1,748
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Exopolysaccharides synthesized by lactic acid bacteria: biosynthesis pathway, structure-function relationship, structural modification and applicability

, , , , & ORCID Icon

References

  • Abarquero, D., E. Renes, J. M. Fresno, and M. E. Tornadijo. 2022. Study of exopolysaccharides from lactic acid bacteria and their industrial applications: A review. International Journal of Food Science and Technology 57:16–26. doi: 10.1111/ijfs.15227. 
  • Abdalla, A. K., M. M. Ayyash, A. N. Olaimat, T. M. Osaili, A. A. Al-Nabulsi, N. P. Shah, and R. Holley. 2021. Exopolysaccharides as antimicrobial agents: Mechanism and spectrum of activity. Frontiers in Microbiology 12:664395. doi: 10.3389/fmicb.2021.664395.
  • Abdalrahim, S., A. N. A. Zohri, M. Khider, A. M. K. El-Dean, H. H. Abulreesh, I. Ahmad, and K. Elbanna. 2019. Phenotypic and genotypic characterization of exopolysaccharide producing bacteria isolated from fermented fruits, vegetables and dairy products. Journal of Pure and Applied Microbiology 13 (3):1349–62. doi: 10.22207/JPAM.13.3.06.
  • Abid, Y., A. Casillo, H. Gharsallah, I. Joulak, R. Lanzetta, M. M. Corsaro, H. Attia, and S. Azabou. 2018. Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. International Journal of Biological Macromolecules 108:719–28. doi: 10.1016/j.ijbiomac.2017.10.155.
  • Abid, Y., S. Azabou, C. Blecker, A. Gharsallaoui, M. M. Corsaro, S. Besbes, and H. Attia. 2021. Rheological and emulsifying properties of an exopolysaccharide produced by potential probiotic Leuconostoc citreum-BMS strain. Carbohydrate Polymers 256:117523. doi: 10.1016/j.carbpol.2020.117523.
  • Aburas, H., H. İspirli, O. Taylan, M. T. Yilmaz, and E. Dertli. 2020. Structural and physicochemical characterisation and antioxidant activity of an α-D-glucan produced by sourdough isolate Weissella cibaria MED17. International Journal of Biological Macromolecules 161:648–55. doi: 10.1016/j.ijbiomac.2020.06.030.
  • Adebayo-Tayo, B., R. Ishola, and T. Oyewunmi. 2018. Characterization, antioxidant and immunomodulatory potential on exopolysaccharide produced by wild type and mutant Weissella confusa strains. Biotechnology Reports (Amsterdam, Netherlands) 19:e00271. doi: 10.1016/j.btre.2018.e00271.
  • Adesulu-Dahunsi, A. T., K. Jeyaram, A. I. Sanni, and K. Banwo. 2018. Production of exopolysaccharide by strains of Lactobacillus plantarum YO175 and OF101 isolated from traditional fermented cereal beverage. PeerJ 6:e5326. doi: 10.7717/peerj.5326.
  • Ahmed, H. I., E. Ransom-Jones, S. Sadiq, A. Vitlic, N. McLay, M. F. Rojas, E. C. Ale, A. G. Binetti, A. Collett, P. N. Humphreys, et al. 2020. Structural characterisation of two medium molecular mass exopolysaccharides produced by the bacterium Lactobacillus fermentum Lf2. Carbohydrate Research 488:107909. doi: 10.1016/j.carres.2020.107909.
  • Ale, E. C., M. F. Rojas, J. A. Reinheimer, and A. G. Binetti. 2020b. Lactobacillus fermentum: Could EPS production ability be responsible for functional properties? Food Microbiology 90:103465. doi: 10.1016/j.fm.2020.103465.
  • Ale, E. C., V. A. Batistela, G. Correa Olivar, J. B. Ferrado, S. Sadiq, H. I. Ahmed, J. A. Reinheimer, L. Vera‐Candioti, A. P. Laws, and A. G. Binetti. 2020a. Statistical optimisation of the exopolysaccharide production by Lactobacillus fermentum Lf2 and analysis of its chemical composition. International Journal of Dairy Technology 73 (1):76–87. doi: 10.1111/1471-0307.12639.
