebari. 2020. Osteoprotective activity and metabolite fingerprint via UPLC/MS and GC/MS of Lepidium sativum in ovariectomized rats. Nutrients 12 (7):2075. doi: 10.3390/nu12072075.
  • Abdel-Shafi, S., A.-R. Al-Mohammadi, M. Sitohy, B. Mosa, A. Ismaiel, G. Enan, and A. Osman. 2019. Antimicrobial activity and chemical constitution of the crude, phenolic-rich extracts of Hibiscus sabdariffa, Brassica oleracea and Beta vulgaris. Molecules 24 (23):4280. doi: 10.3390/molecules24234280.
  • Adamus, A., M. Szklarczyk, and A. Kiełkowska. 2021. Haploid and doubled haploid plant production in Brassica rapa L. subsp. pekinensis via microspore culture. Methods in Molecular Biology (Clifton, NJ) 2288:181–99. doi: 10.1007/978-1-0716-1335-1_11.
  • Adeoye, B. K., S. O. Adeyele, J. A. Adeyeye, O. O. Oyerinde, M. F. Olanrewaju, and I. F. Ani. 2019. Therapeutic effect of white cabbage (Brassica oleracea) aqueous extract on hyperglycemia in prediabetes-induced male albino rats. Journal of Applied Sciences 19 (5):413–20. doi: 10.3923/jas.2019.413.420.
  • Aires, A., V. R. Mota, M. J. Saavedra, A. A. Monteiro, M. Simões, E. A. Rosa, and R. N. Bennett. 2009. Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. Journal of Applied Microbiology 106 (6):2096–105. doi: 10.1111/j.1365-2672.2009.04181.x.
  • Akhtar, S., A. Layla, P. Sestili, T. Ismail, K. Afzal, A. A. Rizvanov, and M. H. H. B. Asad. 2019. Glycemic and insulinemic responses of vegetables and beans powders supplemented chapattis in healthy humans: A randomized, crossover trial. BioMed Research International 2019:7425367. doi: 10.1155/2019/7425367.
  • Al-Dosari, M. 2014. Red Cabbage (Brassica oleracea L.) Mediates redox-sensitive amelioration of dyslipidemia and hepatic injury induced by exogenous cholesterol administration. The American Journal of Chinese Medicine 42 (1):189–206. doi: 10.1142/S0192415X1450013X.
  • Aloo, S. O., F. K. Ofosu, E. B. Daliri, and D. H. Oh. 2021. UHPLC-ESI-QTOF-MS/MS metabolite profiling of the antioxidant and antidiabetic activities of red cabbage and broccoli seeds and sprouts. Antioxidants 10 (6):852. doi: 10.3390/antiox10060852.
  • Assad, T., R. A. Khan, and Z. Feroz. 2014. Evaluation of hypoglycemic and hypolipidemic activity of methanol extract of Brassica oleracea. Chinese Journal of Natural Medicines 12 (9):648–53. doi: 10.1016/S1875-5364(14)60099-6.
  • B1Kowska-Barczak, A. 2005. Acylated anthocyanins as stable, natural food colorants—A review. Polish Journal of Food and Nutrition Sciences 14:55.
  • Bell, L., E. Kitsopanou, O. O. Oloyede, and S. Lignou. 2021. Important odorants of four brassicaceae species, and discrepancies between glucosinolate profiles and observed hydrolysis products. Foods 10 (5):1055. doi: 10.3390/foods10051055.
  • Beydoun, M. A., X. Chen, K. Jha, H. A. Beydoun, A. B. Zonderman, and J. A. Canas. 2019. Carotenoids, vitamin A, and their association with the metabolic syndrome: A systematic review and meta-analysis. Nutrition Reviews 77 (1):32–45. doi: 10.1093/nutrit/nuy044.
  • Biondi, F., F. Balducci, F. Capocasa, M. Visciglio, E. Mei, M. Vagnoni, B. Mezzetti, and L. Mazzoni. 2021. Environmental conditions and agronomical factors influencing the levels of phytochemicals in Brassica vegetables responsible for nutritional and sensorial properties. Applied Sciences 11 (4):1927. doi: 10.3390/app11041927.
  • Bones, A. M., and J. T. Rossiter. 1996. The myrosinase‐glucosinolate system, its organisation and biochemistry. Physiologia Plantarum 97 (1):194–208. doi: 10.1111/j.1399-3054.1996.tb00497.x.
  • Buko, V., I. Zavodnik, O. Kanuka, E. Belonovskaya, E. Naruta, O. Lukivskaya, S. Kirko, G. Budryn, D. Żyżelewicz, J. Oracz, et al. 2018. Antidiabetic effects and erythrocyte stabilization by red cabbage extract in streptozotocin-treated rats. Food & Function 9 (3):1850–63. doi: 10.1039/c7fo01823a.
  • Cartea, M. E., M. Francisco, P. Soengas, and P. Velasco. 2010. Phenolic compounds in Brassica vegetables. Molecules (Basel, Switzerland) 16 (1):251–80. doi: 10.3390/molecules16010251.
  • Cartea, M. E., P. Velasco, S. Obregón, G. Padilla, and A. de Haro. 2008. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69 (2):403–10.
