1,109
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Effects of infrared heating as an emerging thermal technology on physicochemical properties of foods

, , , ORCID Icon & ORCID Icon

References

  • Abi-Khattar, A. M., H. N. Rajha, R. M. Abdel-Massih, R. G. Maroun, N. Louka, and E. Debs. 2019. Intensification of polyphenol extraction from olive leaves using ired-irrad (R), an environmentally-friendly innovative technology. Antioxidants 8 (7):227. doi: 10.3390/antiox8070227.
  • Aboud, S. A., A. B. Altemimi, R. S. A. Al-HiIphy, L. Yi-Chen, and F. Cacciola. 2019. A comprehensive review on infrared heating applications in food processing. Molecules 24 (22):4125. doi: 10.3390/molecules24224125.
  • Aboud, S. A., A. B. Altemimi, A. R. Al‐Hilphy, and D. G. Watson. 2020. Effect of batch infrared extraction pasteurizer (BIREP)‐based processing on the quality preservation of dried lime juice. Journal of Food Processing and Preservation 44 (10):e14759. doi: 10.1111/jfpp.14759.
  • Adak, N., N. Heybeli, and C. Ertekin. 2017. Infrared drying of strawberry. Food Chemistry 219:109–16. doi: 10.1016/j.foodchem.2016.09.103.
  • Al-Hilphy, A. R., S. M. Al-Shatty, A. A. A. Al-Mtury, and M. Gavahian. 2020. Infrared-assisted oil extraction for valorization of carp viscera: Effects of process parameters, mathematical modeling, and process optimization. LWT 129:109541. doi: 10.1016/j.lwt.2020.109541.
  • Al‐Hilphy, A. R., A. A. A. Al‐Mtury, S. A. Al‐Iessa, M. Gavahian, S. M. Al‐Shatty, M. A. Jassim, Z. A. A. Mohusen, and A. Mousavi Khaneghah. 2021. A pilot‐scale rotary infrared dryer of shrimp (Metapenaeus affinis): Mathematical modeling and effect on physicochemical attributes. Journal of Food Process Engineering : e13945. doi: 10.1111/jfpe.13945.
  • Al‐Hilphy, A. R., M. Gavahian, F. J. Barba, J. M. Lorenzo, Z. M. Al‐Shalah, and D. K. Verma. 2021. Drying of sliced tomato (Lycopersicon esculentum L.) by a novel halogen dryer: Effects of drying temperature on physical properties, drying kinetics, and energy consumption. Journal of Food Process Engineering 44 (3):e13624. doi: 10.1111/jfpe.13624.
  • Altemimi, A. B., A. R. S. Al-Hilphy, T. G. Abedelmaksoud, S. A. Aboud, L. S. Badwaik, L. G, S. Noore, and A. Pratap-Singh. 2021. Infrared radiation favorably influences the quality characteristics of key lime juice. Applied Sciences 11 (6):2842. doi: 10.3390/app11062842.
  • Antal, T., M. Tarek, J. Tarek-Tilistyak, and B. Kerekes. 2017. Comparative effects of three different drying methods on drying kinetics and quality of Jerusalem artichoke (Helianthus tuberosus L.). Journal of Food Processing and Preservation 41 (3):e12971. doi: 10.1111/jfpp.12971.
  • Ashtiani, S.-H M., A. Salarikia, and M. R. Golzarian. 2017. Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments. Information Processing in Agriculture 4 (2):128–39. doi: 10.1016/j.inpa.2017.03.001.
  • Atungulu, G. G. 2018a. Infrared Food Processing Technology: Fundamentals and Case Studies of Recent Advances in Grain Processing.
  • Atungulu, G. G. 2018b. Infrared food processing technology: Fundamentals and case studies of recent advances in grain processing. In Alternatives to Conventional Food Processing, ed. A. Proctor, 397–417. London: Royal Society of Chemistry.
  • Azad, M. O. K., J. P. Piao, C. H. Park, and D. H. Cho. 2018. Far infrared irradiation enhances nutraceutical compounds and antioxidant properties in Angelica gigas Nakai powder. Antioxidants (Antioxidants ), 7 (12):189. doi: 10.3390/antiox7120189.
  • Bagheri, H. 2020. Application of infrared heating for roasting nuts. Journal of Food Quality 2020:1–10. doi: 10.1155/2020/8813047.
  • Bagheri, H., M. Kashaninejad, A. M. Ziaiifar, and M. Aalami. 2019. Textural, color and sensory attributes of peanut kernels as affected by infrared roasting method. Information Processing in Agriculture 6 (2):255–64. doi: 10.1016/j.inpa.2018.11.001.
  • Barzegar, M., D. Zare, and R. L. Stroshine. 2015. An integrated energy and quality approach to optimization of green peas drying in a hot air infrared-assisted vibratory bed dryer. Journal of Food Engineering 166:302–15. doi: 10.1016/j.jfoodeng.2015.06.026.
  • Bhinder, S., B. Singh, A. Kaur, N. Singh, M. Kaur, S. Kumari, and M. P. Yadav. 2019. Effect of infrared roasting on antioxidant activity, phenolic composition and Maillard reaction products of Tartary buckwheat varieties. Food Chemistry 285:240–51. doi: 10.1016/j.foodchem.2019.01.141.