  • Amiri, S., R. R. Mokarram, M. S. Khiabani, M. R. Bari, and M. A. Khaledabad. 2019. Exopolysaccharides production by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12: Optimization of fermentation variables and characterization of structure and bioactivities. International Journal of Biological Macromolecules 123:752–65. doi: 10.1016/j.ijbiomac.2018.11.084.
  • Andrew, M., and, and G. Jayaraman. 2020. Structural features of microbial exopolysaccharides in relation to their antioxidant activity. Carbohydrate Research 487:107881. doi: 10.1016/j.carres.2019.107881.
  • Asker, M. M. S., O. H. El Sayed, M. G. Mahmoud, and M. F. Ramadan. 2014. Chemical structure and antioxidant activity of a new exopolysaccharide produced from Micrococcus luteus. Journal of Genetic Engineering and Biotechnology 12 (2):121–6. doi: 10.1016/j.jgeb.2014.08.002.
  • Aslim, B., Z. N. Yüksekdag, Y. Beyatli, and N. Mercan. 2005. Exopolysaccharide production by Lactobacillus delbruckii subsp. bulgaricus and Streptococcus thermophilus strains under different growth conditions. World Journal of Microbiology and Biotechnology 21 (5):673–7. doi: 10.1007/s11274-004-3613-2.
  • Ayala-Hernandez, I., A. Hassan, H. Goff, R. Orduna, and M. Corredig. 2008. Production, isolation and characterization of exopolysaccharides produced by Lactococcus lactis subsp. cremoris JFR1 and their interaction with milk proteins: Effect of pH and media composition. International Dairy Journal 18 (12):1109–18. doi: 10.1016/j.idairyj.2008.06.008.
  • Ayyash, M., B. Abu-Jdayil, P. Itsaranuwat, E. Galiwango, C. Tamiello-Rosa, H. Abdullah, G. Esposito, Y. Hunashal, R. S. Obaid, and F. Hamed. 2020. Characterization, bioactivities, and rheological properties of exopolysaccharide produced by novel probiotic Lactobacillus plantarum C70 isolated from camel milk. International Journal of Biological Macromolecules 144:938–46. doi: 10.1016/j.ijbiomac.2019.09.171.
  • Bai, Y., B. Luo, Y. Zhang, X. Li, Z. Wang, Y. Shan, M. Lu, F. Tian, and Y. Ni. 2021. Exopolysaccharides produced by Pediococcus acidilactici MT41-11 isolated from camel milk: Structural characteristics and bioactive properties. International Journal of Biological Macromolecules 185:1036–49. doi: 10.1016/j.ijbiomac.2021.06.152.
  • Barcelos, M., K. A. C. Vespermann, F. M. Pelissari, and G. Molina. 2020. Current status of biotechnological production and applications of microbial exopolysaccharides. Critical Reviews in Food Science and Nutrition 60 (9):1475–95. doi: 10.1080/10408398.2019.1575791.
  • Behare, P. V., R. Singh, R. Nagpal, and K. H. Rao. 2013. Exopolysaccharides producing Lactobacillus fermentum strain for enhancing rheological and sensory attributes of low-fat dahi. Journal of Food Science and Technology 50 (6):1228–32. doi: 10.1007/s13197-013-0999-6.
  • Bengoa, A. A., M. Goretti Llamas, C. Iraporda, M. Teresa Duenas, A. G. Abraham, and G. L. Garrote. 2018. Impact of growth temperature on exopolysaccharide production and probiotic properties of Lactobacillus paracasei strains isolated from kefir grains. Food Microbiology 69:212–8. doi: 10.1016/j.fm.2017.08.012.
  • Bhagat, D., N. Raina, A. Kumar, M. Katoch, Y. Khajuria, P. S. Slathia, and P. Sharma. 2020. Probiotic properties of a phytase producing Pediococcus acidilactici strain SMVDUDB2 isolated from traditional fermented cheese product, Kalarei. Scientific Reports 10 (1):1926. doi: 10.1038/s41598-020-58676-2.
  • Bhat, B., S. Vaid, B. Habib, and B. K. Bajaj. 2020. Design of experiments for enhanced production of bioactive exopolysaccharides from indigenous probiotic lactic acid bacteria. Indian Journal of Biochemistry & Biophysics 57 (5):539–51. doi: 10.1038/s41598-020-58676-2.