  • Carullo, D., G. Pataro, F. Donsì, and G. Ferrari. 2020. Pulsed electric fields-assisted extraction of valuable compounds from Arthrospira platensis: Effect of pulse polarity and mild heating. Frontiers in Bioengineering and Biotechnology 8:551272. doi: 10.3389/fbioe.2020.551272.
  • Chen, H., I. A. Al-Shehbaz, J. Yue, and H. Sun. 2018. New insights into the taxonomy of tribe Euclidieae (Brassicaceae), evidence from nrITS sequence data. PhytoKeys 100:125–39. doi: 10.3897/phytokeys.100.24756.
  • Chin, H. W., and R. C. Lindsay. 1993. Volatile sulfur compounds formed in disrupted tissues of different cabbage cultivars. Journal of Food Science 58 (4):835–9. doi: 10.1111/j.1365-2621.1993.tb09370.x.
  • Chun, O. K., N. Smith, A. Sakagawa, and C. Y. Lee. 2004. Antioxidant properties of raw and processed cabbages. International Journal of Food Sciences and Nutrition 55 (3):191–9. doi: 10.1080/09637480410001725148.
  • Ciska, E., N. Drabińska, A. Narwojsz, and J. Honke. 2016. Stability of glucosinolates and glucosinolate degradation products during storage of boiled white cabbage. Food Chemistry 203:340–7. doi: 10.1016/j.foodchem.2016.02.079.
  • Ciska, E., and J. Honke. 2012. Effect of the pasteurization process on the contents of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3’-diindolylmethane in fermented cabbage. Journal of Agricultural and Food Chemistry 60 (14):3645–9. doi: 10.1021/jf300133k.
  • Ciska, E., M. Karamać, and A. Kosinska. 2005. Antioxidant activity of extracts of white cabbage and sauerkraut. Polish Journal of Food and Nutrition Sciences 55:367–73.
  • Ciska, E., and D. R. Pathak. 2004. Glucosinolate derivatives in stored fermented cabbage. Journal of Agricultural and Food Chemistry 52 (26):7938–43. doi: 10.1021/jf048986+.
  • Ciska, E., R. Verkerk, and J. Honke. 2009. Effect of boiling on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3’-diindolylmethane in fermented cabbage. Journal of Agricultural and Food Chemistry 57 (6):2334–8. doi: 10.1021/jf803477w.
  • Cruz, A. B., H. D. Pitz, B. Veber, L. A. Bini, M. Maraschin, and A. L. Zeni. 2016. Assessment of bioactive metabolites and hypolipidemic effect of polyphenolic-rich red cabbage extract. Pharmaceutical Biology 54 (12):3033–9. doi: 10.1080/13880209.2016.1200633.
  • Dal Prá, V., C. B. Dolwitsch, G. D. da Silveira, L. Porte, C. Frizzo, M. V. Tres, V. Mossi, M. A. Mazutti, P. C. do Nascimento, D. Bohrer, et al. 2013. Supercritical CO2 extraction, chemical characterisation and antioxidant potential of Brassica oleracea var capitata against HO, O2(-) and ROO. Food Chemistry 141 (4):3954–9. doi: 10.1016/j.foodchem.2013.06.098.
  • Dal Prá, V., C. B. Dolwitsch, F. O. Lima, C. Amaro de Carvalho, C. Viana, P. C. do Nascimento, and M. Barcellos da Rosa. 2015. Ultrasound-assisted extraction and biological activities of extracts of Brassica oleracea var. capitata. Food Technology and Biotechnology 53 (1):102–9. doi: 10.17113/ftb.53.01.15.3533.
  • Dal, S., R. Van der Werf, C. Walter, W. Bietiger, E. Seyfritz, C. Mura, C. Peronet, J. Legrandois, D. Werner, S. Ennahar, et al. 2018. Treatment of NASH with antioxidant therapy: Beneficial effect of red cabbage on type 2 diabetic rats. Oxidative Medicine and Cellular Longevity 2018:7019573. doi: 10.1155/2018/7019573.
  • Dekker, M., and R. Verkerk. 2003. Dealing with variability in food production chains: A tool to enhance the sensitivity of epidemiological studies on phytochemicals. European Journal of Nutrition 42 (1):67–72.
  • Dinkova-Kostova, A. T., and R. V. Kostov. 2012. Glucosinolates and isothiocyanates in health and disease. Trends in Molecular Medicine 18 (6):337–47.
  • Dölle, S., S. Hompes, L. Lange, and M. Worm. 2013. Cabbage allergy: A rare cause of food-induced anaphylaxis. Acta Dermato-Venereologica 93 (4):485–6. doi: 10.2340/00015555-1519.
  • Draghici, G. A., M. Lupu, A. Borozan, D. Nica, S. Alda, L. Alda, I. Gogoaşă, I. I. Gergen, and D. Bordean. 2013. Red cabbage, millennium’s functional food. Journal of Horticulture, Forestry and Biotechnology 17:52–5.
  • Drozdowska, M., T. Leszczyńska, A. Koronowicz, E. Piasna-Słupecka, and K. Dziadek. 2020. Comparative study of young shoots and the mature red headed cabbage as antioxidant food resources with antiproliferative effect on prostate cancer cells. RSC Advances 10 (70):43021–34. doi: 10.1039/D0RA07861A.