  • Binello, A., M. Giorgis, C. Cena, G. Cravotto, L. Rotolo, P. Oliveri, C. Malegori, M. C. Cavallero, S. Buso, and M. Casale. 2018. Chemical modifications of Tonda gentile Trilobata hazelnut and derived processing products under different infrared and hot-air roasting conditions: A combined analytical study. Journal of the Science of Food and Agriculture 98 (12):4561–9. doi: 10.1002/jsfa.8984.
  • Bingol, G., B. Wang, A. Zhang, Z. L. Pan, and T. H. McHugh. 2014. Comparison of water and infrared blanching methods for processing performance and final product quality of French fries. Journal of Food Engineering 121:135–42. doi: 10.1016/j.jfoodeng.2013.08.001.
  • Boateng, I. D., D. A. Soetanto, X. M. Yang, C. S. Zhou, F. K. Saalia, and F. N. Li. 2021. Effect of pulsed-vacuum, hot-air, infrared, and freeze-drying on drying kinetics, energy efficiency, and physicochemical properties of Ginkgo biloba L. seed. Journal of Food Process Engineering 44 (4):e13655. doi: 10.1111/jfpe.13655.
  • Bobuş Alkaya, G., F. Erdogdu, and H. I. Ekiz. 2022. Comparison of conventional far‐infrared (IR) heating to continuous IR heating–cooling for surface pasteurization of shell eggs contaminated by Salmonella enterica serotype Enteritidis. Journal of Food Processing and Preservation 46 (1): e16168. doi: 10.1111/jfpp.16168.
  • Campos, M. G., C. Frigerio, O. Bobiş, A. C. Urcan, and N. G. M. Gomes. 2021. Infrared Irradiation Drying Impact on Bee Pollen: Case Study on the Phenolic Composition of Eucalyptus globulus Labill and Salix atrocinerea Brot. Pollens. Processes 9 (5):890. doi: 10.3390/pr9050890.
  • Chen, N. N., M. Q. Chen, B. A. Fu, and J. J. Song. 2017. Far-infrared irradiation drying behavior of typical biomass briquettes. Energy 121:726–38. doi: 10.1016/j.energy.2017.01.054.
  • Chhanwal, N., P. R. Bhushette, and C. Anandharamakrishnan. 2019. Current perspectives on non-conventional heating ovens for baking process—a review. Food and Bioprocess Technology 12 (1):1–15. doi: 10.1007/s11947-018-2198-y.
  • Corrêa, P. C., F. M. Baptestini, J. S. Zeymer, A. M. E. V. D, F. R. C. P. D, and R. A. Leite. 2019. Dehydration of infrared ginger slices: Heat and mass transfer coefficient and modeling. Ciência e Agrotecnologia 43: 1–11. doi: 10.1590/1413-7054201943025318.
  • Coser, E., V. F. Moritz, A. Krenzinger, and C. A. Ferreira. 2015. Development of paints with infrared radiation reflective properties. Polímeros 25 (3):305–10. doi: 10.1590/0104-1428.1869.
  • Cosson, B., F. Schmidt, Y. Le Maoult, and M. Bordival. 2011. Infrared heating stage simulation of semi-transparent media (PET) using ray tracing method. International Journal of Material Forming 4 (1):1–10. doi: 10.1007/s12289-010-0985-8.
  • Dao, T. A. T., H. K. Webb, and F. Malherbe. 2021. Optimization of pectin extraction from fruit peels by response surface method: Conventional versus microwave-assisted heating. Food Hydrocolloids. 113:106475. doi: 10.1016/j.foodhyd.2020.106475.
  • Das, I., and S. Das. 2010. Emitters and Infrared heating system design. Infrared Heating for Food and Agricultural Processing, Z. Pan and GG Atungulu, Eds 57–88. Boca Raton: CRC Press.
  • Datta, A., and H. Ni. 2002. Infrared and hot-air-assisted microwave heating of foods for control of surface moisture. Journal of Food Engineering 51 (4):355–64. doi: 10.1016/S0260-8774(01)00079-6.
  • Delfiya, D. A., K. Prashob, S. Murali, P. Alfiya, M. P. Samuel, and R. Pandiselvam. 2021. Drying kinetics of food materials in infrared radiation drying: A review. Journal of Food Process Engineering: e13810. doi: 10.1111/jfpe.13810.
  • Ding, C., R. Khir, Z. Pan, D. F. Wood, C. Venkitasamy, K. Tu, H. El-Mashad, and J. Berrios. 2018. Influence of infrared drying on storage characteristics of brown rice. Food Chemistry 264:149–56. doi: 10.1016/j.foodchem.2018.05.042.
  • Duangkhamchan, W., A. Phomphai, R. Wanna, L. Wiset, J. Laohavanich, F. Ronsse, and J. G. Pieters. 2017. Infrared heating as a disinfestation method against Sitophilus oryzae and its effect on textural and cooking properties of milled rice. Food and Bioprocess Technology 10 (2):284–95. doi: 10.1007/s11947-016-1813-z.
  • Erdogdu, F., O. Karatas, and F. Sarghini. 2018. A short update on heat transfer modelling for computational food processing in conventional and innovative processing. Current Opinion in Food Science 23:113–9. doi: 10.1016/j.cofs.2018.10.003.
  • Eskandari, J., A. M. Kermani, S. Kouravand, and P. Zarafshan. 2018. Design, fabrication, and evaluation a laboratory dry-peeling system for hazelnut using infrared radiation. Lwt 90:570–6. doi: 10.1016/j.lwt.2018.01.004.