  • Blandón, L. M., M. D. Noseda, G. A. Islan, G. R. Castro, G. V. d M. Pereira, V. Thomaz-Soccol, and C. R. Soccol. 2018. Optimization of culture conditions for kefiran production in whey: The structural and biocidal properties of the resulting polysaccharide. Bioactive Carbohydrates and Dietary Fibre 16:14–21. doi: 10.1016/j.bcdf.2018.02.001.
  • Buksa, K., M. Kowalczyk, and J. Boreczek. 2021. Extraction, purification and characterisation of exopolysaccharides produced by newly isolated lactic acid bacteria strains and the examination of their influence on resistant starch formation. Food Chemistry 362:130221. doi: 10.1016/j.foodchem.2021.130221.
  • Butorac, K., J. Novak, B. Bellich, L. C. Terán, M. Banić, A. Leboš Pavunc, S. Zjalić, P. Cescutti, J. Šušković, and B. Kos. 2021. Lyophilized alginate-based microspheres containing Lactobacillus fermentum D12, an exopolysaccharides producer, contribute to the strain’s functionality in vitro. Microbial Cell Factories 20 (1):85. doi: 10.1186/s12934-021-01575-6.
  • Caggianiello, G., M. Kleerebezem, and G. Spano. 2016. Exopolysaccharides produced by lactic acid bacteria: From health-promoting benefits to stress tolerance mechanisms. Applied Microbiology and Biotechnology 100 (9):3877–86. doi: 10.1007/s00253-016-7471-2.
  • Casas-Arrojo, V., J. Decara, M. Arrojo-Agudo, C. Perez-Manriquez, and R. T. Abdala-Diaz. 2021. Immunomodulatory, antioxidant activity and cytotoxic effect of sulfated polysaccharides from Porphyridium cruentum. (S.F.Gray) Nageli. Biomolucules 11 (4):488. doi: 10.3390/biom11040488.
  • Cerning, J., C. M. Renard, J. F. Thibault, C. Bouillanne, M. Landon, M. Desmazeaud, and L. Topisirovic. 1994. Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Applied and Environmental Microbiology 60 (11):3914–9. doi: 10.1128/aem.60.11.3914-3919.1994.
  • Chaisuwan, W., K. Jantanasakulwong, S. Wangtueai, Y. Phimolsiripol, T. Chaiyaso, C. Techapun, S. Phongthai, S. You, J. M. Regenstein, and P. Seesuriyachan. 2020. Microbial exopolysaccharides for immune enhancement: Fermentation, modifications and bioactivities. Food Bioscience 35. doi: 10056410.1016/j.fbio.2020.100564.
  • Chen, Y.-C., Y.-J. Wu, and C.-Y. Hu. 2019. Monosaccharide composition influence and immunomodulatory effects of probiotic exopolysaccharides. International Journal of Biological Macromolecules 133:575–82. doi: 10.1016/j.ijbiomac.2019.04.109.
  • Chug, R., V. S. Gour, S. Mathur, and S. L. Kothari. 2016. Optimization of Extracellular Polymeric Substances production using Azotobacter beijreinckii and Bacillus subtilis and its application in chromium (VI) removal. Bioresource Technology 214:604–8. doi: 10.1016/j.biortech.2016.05.010.
  • Cirrincione, S., Y. Breuer, E. Mangiapane, R. Mazzoli, and E. Pessione. 2018. ‘Ropy’ phenotype, exopolysaccharides and metabolism: Study on food isolated potential probiotics LAB. Microbiological Research 214:137–45. doi: 10.1016/j.micres.2018.07.004.
  • Cote, G. L., and, and C. D. Skory. 2012. Cloning, expression, and characterization of an insoluble glucan-producing glucansucrase from Leuconostoc mesenteroides NRRL B-1118. Applied Microbiology and Biotechnology 93 (6):2387–94. doi: 10.1007/s00253-011-3562-2.
  • Cui, Y., T. Xu, X. Qu, T. Hu, X. Jiang, and C. Zhao. 2016. New insights into various production characteristics of streptococcus thermophilus strains. International Journal of Molecular Sciences 17 (10):1701. doi: 10.3390/ijms17101701.