  • El-Newary, S. A., S. M. Afifi, M. S. Aly, R. F. Ahmed, A. E.-N. G. El Gendy, A. M. Abd-ElGawad, M. A. Farag, A. M. Elgamal, and A. I. Elshamy. 2021. Chemical Profile of Launaea nudicaulis ethanolic extract and its antidiabetic effect in streptozotocin-induced rats. Molecules 26 (4):1000. doi: 10.3390/molecules26041000.
  • Fang, S., F. Lin, D. Qu, X. Liang, and L. Wang. 2018. Characterization of purified red cabbage anthocyanins: Improvement in HPLC separation and protective effect against H2O2-induced oxidative stress in HepG2 cells. Molecules 24 (1):124. doi: 10.3390/molecules24010124.
  • Farag, M. A., and A. A. A. Motaal. 2010. Sulforaphane composition, cytotoxic and antioxidant activity of crucifer vegetables. Journal of Advanced Research 1 (1):65–70. doi: 10.1016/j.jare.2010.02.005.
  • Farag, M. A., M. G. Sharaf Eldin, H. Kassem, and M. Abou el Fetouh. 2013. Metabolome classification of Brassica napus L. organs via UPLC-QTOF-PDA-MS and their anti-oxidant potential. Phytochemical Analysis: PCA 24 (3):277–87. doi: 10.1002/pca.2408.
  • Farag, M. A., M. G. Sharaf El-Din, M. A. Selim, A. I. Owis, S. F. Abouzid, A. Porzel, L. A. Wessjohann, and A. Otify. 2021. Nuclear magnetic resonance metabolomics approach for the analysis of major legume sprouts coupled to chemometrics. Molecules 26 (3):761. doi: 10.3390/molecules26030761.
  • Foodstruct. Red cabbage nutrition, glycemic index, calories, net carbs & more. https://foodstruct.com/food/red-cabbage. Accessed 22 January 2022.
  • Gaafar, A., H. Aly, D. Z. Salama, and N. Zayed. 2014. Hypoglycemic effects of white cabbage and red cabbage (Brassica oleracea) in Stz induced type-2 diabetes in rats. World Journal of Pharmaceutical Research 5045:1583–610.
  • Gachovska, T., D. Cassada, J. Subbiah, M. Hanna, H. Thippareddi, and D. Snow. 2010. Enhanced anthocyanin extraction from red cabbage using pulsed electric field processing. Journal of Food Science 75 (6):E323–329. doi: 10.1111/j.1750-3841.2010.01699.x.
  • Garcia-Ibañez, P., C. Roses, A. Agudelo, F. I. Milagro, A. M. Barceló, B. Viadel, J. A. Nieto, D. A. Moreno, and M. Carvajal. 2021. The influence of red cabbage extract nanoencapsulated with brassica plasma membrane vesicles on the gut microbiome of obese volunteers. Foods 10 (5). doi: 10.1038.3390/foods10051038.
  • Gerszberg, A. 2018. Tissue culture and genetic transformation of cabbage (Brassica oleracea var. capitata): An overview. Planta 248 (5):1037–48. doi: 10.1007/s00425-018-2961-3.
  • Ghareaghajlou, N., S. Hallaj-Nezhadi, and Z. Ghasempour. 2021. Red cabbage anthocyanins: Stability, extraction, biological activities and applications in food systems. Food Chemistry 365:130482. doi: 10.1016/j.foodchem.2021.130482.
  • Giacco, R., M. Parillo, A. A. Rivellese, G. Lasorella, A. Giacco, L. D’Episcopo, and G. Riccardi. 2000. Long-term dietary treatment with increased amounts of fiber-rich low-glycemic index natural foods improves blood glucose control and reduces the number of hypoglycemic events in type 1 diabetic patients. Diabetes Care 23 (10):1461–6. doi: 10.2337/diacare.23.10.1461.
  • Glycemic Index (GI) & Glycemic Load (GL) Guide. Retrieved from https://glycemic-index.net/white-cabbage/. Accessed22 January 2022.
  • Hafidh, R. R., A. S. Abdulamir, F. Abu Bakar, F. A. Jalilian, F. Jahanshiri, F. Abas, and Z. Sekawi. 2013. Novel anticancer activity and anticancer mechanisms of Brassica oleracea L. var. capitata f. rubra. European Journal of Integrative Medicine 5 (5):450–64. doi: 10.1016/j.eujim.2013.06.004.
  • Hanschen, F. S., C. Kühn, M. Nickel, S. Rohn, and M. Dekker. 2018. Leaching and degradation kinetics of glucosinolates during boiling of Brassica oleracea vegetables and the formation of their breakdown products. Food Chemistry 263:240–50. doi: 10.1016/j.foodchem.2018.04.069.
  • Hanschen, F. S., and M. Schreiner. 2017. Isothiocyanates, nitriles, and epithionitriles from glucosinolates are affected by genotype and developmental stage in Brassica oleracea varieties. Frontiers in Plant Science 8:1095. doi: 10.3389/fpls.2017.01095.
  • Jampani, C., and K. S. M. S. Raghavarao. 2015. Differential partitioning for purification of anthocyanins from Brassica oleracea L. Separation and Purification Technology 151:57–65. doi: 10.1016/j.seppur.2015.07.030.
  • Jin, S.-W., M. A. Rahim, K. S. Afrin, J.-I. Park, J.-G. Kang, and I.-S. Nou. 2018. Transcriptome profiling of two contrasting ornamental cabbage (Brassica oleracea var. acephala) lines provides insights into purple and white inner leaf pigmentation. BMC Genomics 19 (1):797. doi: 10.1186/s12864-018-5199-3.