  • Fan, D., B. Chitrakar, R. Ju, and M. Zhang. 2021. Effect of ultrasonic pretreatment on the properties of freeze-dried carrot slices by traditional and infrared freeze-drying technologies. Drying Technology 39 (9):1176–83. doi: 10.1080/07373937.2020.1815765.
  • Friedrich, R., and J. Fischer. 2000. New spectral radiance scale from 220 nm to 2500 nm. Metrologia 37 (5):539–42. doi: 10.1088/0026-1394/37/5/43.
  • Gavahian, M., and R. Chu. 2021. Design, development, and performance evaluation of an ohmic extractor to valorize fruit by‐products based on Taguchi method: Reduced energy consumption and enhanced total phenolics. Journal of Food Process Engineering. e13825. doi: 10.1111/jfpe.13825.
  • Gavahian, M., and B. K. Tiwari. 2020. Moderate electric fields and ohmic heating as promising fermentation tools. Innovative Food Science & Emerging Technologies 64:102422. doi: 10.1016/j.ifset.2020.102422.
  • Gavahian, M., B. K. Tiwari, Y. H. Chu, Y. W. Ting, and A. Farahnaky. 2019. Food texture as affected by ohmic heating: Mechanisms involved, recent findings, benefits, and limitations. Trends in Food Science & Technology 86:328–39. doi: 10.1016/j.tifs.2019.02.022.
  • Ghaboos, S. H. H., S. M. S. Ardabili, and M. Kashaninejad. 2018. Physico-chemical, textural and sensory evaluation of sponge cake supplemented with pumpkin flour. International Food Research Journal 25 (2):854–60.
  • Gokmen, S., N. Erdem, A. Kocabas, and H. Yetim. 2021. Using a hybrid technology to produce traditional sourdough Gelveri bread: Infrared cooking assisted with traditional method. Journal of Food Science and Technology 58 (3):962–7. doi: 10.1007/s13197-020-04610-3.
  • Guldiken, B., D. Konieczny, A. Franczyk, V. Satiro, M. Pickard, N. Wang, J. House, and M. T. Nickerson. 2022. Impacts of infrared heating and tempering on the chemical composition, morphological, functional properties of navy bean and chickpea flours. European Food Research and Technology 248 (3):767–15. doi: 10.1007/s00217-021-03918-4.
  • Guo, B., J. Wu, X. Hu, S. Luo, H. Wang, S. Xu, Z. Huang, and C. Liu. 2020. Effects of controlled far‐infrared treatment on granular swelling and rheological properties of crop starches. Starch - Stärke 72 (3-4):1900251. doi: 10.1002/star.201900251.
  • Guzik, P., P. Kulawik, M. Zając, and W. Migdał. 2021. Microwave applications in the food industry: An overview of recent developments. Critical Reviews in Food Science and Nutrition :1–20. doi: 10.1080/10408398.2021.1922871.
  • Hnin, K. K., M. Zhang, S. Devahastin, and B. Wang. 2019. Influence of novel infrared freeze drying of rose flavored yogurt melts on their physicochemical properties, bioactive compounds and energy consumption. Food and Bioprocess Technology 12 (12):2062–73. doi: 10.1007/s11947-019-02368-x.
  • Hossain, A., and A. Jayadeep. 2021. Infrared heating induced improvement of certain phytobioactives, their bioaccessible contents and bioaccessibility in maize. LWT 142:110912. doi: 10.1016/j.lwt.2021.110912.
  • Huang, D., Y. C. Tao, W. Li, S. A. Sherif, and X. H. Tang. 2020. Heat transfer characteristics and kinetics of Camellia oleifera seeds during hot-air drying. Journal of Thermal Science and Engineering Applications 12 (3): 031017. doi: 10.1115/1.4045118.
  • Huang, D., P. Yang, X. Tang, L. Luo, and B. Sunden. 2021. Application of infrared radiation in the drying of food products. Trends in Food Science & Technology 110:765–77. doi: 10.1016/j.tifs.2021.02.039.
  • Irakli, M., F. Kleisiaris, A. Mygdalia, and D. Katsantonis. 2018. Stabilization of rice bran and its effect on bioactive compounds content, antioxidant activity and storage stability during infrared radiation heating. Journal of Cereal Science 80:135–42. doi: 10.1016/j.jcs.2018.02.005.
  • Ismail, O., and O. G. Kocabay. 2018. Infrared and microwave drying of rainbow trout: drying kinetics and modelling. Turkish Journal of Fisheries and Aquatic Sciences 18 (2):259–66. doi: 10.4194/1303-2712-v18_2_05.
  • Jeevarathinam, G., R. Pandiselvam, T. Pandiarajan, P. Preetha, M. Balakrishnan, V. Thirupathi, and A. Kothakota. 2021. Infrared assisted hot air dryer for turmeric slices: Effect on drying rate and quality parameters. LWT 144:111258. doi: 10.1016/j.lwt.2021.111258.
  • Jenkins, R., B. Aldwell, S. Yin, M. Meyer, A. Robinson, and R. Lupoi. 2019. Energy efficiency of a quartz tungsten halogen lamp: Experimental and numerical approach. Thermal Science and Engineering Progress 13:100385. doi: 10.1016/j.tsep.2019.100385.
  • Jun, S., K. Krishnamurthy, J. Irudayaraj, A. Demirci, Z. Pan, and G. Atungulu. 2010. Fundamentals and theory of infrared radiation. In Infrared Heating for Food and Agricultural Processing, edited by Z. Pan, and G. G. Atungulu, Boca Raton: CRC Press, 1–18.