  • Cui, Y., X. Jiang, M. Hao, X. Qu, and T. Hu. 2017. New advances in exopolysaccharides production of Streptococcus thermophilus. Archives of Microbiology 199 (6):799–809. doi: 10.1007/s00203-017-1366-1.
  • Daba, G. M., M. O. Elnahas, and W. A. Elkhateeb. 2021. Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. International Journal of Biological Macromolecules 173:79–89. doi: 10.1016/j.ijbiomac.2021.01.110.
  • Dan, X., H. Ying, W. Fengfeng, J. Yamei, X. Xueming, and M. G. Ganzle. 2020. Comparison of the functionality of exopolysaccharides produced by sourdough lactic acid bacteria in bread and steamed bread. Journal of Agricultural and Food Chemistry 68 (33):8907–14. doi: 10.1021/acs.jafc.0c02703.
  • De Man, J. C., M. Rogosa, and M. E. Sharpe. 1960. A medium for the cultivation of Lactobacilli. Journal of Applied Bacteriology 23 (1):130–5.
  • De Souza, A. M., and, I. W. Sutherland. 1994. Exopolysaccharide and storage polymer production in Enterobacter aerogenes type 8 strains. Journal of Applied Bacteriology 76 (5):463–8. doi: 10.1111/j.13652672.1994.tb01103.x.
  • De Vuyst, L., and, B. Degeest. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews 23 (2):153–77. doi: 10.1111/j.1574-6976.1999.tb00395.x.
  • Degeest, B., F. Mozzi, and L. De Vuyst. 2002. Effect of medium composition and temperature and pH changes on exopolysaccharide yields and stability during Streptococcus thermophilus LY03 fermentation. International Journal of Food Microbiology 79 (3):161–74. doi: 10.1016/S0168-1605(02)00116-2.
  • Deo, D., D. Davray, and R. Kulkarni. 2019. A diverse repertoire of exopolysaccharide biosynthesis gene clusters in Lactobacillus revealed by comparative analysis in 106 sequenced genomes. Microorganisms 7 (10):444. doi: 10.3390/microorganisms7100444.
  • Dilna, S. V., H. Surya, R. G. Aswathy, K. K. Varsha, D. N. Sakthikumar, A. Pandey, and K. M. Nampoothiri. 2015. Characterization of an exopolysaccharide with potential health benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT—Food Science and Technology 64 (2):1179–86. doi: 10.1016/j.lwt.2015.07.040.
  • Du, R., H. Xing, Y. Yang, H. Jiang, Z. Zhou, and Y. Han. 2017. Optimization, purification and structural characterization of a dextran produced by L. mesenteroides isolated from Chinese sauerkraut. Carbohydrate Polymers 174:409–16. doi: 10.1016/j.carbpol.2017.06.084.
  • El-Dein, A. N., A. M. N. El-Deen, E. H. El-Shatoury, G. A. Awad, M. K. Ibrahim, H. M. Awad, and M. A. Farid. 2021. Assessment of exopolysaccharides, bacteriocins and in vitro and in vivo hypocholesterolemic potential of some Egyptian Lactobacillus spp. International Journal of Biological Macromolecules 173:66–78. doi: 10.1016/j.ijbiomac.2021.01.107.
  • Farid, W., T. Masud, A. Sohail, N. Ahmad, S. M. S. Naqvi, S. Khan, A. Ali, S. A. Khalifa, A. Hussain, S. Ali, et al. 2021. Gastrointestinal transit tolerance, cell surface hydrophobicity, and functional attributes of Lactobacillus Acidophilus strains isolated from Indigenous Dahi. Food Science & Nutrition 9 (9):5092–102. doi: 10.1002/fsn3.2468.
  • Farinazzo, F. S., L. J. Valente, M. B. Almeida, A. S. Simionato, M. T. Carlos Fernandes, C. S. Ishii Mauro, A. A. Bosso Tomal, and S. Garcia. 2020. Characterization and antioxidant activity of an exopolysaccharide produced by Leuconostoc pseudomesenteroides JF17 from juçara fruits (Euterpe edulis Martius). Process Biochemistry 91:141–8. doi: 10.1016/j.procbio.2019.12.005.