  • Kasuya, N., S. Ohta, Y. Takanami, Y. Kawai, Y. Inoue, I. Murata, and I. Kanamoto. 2015. Effect of low glycemic index food and postprandial exercise on blood glucose level, oxidative stress and antioxidant capacity. Experimental and Therapeutic Medicine 9 (4):1201–4. doi: 10.3892/etm.2015.2228.
  • Kataya, H. A., and A. A. Hamza. 2008. Red cabbage (Brassica oleracea) ameliorates diabetic nephropathy in rats. Evidence-Based Complementary and Alternative Medicine: eCAM 5 (3):281–7. doi: 10.1093/ecam/nem029.
  • Khoo, H.-E., K. N. Prasad, K.-W. Kong, Y. Jiang, and A. Ismail. 2011. Carotenoids and their isomers: Color pigments in fruits and vegetables. Molecules (Basel, Switzerland) 16 (2):1710–38. doi: 10.3390/molecules16021710.
  • Kim, D. O., O. I. Padilla-Zakour, and P. D. Griffiths. 2006. Flavonoids and antioxidant capacity of various cabbage genotypes at juvenile stage. Journal of Food Science 69 (9):C685–C689. doi: 10.1111/j.1365-2621.2004.tb09916.x.
  • Kishimoto, I., N. Kambe, C. T. H. Nguyen, T. Matsuda, Y. Nomura, N. Uetsu, and H. Okamoto. 2017. Protein contact dermatitis induced by cabbage with recurrent symptoms after oral intake. The Journal of Dermatology 44 (10):e252–e253. doi: 10.1111/1346-8138.13922.
  • Koss-Mikołajczyk, I., B. Kusznierewicz, W. Wiczkowski, N. Płatosz, and A. Bartoszek. 2019. Phytochemical composition and biological activities of differently pigmented cabbage (Brassica oleracea var. capitata) and cauliflower (Brassica oleracea var. botrytis) varieties. Journal of the Science of Food and Agriculture 99 (12):5499–507. doi: 10.1002/jsfa.9811.
  • Kumar, K., S. Srivastav, and V. S. Sharanagat. 2021. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry 70:105325. doi: 10.1016/j.ultsonch.2020.105325.
  • Kusznierewicz, B., A. Bartoszek, L. Wolska, J. Drzewiecki, S. Gorinstein, and J. Namieśnik. 2008. Partial characterization of white cabbages (Brassica oleracea var. capitata f. alba) from different regions by glucosinolates, bioactive compounds, total antioxidant activities and proteins. LWT - Food Science and Technology 41 (1):1–9. doi: 10.1016/j.lwt.2007.02.007.
  • Kusznierewicz, B., R. Iori, A. Piekarska, J. Namieśnik, and A. Bartoszek. 2013. Convenient identification of desulfoglucosinolates on the basis of mass spectra obtained during liquid chromatography-diode array-electrospray ionisation mass spectrometry analysis: Method verification for sprouts of different Brassicaceae species extracts. Journal of Chromatography, A 1278:108–15. doi: 10.1016/j.chroma.2012.12.075.
  • Lafarga, T., G. Bobo, I. Viñas, C. Collazo, and I. Aguiló-Aguayo. 2018. Effects of thermal and non-thermal processing of cruciferous vegetables on glucosinolates and its derived forms. Journal of Food Science and Technology 55 (6):1973–81. doi: 10.1007/s13197-018-3153-7.
  • Li, Z., H. W. Lee, X. Liang, D. Liang, Q. Wang, D. Huang, and C. N. Ong. 2018. Profiling of phenolic compounds and antioxidant activity of 12 cruciferous vegetables. Molecules 23 (5):1139. doi: 10.3390/molecules23051139.
  • Liang, X., H. W. Lee, Z. Li, Y. Lu, L. Zou, and C. N. Ong. 2018. Simultaneous quantification of 22 glucosinolates in 12 Brassicaceae vegetables by hydrophilic interaction Chromatography-Tandem Mass Spectrometry. ACS Omega 3 (11):15546–53. doi: 10.1021/acsomega.8b01668.
  • Liang, J. L., C. C. Yeow, K. C. Teo, C. Gnanaraj, and Y. P. Chang. 2019. Valorizing cabbage (Brassica oleracea L. var. capitata) and capsicum (Capsicum annuum L.) wastes: In vitro health-promoting activities. Journal of Food Science and Technology 56 (10):4696–704. doi: 10.1007/s13197-019-03912-5.
  • Linić, I., D. Šamec, J. Grúz, V. Vujčić Bok, M. Strnad, and B. Salopek-Sondi. 2019. Involvement of phenolic acids in short-term adaptation to salinity stress is species-specific among Brassicaceae. Plants 8 (6):155. doi: 10.3390/plants8060155.
  • Liu, Y., M. Rossi, X. Liang, H. Zhang, L. Zou, and C. N. Ong. 2020. An integrated metabolomics study of glucosinolate metabolism in different Brassicaceae genera. Metabolites 10 (8):313. doi: 10.3390/metabo10080313.