  • Kane, R., and H. Sell. 2020. Revolution in lamps: A chronicle of 50 years of progress. Boca Raton: CRC Press.
  • Kania, M., A. Sagan, A. Blicharz-Kania, A. Starek, B. Ślaska-Grzywna, A. Bochniak, A. Kubik-Komar, M. Krajewska, and B. Zdybel. 2016. Impact of pretreatment of wheat grain using infrared radiation on flour falling number. Agricultural Engineering 20 (4):77–84. doi: 10.1515/agriceng-2016-0066.
  • Kate, A. E., and P. P. Sutar. 2020. Effluent free infrared radiation assisted dry-peeling of ginger rhizome: A feasibility and quality attributes. Journal of Food Science 85 (2):432–41. doi: 10.1111/1750-3841.15009.
  • Kaur, N., and A. Singh. 2016. Ohmic heating: Concept and Applications-A Review. —Critical Reviews in Food Science and Nutrition 56 (14):2338–51. doi: 10.1080/10408398.2013.835303.
  • Kaveh, M., and Y. Abbaspour-Gilandeh. 2020. Impacts of hybrid (convective-infrared-rotary drum) drying on the quality attributes of green pea. Journal of Food Process Engineering 43 (7):e13424. doi: 10.1111/jfpe.13424.
  • Kaveh, M., Y. Abbaspour-Gilandeh, E. Taghinezhad, D. Witrowa-Rajchert, and M. Nowacka. 2021. the quality of infrared rotary dried Terebinth (Pistacia atlantica L.)–optimization and prediction approach using response surface methodology. Molecules 26 (7):1999. doi: 10.3390/molecules26071999.
  • Kettler, K.,. K. Adhikari, and R. K. Singh. 2017. Blanchability and sensory quality of large runner peanuts blanched in a radiant wall oven using infrared radiation. Journal of the Science of Food and Agriculture 97 (13):4621–8. doi: 10.1002/jsfa.8332.
  • Khamis, M., B. Subramanyam, H. Dogan, P. W. Flinn, and J. A. Gwirtz. 2011. Effects of flameless catalytic infrared radiation on Sitophilus oryzae (L.) life stages. Journal of Stored Products Research 47 (3):173–8. doi: 10.1016/j.jspr.2010.11.002.
  • Khampakool, A., S. Soisungwan, and S. H. Park. 2019. Potential application of infrared assisted freeze drying (IRAFD) for banana snacks: Drying kinetics, energy consumption, and texture. Lwt 99:355–63. doi: 10.1016/j.lwt.2018.09.081.
  • Khampakool, A., S. Soisungwan, S. You, and S. H. Park. 2020. Infrared Assisted Freeze-Drying (IRAFD) to Produce Shelf-Stable Insect Food from Protaetia brevitarsis (White-Spotted Flower Chafer) Larva. Food Science of Animal Resources 40 (5):813–30. doi: 10.5851/kosfa.2020.e60.
  • Khir, R., C. Venkitasamy, and Z. Pan. 2019. Infrared heating for improved drying efficiency, food safety, and quality of rice. In Advances in food processing technology, pp. 231 251. Singapore: Springer. doi: 10.1007/978-981-13-6451-8_10.
  • Krishnamurthy, K.,. H. K. Khurana, J. Soojin, J. Irudayaraj, and A. Demirci. 2008. Infrared heating in food processing: An overview. Comprehensive Reviews in Food Science and Food Safety 7 (1):2–13. doi: 10.1111/j.1541-4337.2007.00024.x.
  • Kumar, C., and M. Karim. 2019. Microwave-convective drying of food materials: A critical review. Critical Reviews in Food Science and Nutrition 59 (3):379–94. doi: 10.1080/10408398.2017.1373269.
  • Kumar, C. M., A. G. Appu Rao, and S. A. Singh. 2009. Effect of infrared heating on the formation of sesamol and quality of defatted flours from Sesamum indicum L. Journal of Food Science 74 (4):H105–111. doi: 10.1111/j.1750-3841.2009.01132.x.
  • Kumar, S., S. Debnath, and U. H. Hebbar. 2009. Pulsed infrared roasting of groundnuts and its quality. International Journal of Food Engineering 5 (4): in press. doi: 10.2202/1556-3758.1158.
  • Lamberti, C., S. Nebbia, S. Antoniazzi, S. Cirrincione, E. Marengo, M. Manfredi, D. Smorgon, G. Monti, A. Faccio, M. G. Giuffrida, et al. 2021. Effect of hot air and infrared roasting on hazelnut allergenicity. Food Chemistry 342:128174. doi: 10.1016/j.foodchem.2020.128174.
  • Lao, Y., M. Zhang, B. Chitrakar, B. Bhandari, and D. Fan. 2019. Efficient plant foods processing based on infrared heating. Food Reviews International 35 (7):640–63. doi: 10.1080/87559129.2019.1600537.
  • Laohavanich, J., and S. Wongpichet. 2008. Thin layer drying model for gas-fired infrared drying of paddy. Songklanakarin Journal of Science & Technology 30 (3): 343-348.
  • Laohavanich, J., and S. Wongpichet. 2009. Drying characteristics and milling quality aspects of paddy dried with gas‐fired infrared. Journal of Food Process Engineering 32 (3):442–61. doi: 10.1111/j.1745-4530.2007.00226.x.