  • Feng, F., Q. Zhou, Y. Yang, F. Zhao, R. Du, Y. Han, H. Xiao, and Z. Zhou. 2018. Characterization of highly branched dextran produced by Leuconostoc citreum B-2 from pineapple fermented product. International Journal of Biological Macromolecules 113:45–50. doi: 10.1016/j.ijbiomac.2018.02.119.
  • Feng, H., J. Fan, L. Lin, Y. Liu, D. Chai, and J. Yang. 2019. Immunomodulatory effects of phosphorylated radix cyathulae officinalis polysaccharides in immunosuppressed mice. Molecules 24 (22):4150. doi: 10.3390/molecules24224150.
  • Galle, S., and, and E. K. Arendt. 2014. Exopolysaccharides from Sourdough lactic acid bacteria. Critical Reviews in Food Science and Nutrition 54 (7):891–901. doi: 10.1080/10408398.2011.617474.
  • Guérin, M., C-R. Silva, C. Garcia, and F. Remize. 2020. Lactic acid bacterial production of exopolysaccharides from fruit and vegetables and associated benefits. Fermentation 6:115. doi: 10.3390/fermentation6040115.
  • Guo, Y., D. Pan, Y. Sun, L. Xin, H. Li, and X. Zeng. 2013. Antioxidant activity of phosphorylated exopolysaccharide produced by Lactococcus lactis subsp. lactis. Carbohydrate Polymers 97 (2):849–54. doi: 10.1016/j.carbpol.2013.06.024.
  • Gupta, P., and, and B. Diwan. 2017. Bacterial exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports (Amsterdam, Netherlands) 13:58–71. doi: 10.1016/j.btre.2016.12.006.
  • Haj-Mustafa, M., R. Abdi, M. Sheikh-Zeinoddin, and S. Soleimanian-Zad. 2015. Statistical study on fermentation conditions in the optimization of exopolysaccharide production by Lactobacillus rhamnosus 519 in skimmed milk base media. Biocatalysis and Agricultural Biotechnology 4 (4):521–7. doi: 10.1016/j.bcab.2015.08.013.
  • Harutoshi, T. 2013. Exopolysaccharides of lactic acid bacteria for food and colon health applications. Lactic Acid Bacteria-R&D for Food, Healthy and Livestock Purpose 22:515–38. doi: 10.5772/50839.
  • He, J.-L., H. Guo, S.-Y. Wei, J. Zhou, P.-Y. Xiang, L. Liu, L. Zhao, W. Qin, R.-Y. Gan, and D.-T. Wu. 2020. Effects of different extraction methods on the structural properties and bioactivities of polysaccharides extracted from Qingke (Tibetan hulless barley). Journal of Cereal Science 92:102906. doi: 10.1016/j.jcs.2020.102906.
  • Heng, N. C. K., C.-W. Yeh, and A. Malik. 2017. Draft genome sequence of Weissella confusa MBF8-1, a Glucansucrase- and bacteriocin-producing strain isolated from a homemade soy product. Microbiology Resource Announcements 5 (4):e01497-16. doi: 10.1128/genomeA.01497-16.
  • Hereher, F., A. ElFallal, M. Abou-Dobara, E. Toson, and M. M. Abdelaziz. 2018. Cultural optimization of a new exopolysaccharide producer “Micrococcus roseus”. Beni-Suef University Journal of Basic and Applied Sciences 77: (4):632–9. doi: 10.1016/j.bjbas.2018.07.007.
  • Hidalgo-Cantabrana, C., P. Lopez, M. Gueimonde, C. G. de los Reyes-Gavilan, A. Suarez, A. Margolles, and P. Ruas-Madiedo. 2012. Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics and Antimicrobial Proteins 4 (4):227–37. doi: 10.1007/s12602-012-9110-2.
  • Hijum, S. A. F. T. v., S. Kralj, L. K. Ozimek, L. Dijkhuizen, and I. G. H. Geel-Schutten. v. 2006. Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiology and Molecular Biology Reviews: MMBR 70 (1):157–76. doi: 10.1128/MMBR.70.1.157-176.2006.