  • Llompart, M., C. Garcia-Jares, M. Celeiro, and T. Dagnac. 2019. Extraction | Microwave-assisted extraction. In P. Worsfold, C. Poole, A. Townshend, & M. Miró (Eds.), Encyclopedia of analytical science, 3rd ed., 67–77. Oxford: Academic Press.
  • Lončarić, A., T. Marček, D. Šubarić, A. Jozinović, J. Babić, B. Miličević, K. Sinković, D. Šubarić, and Đ. Ačkar. 2020. Comparative evaluation of bioactive compounds and volatile profile of white cabbages. Molecules 25 (16):3696. doi: 10.3390/molecules25163696.
  • Mabuchi, R., M. Tanaka, C. Nakanishi, N. Takatani, and S. Tanimoto. 2019. Analysis of primary metabolites in cabbage (Brassica oleracea var. capitata) varieties correlated with antioxidant activity and taste attributes by metabolic profiling. Molecules 24 (23):4282. doi: 10.3390/molecules24234282.
  • Maruyama, F. T. 1970. Identification of dimethyl trisulfide as a major aroma component of cooked brassicaceous vegetables. Journal of Food Science 35 (5):540–3. doi: 10.1111/j.1365-2621.1970.tb04803.x.
  • Miklavčič Višnjevec, A., A. Tamayo Tenorio, A. C. Steenkjaer Hastrup, N. M. L. Hansen, K. Peeters, and M. Schwarzkopf. 2021. Glucosinolates and isothiocyantes in processed rapeseed determined by HPLC-DAD-qTOF. Plants 10 (11):2548. doi: 10.3390/plants10112548.
  • Mondédji, A. D., P. Silvie, W. S. Nyamador, P. Martin, L. K. Agboyi, K. Amévoin, G. K. Ketoh, and I. A. Glitho. 2021. Cabbage production in West Africa and IPM with a focus on plant-based extracts and a complementary worldwide vision. Plants 10 (3):529. doi: 10.3390/plants10030529.
  • Morales-López, J., M. Centeno-Álvarez, A. Nieto-Camacho, M. G. López, E. Pérez-Hernández, N. Pérez-Hernández, and E. Fernández-Martínez. 2017. Evaluation of antioxidant and hepatoprotective effects of white cabbage essential oil. Pharmaceutical Biology 55 (1):233–41. doi: 10.1080/13880209.2016.1258424.
  • Nam, M., and K. Kang. 2013. The effect of red cabbage (Brassica oleracea L. var. capitata f. rubra) extract on the apoptosis in human breast cancer MDA-MB-231 cells. Journal of the Korean Society of Food Science and Nutrition 42 (1):8–16. doi: 10.3746/jkfn.2013.42.1.008.
  • Novotny, C., V. Schulzova, A. Krmela, J. Hajslova, K. Svobodova, and M. Koudela. 2018. Ascorbic acid and glucosinolate levels in new Czech cabbage cultivars: Effect of production system and fungal infection. Molecules 23 (8):1855. doi: 10.3390/molecules23081855.
  • Nugrahedi, P. Y., R. Verkerk, B. Widianarko, and M. Dekker. 2015. A mechanistic perspective on process-induced changes in glucosinolate content in Brassica vegetables: A review. Critical Reviews in Food Science and Nutrition 55 (6):823–38. doi: 10.1080/10408398.2012.688076.
  • Oerlemans, K., D. M. Barrett, C. B. Suades, R. Verkerk, and M. Dekker. 2006. Thermal degradation of glucosinolates in red cabbage. Food Chemistry 95 (1):19–29. doi: 10.1016/j.foodchem.2004.12.013.
  • Oliviero, T., R. Verkerk, and M. Dekker. 2018. Isothiocyanates from Brassica vegetables-effects of processing, cooking, mastication, and digestion. Molecular Nutrition & Food Research 62 (18):e1701069. doi: 10.1002/mnfr.201701069.
  • Palacín, A., J. Cumplido, J. Figueroa, O. Ahrazem, R. Sánchez-Monge, T. Carrillo, G. Salcedo, and C. Blanco. 2006. Cabbage lipid transfer protein Bra o 3 is a major allergen responsible for cross-reactivity between plant foods and pollens. The Journal of Allergy and Clinical Immunology 117 (6):1423–9. doi: 10.1016/j.jaci.2006.01.026.
  • Park, S., M. V. Arasu, M.-K. Lee, J.-H. Chun, J. M. Seo, N. A. Al-Dhabi, and S.-J. Kim. 2014. Analysis and metabolite profiling of glucosinolates, anthocyanins and free amino acids in inbred lines of green and red cabbage (Brassica Oleracea L.). LWT - Food Science and Technology 58 (1):203–13. doi: 10.1016/j.lwt.2014.03.002.
  • Park, S., M. Valan Arasu, M.-K. Lee, J.-H. Chun, J. M. Seo, S.-W. Lee, N. A. Al-Dhabi, and S.-J. Kim. 2014. Quantification of glucosinolates, anthocyanins, free amino acids, and vitamin C in inbred lines of cabbage (Brassica oleracea L.). Food Chemistry 145:77–85. doi: 10.1016/j.foodchem.2013.08.010.
  • Peluso, I., A. Raguzzini, G. Catasta, V. Cammisotto, A. Perrone, C. Tomino, E. Toti, and M. Serafini. 2018. Effects of high consumption of vegetables on clinical, immunological, and antioxidant markers in subjects at risk of cardiovascular diseases. Oxidative Medicine and Cellular Longevity 2018:1–9. doi: 10.1155/2018/5417165.