  • Lee, S.-C., S.-M. Jeong, S.-Y. Kim, H.-R. Park, K. Nam, and D. Ahn. 2006. Effect of far-infrared radiation and heat treatment on the antioxidant activity of water extracts from peanut hulls. Food Chemistry 94 (4):489–93. doi: 10.1016/j.foodchem.2004.12.001.
  • Lee, S. H., W. Choi, and S. Jun. 2016. Conventional and emerging combination technologies for food processing. Food Engineering Reviews 8 (4):414–34. doi: 10.1007/s12393-016-9145-3.
  • Léonard, A., S. Blacher, C. Nimmol, and S. Devahastin. 2008. Effect of far-infrared radiation assisted drying on microstructure of banana slices: An illustrative use of X-ray microtomography in microstructural evaluation of a food product. Journal of Food Engineering 85 (1):154–62. doi: 10.1016/j.jfoodeng.2007.07.017.
  • Li, X., Z. L. Pan, G. G. Atungulu, D. Wood, and T. McHugh. 2014. Peeling mechanism of tomato under infrared heating: Peel loosening and cracking. Journal of Food Engineering 128:79–87. doi: 10.1016/j.jfoodeng.2013.12.020.
  • Lima, F., K. Vieira, M. Santos, and P. M. de Souza. 2018. Effects of radiation technologies on food nutritional quality. In Descriptive Food Science. ed, A.V. Díaz, R. M. García-Gimeno. 1–17. London: IntechOpen. doi: 10.5772/intechopen.80437.
  • Liu, Y. H., W. X. Zhu, L. Luo, X. Li, and H. C. Yu. 2014. A mathematical model for vacuum far-infrared drying of potato slices. Drying Technology 32 (2):180–9. doi: 10.1080/07373937.2013.811687.
  • Luo, Y., Q. Liu, J. W. Liu, X. X. Liu, S. Q. Zhao, Q. H. Hu, W. Song, B. Liu, J. Liu, and C. Ding. 2021. Effect of starch multi-scale structure alteration on japonica rice flour functionality under infrared radiation drying and storage. LWT 143:111126. doi: 10.1016/j.lwt.2021.111126.
  • Malekjani, N., and S. M. Jafari. 2018. Simulation of food drying processes by computational fluid dynamics (CFD); recent advances and approaches. Trends in Food Science & Technology 78:206–23. doi: 10.1016/j.tifs.2018.06.006.
  • Maloney, N., and M. Harrison. 2016. Advanced heating technologies for food processing. In Innovation and future trends in food manufacturing and supply chain technologies, 203–56. Cambridge: Elsevier.
  • Mao, W., Y. Oshima, Y. Yamanaka, M. Fukuoka, and N. Sakai. 2011. Mathematical simulation of liquid food pasteurization using far infrared radiation heating equipment. Journal of Food Engineering 107 (1):127–33. doi: 10.1016/j.jfoodeng.2011.05.024.
  • Marcinkowska‐Lesiak, M., A. Onopiuk, M. Zalewska, A. Ciepłoch, and L. Barotti. 2018. The effect of different level of Spirulina powder on the chosen quality parameters of shortbread biscuits. Journal of Food Processing and Preservation 42 (3):e13561. doi: 10.1111/jfpp.13561.
  • Mashallah Kermani, A., S. Kouravand, and J. Eskandari. 2018. Technical feasibility of using infrared radiation in dry-peeling for hazelnuts. Iranian Journal of Biosystems Engineering 49 (2):261–8. doi: 10.22059/ijbse.2017.238908.664973.
  • Mohammadi, Z., M. Kashaninejad, A. M. Ziaiifar, and M. Ghorbani. 2019. Peeling of kiwifruit using infrared heating technology: A feasibility and optimization study. Lwt 99:128–37. doi: 10.1016/j.lwt.2018.09.037.
  • Moreno-Vilet, L., H. M. Hernandez-Hernandez, and S. J. Villanueva-Rodriguez. 2018. Current status of emerging food processing technologies in Latin America: Novel thermal processing. Innovative Food Science & Emerging Technologies 50:196–206. doi: 10.1016/j.ifset.2018.06.013.
  • Mujumdar, A. S. 2006. Handbook of industrial drying. Boca Raton: CRC Press.
  • Nachaisin, M., J. Jamradloedluk, and C. Niamnuy. 2016. Application of combined far-infrared radiation and air convection for drying of instant germinated brown rice. Journal of Food Process Engineering 39 (3):306–18. doi: 10.1111/jfpe.12226.
  • Neto, A. M. B., L. G. Marques, M. M. Prado, and D. J. Sartori. 2014. Mass transfer in infrared drying of gel-coated seeds. Advances in Chemical Engineering and Science 04 (01):39–48. doi: 10.4236/aces.2014.41006.
  • Nicolas, V., P. Glouannec, J. P. Ploteau, P. Salagnac, and V. Jury. 2017. Experiment and multiphysic simulation of dough baking by convection, infrared radiation and direct conduction. International Journal of Thermal Sciences 115:65–78. doi: 10.1016/j.ijthermalsci.2017.01.018.
  • Ogundele, O. M., and E. Kayitesi. 2019. Influence of infrared heating processing technology on the cooking characteristics and functionality of African legumes: A review. J Food Sci Technol 56 (4):1669–82. doi: 10.1007/s13197-019-03661-5.