  • Hilbig, J., L. Hildebrandt, K. Herrmann, J. Weiss, and M. Loeffle. 2020. Influence of homopolysaccharide-producing lactic acid bacteria on the spreadability of raw fermented sausages (onion mettwurst). Journal of Food Science 85 (2):289–97. doi: 10.1111/1750-3841.15010.
  • Hilbig, J., M. Loeffler, K. Herrmann, and J. Weiss. 2019. The influence of exopolysaccharide-producing lactic acid bacteria on reconstructed ham. International Journal of Food Science & Technology 54 (9):2763–9. doi: 10.1111/ijfs.14188.
  • Hu, S.-M., J.-M. Zhou, Q.-Q. Zhou, P. Li, Y.-Y. Xie, T. Zhou, and Q. Gu. 2021. Purification, characterization and biological activities of exopolysaccharides from Lactobacillus rhamnosus ZFM231 isolated from milk. LWT 147:111561. doi: 10.1016/j.lwt.2021.111561.
  • Imran, M. Y. M., N. Reehana, K. A. Jayaraj, A. A. P. Ahamed, D. Dhanasekaran, N. Thajuddin, N. S. Alharbi, and G. Muralitharan. 2016. Statistical optimization of exopolysaccharide production by Lactobacillus plantarum NTMI05 and NTMI20. International Journal of Biological Macromolecules 93 (Pt A):731–45. doi: 10.1016/j.ijbiomac.2016.09.007.
  • Islam, S. T., and, and J. S. Lam. 2013. Wzx flippase-mediated membrane translocation of sugar polymer precursors in bacteria. Environmental Microbiology 15 (4):1001–5. doi: 10.1111/j.1462-2920.2012.02890.x.
  • Ismail, B., and, and K. M. Nampoothiri. 2010. Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Archives of Microbiology 192 (12):1049–57. doi: 10.1007/s00203-010-0636-y.
  • Jochen, S., V. Sieber, and B. Rehm. 2015. Bacterial exopolysaccharides: Biosynthesis pathways and engineering strategies. Frontiers in Microbiology 6:496. doi: 10.3389/fmicb.2015.00496.
  • Juvonen, R., K. Honkapää, N. H. Maina, Q. Shi, K. Viljanen, H. Maaheimo, L. Virkki, M. Tenkanen, and R. Lantto. 2015. The impact offermentationwith exopolysaccharide producing lactic acid bacteria on rheological, chemical and sensory properties of pureed carrots (Daucus carota L.). International Journal of Food Microbiology 207:109–18. doi: 10.1016/j.ijfoodmicro.2015.04.031.
  • Kang, H., H.-S. Choi, J. E. Kim, and N. S. Han. 2011. Exopolysaccharide-overproducing Lactobacillus paracasei KB28 Induces Cytokines in mouse peritoneal macrophages via modulation of NF-κβ and MAPKs . Journal of Microbiology and Biotechnology 21 (11):1174–8. doi: 10.4014/jmb.1105.05026.
  • Kanmani, P., L. Albarracin, H. Kobayashi, H. Iida, R. Komatsu, A. K. M. Humayun Kober, W. Ikeda-Ohtsubo, Y. Suda, H. Aso, S. Makino, et al. 2018. Exopolysaccharides from Lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells. Molecular Immunology 93:253–65. doi: 10.1016/j.molimm.2017.07.009.
  • Kanmani, P., R. S. Kumar, N. Yuvaraj, K. A. Paari, V. Pattukumar, and V. Arul. 2011. Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro. Bioresource Technology 102 (7):4827–33. doi: 10.1016/j.biortech.2010.12.118.
  • Khanal, S. N., and, and J. A. Lucey. 2017. Evaluation of the yield, molar mass of exopolysaccharides, and rheological properties of gels formed during fermentation of milk by Streptococcus thermophilus strains St-143 and ST-10255y. Journal of Dairy Science 100 (9):6906–17. doi: 10.3168/jds.2017-12835.
  • Kim, D.-Y., and, and W.-S. Shin. 2015. Unique characteristics of self-assembly of bovine serum albumin and fucoidan, an anionic sulfated polysaccharide, under various aqueous environments. Food Hydrocolloids. 44:471–7. doi: 10.1016/j.foodhyd.2014.10.011.