  • Peñas, E., R. I. Limón, C. Vidal-Valverde, and J. Frias. 2013. Effect of storage on the content of indole-glucosinolate breakdown products and vitamin C of sauerkrauts treated by high hydrostatic pressure. LWT - Food Science and Technology 53 (1):285–9. doi: 10.1016/j.lwt.2013.01.015.
  • Plaszkó, T., Z. Szűcs, G. Vasas, and S. Gonda. 2021. Effects of glucosinolate-derived isothiocyanates on fungi: A comprehensive review on direct effects, mechanisms, structure-activity relationship data and possible agricultural applications. Journal of Fungi 7 (7):539. doi: 10.3390/jof7070539.
  • Podsędek, A., M. Redzynia, E. Klewicka, and M. Koziołkiewicz. 2014. Matrix effects on the stability and antioxidant activity of red cabbage anthocyanins under simulated gastrointestinal digestion. BioMed Research International 2014:365738. doi: 10.1155/2014/365738.
  • Poveda, J., M. Francisco, M. E. Cartea, and P. Velasco. 2020. Development of transgenic Brassica crops against biotic stresses caused by pathogens and arthropod pests. Plants 9 (12):1664. doi: 10.3390/plants9121664.
  • Raak, C., T. Ostermann, K. Boehm, and F. Molsberger. 2014. Regular consumption of sauerkraut and its effect on human health: A bibliometric analysis. Global Advances in Health and Medicine 3 (6):12–8. doi: 10.7453/gahmj.2014.038.
  • Raiola, A., A. Errico, G. Petruk, D. M. Monti, A. Barone, and M. M. Rigano. 2017. Bioactive compounds in Brassicaceae vegetables with a role in the prevention of chronic diseases. Molecules 23 (1):15. doi: 10.3390/molecules23010015.
  • Rasheed, D. M., A. Porzel, A. Frolov, H. R. El Seedi, L. A. Wessjohann, and M. A. Farag. 2018. Comparative analysis of Hibiscus sabdariffa (roselle) hot and cold extracts in respect to their potential for α-glucosidase inhibition. Food Chemistry 250:236–44. doi: 10.1016/j.foodchem.2018.01.020.
  • Ray, L. R., M. S. Alam, M. Junaid, S. Ferdousy, R. Akter, S. M. Z. Hosen, and N. J. Mouri. 2021. Brassica oleracea var. capitata f. alba: A review on its botany, traditional uses, phytochemistry and pharmacological activities. Mini-Reviews in Medicinal Chemistry 21 (16):2399–417. doi: 10.2174/1389557521666210111150036.
  • Rokayya, S., C. J. Li, Y. Zhao, Y. Li, and C. H. Sun. 2014. Cabbage (Brassica oleracea L. var. capitata) phytochemicals with antioxidant and anti-inflammatory potential. Asian Pacific Journal of Cancer Prevention: APJCP 14 (11):6657–62. doi: 10.7314/apjcp.2013.14.11.6657.
  • Roy, M. K., M. Takenaka, S. Isobe, and T. Tsushida. 2007. Antioxidant potential, anti-proliferative activities, and phenolic content in water-soluble fractions of some commonly consumed vegetables: Effects of thermal treatment. Food Chemistry 103 (1):106–14. doi: 10.1016/j.foodchem.2006.08.002.
  • Rubab, M., R. Chelliah, K. Saravanakumar, K. Barathikannan, S. Wei, J.-R. Kim, D. Yoo, M.-H. Wang, and D.-H. Oh. 2020. Bioactive potential of 2-methoxy-4-vinylphenol and benzofuran from Brassica oleracea L. var. capitate f, rubra (Red Cabbage) on oxidative and microbiological stability of beef meat. Foods 9 (5):568. doi: 10.3390/foods9050568.
  • Salem, M. A., A. Zayed, M. E. Beshay, M. M. Abdel Mesih, R. F. Ben Khayal, F. A. George, and S. M. Ezzat. 2021. Hibiscus sabdariffa L.: Phytoconstituents, nutritive, and pharmacological applications. Advances in Traditional Medicine. 18:1–11. doi: 10.1007/s13596-020-00542-7.
  • Saluk, J., M. Bijak, M. M. Posmyk, and H. M. Zbikowska. 2015. Red cabbage anthocyanins as inhibitors of lipopolysaccharide-induced oxidative stress in blood platelets. International Journal of Biological Macromolecules 80:702–9. doi: 10.1016/j.ijbiomac.2015.07.039.
  • Šamec, D., I. Pavlović, and B. Salopek-Sondi. 2017. White cabbage (Brassica oleracea var. capitata f. alba): Botanical, phytochemical and pharmacological overview. Phytochemistry Reviews 16 (1):117–35. doi: 10.1007/s11101-016-9454-4.
  • Samuelsen, A. B., B. Westereng, O. Yousif, A. K. Holtekjølen, T. E. Michaelsen, and S. H. Knutsen. 2007. Structural features and complement-fixing activity of pectin from three Brassica oleracea varieties: White cabbage, kale, and red kale. Biomacromolecules 8 (2):644–9. doi: 10.1021/bm060896l.