  • Ojanen, M., P. Karha, and E. Ikonen. 2010. Spectral irradiance model for tungsten halogen lamps in 340-850 nm wavelength range. Applied Optics 49 (5):880–6. doi: 10.1364/AO.49.000880.
  • Olsson, E. E. M., A. C. Tragardh, and L. M. Ahrne. 2005. Effect of near-infrared radiation and jet impingement heat transfer on crust formation of bread. Journal of Food Science 70 (8):E484–E491. doi: 10.1111/j.1365-2621.2005.tb11519.x.
  • Onwude, D. I., N. Hashim, K. Abdan, R. Janius, G. Chen, and C. Kumar. 2018. Modelling of coupled heat and mass transfer for combined infrared and hot-air drying of sweet potato. Journal of Food Engineering 228:12–24. doi: 10.1016/j.jfoodeng.2018.02.006.
  • Oven, I. S., and M. H. Y. Mohamed. 2003. Development of infrared ray sterilization oven. https://study.amaze1990.com/development-of-infrared-ray-sterilization-oven/
  • Ozkahraman, B. C., G. Sumnu, and S. Sahin. 2016. Effect of different flours on quality of legume cakes to be baked in microwave-infrared combination oven and conventional oven. Journal of Food Science and Technology 53 (3):1567–75. doi: 10.1007/s13197-015-2101-z.
  • Pan, Z. 2020. Innovative infrared heating technologies for food and agricultural processing. Technology & Innovation 21 (4):1–16. doi: 10.21300/21.4.2020.8.
  • Pan, Z., and G. G. Atungulu. 2010. Infrared heating for food and agricultural processing. Boca Raton: CRC Press. doi: 10.1201/9781420090994.
  • Pan, Z., G. G. Atungulu, and X. Li. 2014. Infrared heating. In Emerging technologies for food processing, 461–74. London: Elsevier.
  • Pan, Z., C. Venkitasamy, and X. Li. 2016. Infrared processing of foods. Reference module in food science. London: Elsevier BV. doi: 10.1016/B978-0-12-815781-7.03105-X.
  • Parletta, N., D. Zarnowiecki, J. Cho, A. Wilson, S. Bogomolova, A. Villani, C. Itsiopoulos, T. Niyonsenga, S. Blunden, B. Meyer, et al. 2019. A Mediterranean-style dietary intervention supplemented with fish oil improves diet quality and mental health in people with depression: A randomized controlled trial (HELFIMED). Nutritional Neuroscience 22 (7):474–87. doi: 10.1080/1028415X.2017.1411320.
  • Pawar, S. B., and V. Pratape. 2017. Fundamentals of infrared heating and its application in drying of food materials: A review. Journal of Food Process Engineering 40 (1):e12308. doi: 10.1111/jfpe.12308.
  • Pei, Y. S., T. T. Tao, G. F. Yang, Y. Wang, W. Yan, and C. Ding. 2018. Lethal effects and mechanism of infrared radiation on Sitophilus zeamais and Tribolium castaneum in rough rice. Food Control. 88:149–58. doi: 10.1016/j.foodcont.2018.01.012.
  • Piatti, C., S. Graeff-Hönninger, and F. Khajehei. 2019. Food tech transitions. Cham: Springer.
  • Planck, M. 2013. The theory of heat radiation. Philadelphia: P. Blakiston’s Son & Co.
  • Ploteau, J. P., P. Glouannec, V. Nicolas, and A. Magueresse. 2015. Experimental investigation of French bread baking under conventional conditions or short infrared emitters. Applied Thermal Engineering 75:461–7. doi: 10.1016/j.applthermaleng.2014.09.034.
  • Ponkham, K., N. Meeso, S. Soponronnarit, and S. Siriamornpun. 2012. Modeling of combined far-infrared radiation and air drying of a ring shaped-pineapple with/without shrinkage. Food and Bioproducts Processing 90 (2):155–64. doi: 10.1016/j.fbp.2011.02.008.
  • Praveen Kumar, D., H. Umesh Hebbar, D. Sukumar, and M. Ramesh. 2005. Infrared and hot‐air drying of onions. Journal of Food Processing and Preservation 29 (2):132–50. doi: 10.1111/j.1745-4549.2005.00019.x.
  • Priyadarshini, A., G. Rajauria, C. P. O’Donnell, and B. K. Tiwari. 2019. Emerging food processing technologies and factors impacting their industrial adoption. Critical Reviews in Food Science and Nutrition 59 (19):3082–101. doi: 10.1080/10408398.2018.1483890.
  • Puente-Diaz, L., O. Spolmann, D. Nocetti, L. Zura-Bravo, and R. Lemus-Mondaca. 2020. Effects of infrared-assisted refractance window drying on the drying kinetics, microstructure, and color of physalis fruit puree. Foods 9 (3):343. doi: 10.3390/foods9030343.
  • Putranto, A., and X. D. Chen. 2020. Reaction engineering approach modeling of intensified drying of fruits and vegetables using microwave, ultrasonic and infrared-heating. Drying Technology 38 (5/6):747–57. doi: 10.1080/07373937.2019.1708750.
  • Qiu, L., M. Zhang, B. Bhandari, and B. Wang. 2020. Effects of infrared freeze drying on volatile profile, FTIR molecular structure profile and nutritional properties of edible rose flower (Rosa rugosa flower). Journal of the Science of Food and Agriculture 100 (13):4791–800. doi: 10.1002/jsfa.10538.