  • Kim, H., H.-W. Kim, K.-W. Yu, and H.-J. Suh. 2019. Polysaccharides fractionated from enzyme digests of Korean red ginseng water extracts enhance the immunostimulatory activity. International Journal of Biological Macromolecules 121:913–20. doi: 10.1016/j.ijbiomac.2018.10.127.
  • Kohno, M., S. Suzuki, T. Kanaya, T. Yoshino, Y. Matsuura, M. Asada, and S. Kitamura. 2009. Structural characterization of the extracellular polysaccharide produced by Bifidobacterium longum JBL05. Carbohydrate Polymers 77 (2):351–7. doi: 10.1016/j.carbpol.2009.01.013.
  • Kojic, M., M. Vujcic, A. Banina, P. Cocconcelli, J. Cerning, and L. Topisirovic. 1992. Analysis of exopolysaccharide production by Lactobacillus casei CG11, isolated from cheese. Applied and Environmental Microbiology 58 (12):4086–8. doi: 10.1128/aem.58.12.4086-4088.1992.
  • Konieczna, C., M. Słodziński, and M. T. Schmidt. 2018. Exopolysaccharides produced by Lactobacillus rhamnosus KL 53A and Lactobacillus casei Fyos affect their adhesion to enterocytes. Polish Journal of Microbiology 67 (3):273–81. doi: 10.21307/pjm-2018-032.
  • Korcz, E., and, L. Varga. 2021. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science & Technology 110:375–84. doi: 10.1016/j.tifs.2021.02.014.
  • Körzendörfer, A., S. Nöbel, and J. Hinrichs. 2017. Particle formation induced by sonication during yogurt fermentation - Impact of exopolysaccharide-producing starter cultures on physical properties. Food Research International (Ottawa, Ont.) 97:170–7. doi: 10.1016/j.foodres.2017.04.006.
  • Kumar, R., P. Bansal, J. Singh, and S. Dhanda. 2020. Purification, partial structural characterization and health benefits of exopolysaccharides from potential probiotic Pediococcus acidilactici NCDC 252. Process Biochemistry 99:79–86. doi: 10.1016/j.procbio.2020.08.028.
  • Kumar, Y. 2021. Development of low-fat/reduced-fat processed meat products using fat replacers and analogues. Food Reviews International 37 (3):296–312. doi: 10.1080/87559129.2019.1704001.
  • Lakra, A. K., L. Domdi, Y. M. Tilwani, and V. Arul. 2020. Physicochemical and functional characterization of mannan exopolysaccharide from Weissella confusa MD1 with bioactivities. International Journal of Biological Macromolecules 143:797–805. doi: 10.1016/j.ijbiomac.2019.09.139.
  • Laws, A., Y. Gu, and V. Marshall. 2001. Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnology Advances 19 (8):597–625. doi: 10.1016/S0734-9750(01)00084-2.
  • Li, C., J. Ding, D. Chen, Z. Shi, and L. Wang. 2020a. Bioconversion of cheese whey into a hetero-exopolysaccharide via a one-step bioprocess and its applications. Biochemical Engineering Journal 161:107701. doi: 10.1016/j.bej.2020.107701.
  • Li, S., and, and N. P. Shah. 2014. Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275. Food Chemistry 165:262–70. doi: 10.1016/j.foodchem.2014.05.110.
  • Li, S., Q. Xiong, X. Lai, X. Li, M. Wan, J. Zhang, Y. Yan, M. Cao, L. Lu, J. Guan, et al. 2016. Molecular modification of polysaccharides and resulting bioactivities. Comprehensive Reviews in Food Science and Food Safety 15 (2):237–50. doi: 10.1111/1541-4337.12161.
  • Li, S., R. Huang, N. P. Shah, X. Tao, Y. Xiong, and H. Wei. 2014. Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. Journal of Dairy Science 97 (12):7334–43. doi: 10.3168/jds.2014-7912.
  • Li, W., J. Ji, X. Rui, J. Yu, W. Tang, X. Chen, M. Jiang, and M. Dong. 2014b. Production of exopolysaccharides by Lactobacillus helveticus MB2-1 and its functional characteristics in vitro. LWT - Food Science and Technology 59 (2):732–9. doi: 10.1016/j.lwt.2014.06.063.