  • Sankhari, J. M., M. C. Thounaojam, R. N. Jadeja, R. V. Devkar, and A. V. Ramachandran. 2012. Anthocyanin-rich red cabbage (Brassica oleracea L.) extract attenuates cardiac and hepatic oxidative stress in rats fed an atherogenic diet. Journal of the Science of Food and Agriculture 92 (8):1688–93. doi: 10.1002/jsfa.5532.
  • Sarvan, I., F. Valerio, S. L. Lonigro, S. de Candia, R. Verkerk, M. Dekker, and P. Lavermicocca. 2013. Glucosinolate content of blanched cabbage (Brassica oleracea var. capitata) fermented by the probiotic strain Lactobacillus paracasei LMG-P22043. Food Research International 54 (1):706–10. doi: 10.1016/j.foodres.2013.07.065.
  • Satora, P., M. Skotniczny, S. Strnad, and W. Piechowicz. 2021. Chemical composition and sensory quality of sauerkraut produced from different cabbage varieties. LWT 136:110325. doi: 10.1016/j.lwt.2020.110325.
  • Scott, O., E. Galicia-Connolly, D. Adams, S. Surette, S. Vohra, and J. Y. Yager. 2012. The safety of cruciferous plants in humans: A systematic review. Journal of Biomedicine & Biotechnology 2012:503241. doi: 10.1155/2012/503241.
  • Shakour, Z. T., N. G. Shehab, A. S. Gomaa, L. A. Wessjohann, and M. A. Farag. 2021. Metabolic and biotransformation effects on dietary glucosinolates, their bioavailability, catabolism and biological effects in different organisms. Biotechnology Advances 54:107784. doi: 10.1016/j.biotechadv.2021.107784.
  • Sikora, E., and I. Bodziarczyk. 2012. Composition and antioxidant activity of kale (Brassica oleracea L. var. acephala) raw and cooked. Acta Scientiarum Polonorum. Technologia Alimentaria 11 (3):239–48.
  • Song, L., and P. J. Thornalley. 2007. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food and Chemical Toxicology 45 (2):216–24. doi: 10.1016/j.fct.2006.07.021.
  • Tajalli, F., M. Saeedi, and A. Vafaei Malekabadi. 2020. Anticancer and antioxidant effects of red cabbage on three cancerous cell lines and comparison with a normal cell line (HFF-3). Journal of Genes and Cells 6 (1):12. doi: 10.15562/gnc.73.
  • Tanongkankit, Y., N. Chiewchan, and S. Devahastin. 2010. Effect of processing on antioxidants and their activity in dietary fiber powder from cabbage outer leaves. Drying Technology 28 (9):1063–71. doi: 10.1080/07373937.2010.505543.
  • Tanongkankit, Y., N. Chiewchan, and S. Devahastin. 2015. Evolution of antioxidants in dietary fiber powder produced from white cabbage outer leaves: Effects of blanching and drying methods. Journal of Food Science and Technology 52 (4):2280–7. doi: 10.1007/s13197-013-1203-8.
  • Tanongkankit, Y., S. S. Sablani, N. Chiewchan, and S. Devahastin. 2013. Microwave-assisted extraction of sulforaphane from white cabbages: Effects of extraction condition, solvent and sample pretreatment. Journal of Food Engineering 117 (1):151–7. doi: 10.1016/j.jfoodeng.2013.02.011.
  • Tseng, M. J., M. T. Yang, W. R. Chu, and C. W. Liu. 2014. Plastid transformation in cabbage (Brassica oleracea L. var. capitata L.) by the biolistic process. Methods in Molecular Biology (Clifton, NJ) 1132:355–66. doi: 10.1007/978-1-62703-995-6_23.
  • Tungmunnithum, D., A. Thongboonyou, A. Pholboon, and A. Yangsabai. 2018. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical Aspects: An overview. Medicines 5 (3):93. doi: 10.3390/medicines5030093.
  • Tyśkiewicz, K., M. Konkol, and E. Rój. 2018. The application of supercritical fluid extraction in phenolic compounds isolation from natural plant materials. Molecules 23 (10):2625. doi: 10.3390/molecules23102625.
  • Verkerk, R., and M. Dekker. 2004. Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatments. Journal of Agricultural and Food Chemistry 52 (24):7318–23. doi: 10.1021/jf0493268.
  • Verkerk, R., M. Dekker, and W. M. F. Jongen. 2001. Post-harvest increase of indolyl glucosinolates in response to chopping and storage of Brassica vegetables. Journal of the Science of Food and Agriculture 81 (9):953–8. doi: 10.1002/jsfa.854.
  • Vicas, S. I., A. C. Teusdea, M. Carbunar, S. A. Socaci, and C. Socaciu. 2013. Glucosinolates profile and antioxidant capacity of Romanian Brassica vegetables obtained by organic and conventional agricultural practices. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 68 (3):313–21. doi: 10.1007/s11130-013-0367-8.
  • Volden, J., G. I. A. Borge, G. B. Bengtsson, M. Hansen, I. E. Thygesen, and T. Wicklund. 2008. Effect of thermal treatment on glucosinolates and antioxidant-related parameters in red cabbage (Brassica oleracea L. ssp. capitata f. rubra). Food Chemistry 109 (3):595–605. doi: 10.1016/j.foodchem.2008.01.010.