  • Rahmawati, L., D. Saputra, K. Sahim, and G. Priyanto. 2020. The effect of infrared drying to the microstructural structure and texture of the whole Duku skin by means of scanning electron miscroscopy (SEM) technique. Slovak Journal of Food Sciences 14: 292–99. doi: 10.5219/1234.
  • Rahmawati, L., D. Saputra, K. Sahim, G. Priyanto, and Z. Pan. 2017. Study of using infrared radiation for increasing the shelf life of Duku. IV Asia Symposium on Quality Management in Postharvest Systems 1210,
  • Rajha, H. N., T. Mhanna, S. El Kantar, A. El Khoury, N. Louka, and R. G. Maroun. 2019. Innovative process of polyphenol recovery from pomegranate peels by combining green deep eutectic solvents and a new infrared technology. LWT 111:138–46. doi: 10.1016/j.lwt.2019.05.004.
  • Ramaswamy, H. S., and M. Marcotte. 2005. Food processing:Principles and applications. Chichester: CRC Press. doi: 10.1201/9780203485248.
  • Rastogi, N. K. 2012. Recent trends and developments in infrared heating in food processing. Critical Reviews in Food Science and Nutrition 52 (9):737–60. doi: 10.1080/10408398.2010.508138.
  • Riadh, M. H., S. A. B. Ahmad, M. H. Marhaban, and A. C. Soh. 2015. Infrared heating in food drying: An overview. Drying Technology 33 (3):322–35. doi: 10.1080/07373937.2014.951124.
  • Rosenthal, I. 1992. Infrared radiation. In Electromagnetic radiations in food science, 105–14. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-77106-4_4.
  • Sakare, P., N. Prasad, N. Thombare, R. Singh, and S. C. Sharma. 2020. Infrared drying of food materials: recent advances. Food Engineering Reviews 12 (3):381–98. doi: 10.1007/s12393-020-09237-w.
  • Salarikia, A., S. H. Miraei Ashtiani, and M. R. Golzarian. 2017. Comparison of drying characteristics and quality of peppermint leaves using different drying methods. Journal of Food Processing and Preservation 41 (3):e12930. doi: 10.1111/jfpp.12930.
  • Salehi, F. 2020. Recent applications and potential of infrared dryer systems for drying various agricultural products: A review. International Journal of Fruit Science 20 (3):586–602. doi: 10.1080/15538362.2019.1616243.
  • Salehi, F., M. Kashaninejad, and A. Jafarianlari. 2017. Drying kinetics and characteristics of combined infrared-vacuum drying of button mushroom slices. Heat and Mass Transfer 53 (5):1751–9. doi: 10.1007/s00231-016-1931-1.
  • Sandu, C. 1986. Infrared radiative drying in food engineering: A process analysis. Biotechnology Progress 2 (3):109–19. doi: 10.1002/btpr.5420020305.
  • Sansak, S., and J. S. Jongyingcharoen. 2018. Effect of hot air assisted infrared drying on drying characteristics and quality of rice bran pellets. MATEC Web of Conferences 192:03040. doi: 10.1051/matecconf/201819203040.
  • Sawai, J., K. Sagara, A. Hashimoto, H. Igarashi, and M. Shimizu. 2003. Inactivation characteristics shown by enzymes and bacteria treated with far‐infrared radiative heating. International Journal of Food Science and Technology 38 (6):661–7. doi: 10.1046/j.1365-2621.2003.00717.x.
  • Semwal, J., and M. Meera. 2021. Infrared radiation: Impact on physicochemical and functional characteristics of grain starch. Starch - Stärke 73 (3-4):2000112. doi: 10.1002/star.202000112.
  • Shen, Y., R. Khir, D. Wood, T. H. McHugh, and Z. L. Pan. 2020. Pear peeling using infrared radiation heating technology. Innovative Food Science & Emerging Technologies 65:102474. doi: 10.1016/j.ifset.2020.102474.
  • Skulas-Ray, A. C., P. W. F. Wilson, W. S. Harris, E. A. Brinton, P. M. Kris-Etherton, C. K. Richter, T. A. Jacobson, M. B. Engler, M. Miller, J. G. Robinson, Council on Cardiovascular Disease in the, Y., … Council on Clinical, C, et al. 2019. Omega-3 fatty acids for the management of hypertriglyceridemia: A science advisory from the American Heart Association. Circulation 140 (12):e673–e691. doi: 10.1161/CIR.0000000000000709.
  • Smith, D. L., G. G. Atungulu, S. Wilson, and Z. M. Shad. 2020. Deterrence of Aspergillus Flavus regrowth and aflatoxin accumulation on shelled corn using infrared heat treatments. Applied Engineering in Agriculture 36 (2):151–8. doi: 10.13031/aea.13722.
  • Sruthi, N. U., Y. Premjit, R. Pandiselvam, A. Kothakota, and S. V. Ramesh. 2021. An overview of conventional and emerging techniques of roasting: Effect on food bioactive signatures. Food Chemistry 348:129088. doi: 10.1016/j.foodchem.2021.129088.
  • Sun, D.-W. 2014. Emerging technologies for food processing. London: Elsevier.
  • Sun, T., and F. Ling. 2021. Optimization method of microwave drying process parameters for rice. Quality Assurance and Safety of Crops & Foods 13 (3):10–20. doi: 10.15586/qas.v13i3.917.