  • Volden, J., T. Wicklund, R. Verkerk, and M. Dekker. 2008. Kinetics of changes in glucosinolate concentrations during long-term cooking of white cabbage (Brassica oleracea L. ssp. capitata f. alba). Journal of Agricultural and Food Chemistry 56 (6):2068–73. doi: 10.1021/jf0731999.
  • Wei, S., X. Xiao, L. Wei, L. Li, G. Li, F. Liu, J. Xie, J. Yu, and Y. Zhong. 2021. Development and comprehensive HS-SPME/GC-MS analysis optimization, comparison, and evaluation of different cabbage cultivars (Brassica oleracea L. var. capitata L.) volatile components. Food Chemistry 340:128166. doi: 10.1016/j.foodchem.2020.128166.
  • Wermter, N. S., S. Rohn, and F. S. Hanschen. 2020. Seasonal variation of glucosinolate hydrolysis products in commercial white and red cabbages (Brassica oleracea var. capitata). Foods 9 (11):1682. doi: 10.3390/foods9111682.
  • Wiczkowski, W., D. Szawara-Nowak, and J. Topolska. 2013. Red cabbage anthocyanins: Profile, isolation, identification, and antioxidant activity. Food Research International 51 (1):303–9. doi: 10.1016/j.foodres.2012.12.015.
  • Wiczkowski, W., D. Szawara-Nowak, and J. Topolska. 2015. Changes in the content and composition of anthocyanins in red cabbage and its antioxidant capacity during fermentation, storage and stewing. Food Chemistry 167:115–23. doi: 10.1016/j.foodchem.2014.06.087.
  • Wieczorek, M. N., and H. H. Jeleń. 2019. Volatile compounds of selected raw and cooked Brassica vegetables. Molecules 24 (3):391. doi: 10.3390/molecules24030391.
  • Wu, W., J. Chen, D. Yu, S. Chen, X. Ye, and Z. Zhang. 2021. Analysis of processing effects on glucosinolate profiles in red cabbage by LC-MS/MS in multiple reaction monitoring mode. Molecules 26 (17):5171. doi: 10.3390/molecules26175171.
  • Wu, J., W. Liu, L. Yuan, W.-Q. Guan, C. S. Brennan, Y.-Y. Zhang, J. Zhang, and Z.-D. Wang. 2017. The influence of postharvest UV-C treatment on anthocyanin biosynthesis in fresh-cut red cabbage. Scientific Reports 7 (1):5232. doi: 10.1038/s41598-017-04778-3.
  • Xu, Z., J. Wu, Y. Zhang, X. Hu, X. Liao, and Z. Wang. 2010. Extraction of anthocyanins from red cabbage using high pressure CO2. Bioresource Technology 101 (18):7151–7. doi: 10.1016/j.biortech.2010.04.004.
  • Yagishita, Y., J. W. Fahey, A. T. Dinkova-Kostova, and T. W. Kensler. 2019. Broccoli or sulforaphane: Is it the source or dose that matters? Molecules 24 (19):3593. doi: 10.3390/molecules24193593.
  • Yang, D. K. 2018. Cabbage (Brassica oleracea var. capitata) protects against H2O2-induced oxidative stress by preventing mitochondrial dysfunction in H9c2 cardiomyoblasts. Evidence-Based Complementary and Alternative Medicine: eCAM 2018:2179021. doi: 10.1155/2018/2179021.
  • Ye, X.-J., T.-B. Ng, Z.-J. Wu, L.-H. Xie, E.-F. Fang, J.-H. Wong, W.-L. Pan, S.-S.-C. Wing, and Y.-B. Zhang. 2011. Protein from red cabbage (Brassica oleracea) seeds with antifungal, antibacterial, and anticancer activities. Journal of Agricultural and Food Chemistry 59 (18):10232–8. doi: 10.1021/jf201874j.
  • Yi, G.-E., A. H. K. Robin, K. Yang, J.-I. Park, J.-G. Kang, T.-J. Yang, and I.-S. Nou. 2015. Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies. Molecules (Basel, Switzerland) 20 (7):13089–111. doi: 10.3390/molecules200713089.
  • Young, A. J., and G. L. Lowe. 2018. Carotenoids-antioxidant properties. Antioxidants 7 (2):28. doi: 10.3390/antiox7020028.
  • Zayed, A., M. T. Badawy, and M. A. Farag. 2021. Valorization and extraction optimization of citrus seeds for food and functional food applications. Food Chemistry 355:129609. doi: 10.1016/j.foodchem.2021.129609.
  • Zayed, A., and M. A. Farag. 2020. Valorization, extraction optimization and technology advancements of artichoke biowastes: Food and non-food applications. LWT 132:109883. doi: 10.1016/j.lwt.2020.109883.
  • Zhang, Q.-W., L.-G. Lin, and W.-C. Ye. 2018. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine 13:20. doi: 10.1186/s13020-018-0177-x.
  • Zuluaga, D. L., N. S. Graham, A. Klinder, A. E. E. van Ommen Kloeke, A. R. Marcotrigiano, C. Wagstaff, R. Verkerk, G. Sonnante, and M. G. M. Aarts. 2019. Overexpression of the MYB29 transcription factor affects aliphatic glucosinolate synthesis in Brassica oleracea. Plant Molecular Biology 101 (1–2):65–79. doi: 10.1007/s11103-019-00890-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.