  • Suri, K., B. Singh, A. Kaur, M. P. Yadav, and N. Singh. 2019. Impact of infrared and dry air roasting on the oxidative stability, fatty acid composition, Maillard reaction products and other chemical properties of black cumin (Nigella sativa L.) seed oil. Food Chem 295:537–47. doi: 10.1016/j.foodchem.2019.05.140.
  • Trivittayasil, V., F. Tanaka, and T. Uchino. 2011. Investigation of deactivation of mold conidia by infrared heating in a model-based approach. Journal of Food Engineering 104 (4):565–70. doi: 10.1016/j.jfoodeng.2011.01.018.
  • Tsai, S. R., and M. R. Hamblin. 2017. Biological effects and medical applications of infrared radiation. Journal of Photochemistry and Photobiology. B, Biology 170:197–207. doi: 10.1016/j.jphotobiol.2017.04.014.
  • Upadhyay, R., T. Aktar, and J. Chen. 2020. Perception of creaminess in foods. Journal of Texture Studies 51 (3):375–88. doi: 10.1111/jtxs.12509.
  • Vidyarthi, S. K. 2017. Study and modeling of infrared heating for tomato dry-peeling. Davis: University of California.
  • Vidyarthi, S. K., H. M. El-Mashad, R. Khir, R. Zhang, T. H. McHugh, and Z. Pan. 2019. Tomato peeling performance under pilot scale catalytic infrared heating. Journal of Food Engineering 246:224–31. doi: 10.1016/j.jfoodeng.2018.11.002.
  • Vidyarthi, S. K., H. M. El Mashad, R. Khir, R. H. Zhang, G. Sun, R. Tiwari, and Z. L. Pan. 2020. Viscoelastic properties of tomato peels produced from catalytic infrared and lye peeling methods. Food and Bioproducts Processing 119:337–44. doi: 10.1016/j.fbp.2019.11.019.
  • Vishwanathan, K. H., G. K. Giwari, and H. U. Hebbar. 2013. Infrared assisted dry-blanching and hybrid drying of carrot. Food and Bioproducts Processing 91 (2):89–94. doi: 10.1016/j.fbp.2012.11.004.
  • Wallace, H. 2001. A different kind of chemistry: A history of tungsten halogen lamps. IEEE Industry Applications Magazine 7:10–7. doi: 10.1109/2943.959111.
  • Wang, B. N., C. Venkitasamy, F. X. Zhang, L. M. Zhao, R. Khir, and Z. L. Pan. 2016. Feasibility of jujube peeling using novel infrared radiation heating technology. LWT – Food Science and Technology 69:458–67. doi: 10.1016/j.lwt.2016.01.077.
  • Wilson, S. A., Z. M. Shad, A. A. Oduola, Z. H. Zhou, H. R. Jiang, F. Carbonero, and G. G. Atungulu. 2021. Decontamination of mycotoxigenic fungi on shelled corn using selective infrared heating technique. Cereal Chemistry 98 (1):31–43. doi: 10.1002/cche.10394.
  • Wu, X-f, M. Zhang, and B. Bhandari. 2019. A novel infrared freeze drying (IRFD) technology to lower the energy consumption and keep the quality of Cordyceps militaris. Innovative Food Science & Emerging Technologies 54:34–42. doi: 10.1016/j.ifset.2019.03.003.
  • Wu, B. G., Y. T. Guo, J. Wang, Z. L. Pan, and H. L. Ma. 2018. Effect of thickness on non-fried potato chips subjected to infrared radiation blanching and drying. Journal of Food Engineering 237:249–55. doi: 10.1016/j.jfoodeng.2018.05.030.
  • Xi, H., Y. Liu, L. Guo, and R. Hu. 2020. Effect of ultrasonic power on drying process and quality properties of far-infrared radiation drying on potato slices. Food Science and Biotechnology 29 (1):93–101. doi: 10.1007/s10068-019-00645-1.
  • Yadav, G., N. Gupta, M. Sood, N. Anjum, and A. Chib. 2020. Infrared heating and its application in food processing. The Pharma Innovation Journal 9 (2):142–51.
  • Yi, J., X. Li, J. He, and X. Duan. 2020. Drying efficiency and product quality of biomass drying: A review. Drying Technology 38 (15):2039–54. doi: 10.1080/07373937.2019.1628772.
  • Yolacaner, E. T., G. Sumnu, and S. Sahin. 2017. Microwave-assisted baking. In The microwave processing of foods, 117–41. ed, M Regier, K.Knoerzer, H. Schubert. Cambridge: Elsevier.
  • Zhang, Y., G. F. Zhu, X. Y. Li, Y. Zhao, D. W. Lei, G. Q. Ding, K. Ambrose, and Y. H. Liu. 2020. Combined medium- and short-wave infrared and hot air impingement drying of sponge gourd (Luffa cylindrical) slices. Journal of Food Engineering 284:110043. doi: 10.1016/j.jfoodeng.2020.110043.
  • Zhou, C., C. E. Okonkwo, A. A. Inyinbor, A. E. A. Yagoub, and A. F. Olaniran. 2021. Ultrasound, infrared and its assisted technology, a promising tool in physical food processing: A review of recent developments. Critical Reviews in Food Science and Nutrition 1–25. doi: 10.1080/10408398.2021.1966379.
  • Zou, Y. P., Y. Y. Gao, H. He, and T. K. Yang. 2018. Effect of roasting on physico-chemical properties, antioxidant capacity, and oxidative stability of wheat germ oil. LWT 90:246–53. doi: 10.1016/j.lwt.2017.12.038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.