  • Li, X.-W., S. Lv, T.-T. Shi, K. Liu, Q.-M. Li, L.-H. Pan, X.-Q. Zha, and J.-P. Luo. 2020b. Exopolysaccharides from yoghurt fermented by Lactobacillus paracasei: Production, purification and its binding to sodium caseinate. Food Hydrocolloids. 102:105635. doi: 10.1016/j.foodhyd.2019.105635.
  • Li, Y., Y. Liu, C. Cao, X. Zhu, C. Wang, R. Wu, and J. Wu. 2020c. Extraction and biological activity of exopolysaccharide produced by Leuconostoc mesenteroides SN-8. International Journal of Biological Macromolecules 157:36–44. doi: 10.1016/j.ijbiomac.2020.04.150.
  • Liu, D.-M., J.-W. Sheng, H.-M. Qi, W.-F. Zhang, C.-M. Han, and X.-L. Xin. 2014. Antioxidant properties of different molecular weight polysaccharides from Athyrium multidentatum (Doll.) Ching. Carbohydrate Polymers 108:41–5. doi: 10.1016/j.carbpol03.011
  • Liu, Z., L. Dong, K. Jia, H. Zhan, Z. Zhang, N. P. Shah, X. Tao, and H. Wei. 2019. Sulfonation of Lactobacillus plantarum WLPL04 exopolysaccharide amplifies its antioxidant activities in vitro and in a Caco-2 cell model. Journal of Dairy Science 102 (7):5922–32. doi: 10.3168/jds.2018-15831.
  • Loeffler, M., J. Hilbig, L. Velasco, and J. Weiss. 2020. Usage of in situ exopolysaccharide-forming lactic acid bacteria in food production: Meat products-A new field of application? Comprehensive Reviews in Food Science and Food Safety 19 (6):2932–54. doi: 10.1111/1541-4337.12615.
  • London, L. E. E., V. Chaurin, M. A. E. Auty, M. A. Fenelon, G. F. Fitzgerald, R. P. Ross, and C. Stanton. 2015. Use of Lactobacillus mucosae DPC 6426, an exopolysaccharide producing strain, positively influences the techno-functional properties of yoghurt. International Dairy Journal 40:33–8. doi: 10.1016/j.idairyj.2014.08.011.
  • Lynch, K. M., A. Coffey, and E. K. Arendt. 2018a. Exopolysaccharide producing lactic acid bacteria: Their techno-functional role and potential application in gluten-free bread products. Food Research International (Ottawa, Ont.) 110:52–61. doi: 10.1016/j.foodres.2017.03.012.
  • Lynch, K. M., E. Zannini, A. Coffey, and E. K. Arendt. 2018b. Lactic acid bacteria exopolysaccharides in foods and beverages: isolation, properties, characterization, and health benefits. Annual Review of Food Science and Technology 9:155–76. doi: 10.1146/annurev-food-030117-012537.
  • Malaka, R., F. Maruddin, Z. Dwyana, and M. V. Vargas. 2020. Assessment of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus ropy strain in different substrate media. Food Science & Nutrition 8 (3):1657–64. doi: 10.1002/fsn3.1452.
  • Mårtensson, O., M. Biörklund, A. M. Lambo, M. Dueñas-Chasco, A. Irastorza, O. Holst, E. Norin, G. Welling, R. Öste, and G. Önning. 2005. Fermented, ropy, oat-based products reduce cholesterol levels and stimulate the bifidobacteria flora in humans. Nutrition Research 25 (5):429–42. doi: 10.1016/j.nutres.2005.03.004.
  • Mende, S., H. Rohm, and D. Jaros. 2016. Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products. International Dairy Journal 52:57–71. doi: 10.1016/j.idairyj.2015.08.002.
  • Midik, F., M. Tokatli, S. B. Elmaci, and F. Ozcelik. 2020. Infuence of different culture conditions on exopolysaccharide production by indigenous lactic acid bacteria isolated from pickles. Archives of Microbiology 202 (4):875–85. doi: 10.1007/s00203-019-01799-6.
  • Miqueleto, A. P., C. C. Dolosic, E. Pozzi, E. Foresti, and M. Zaiat. 2010. Influence of carbon sources and C/N ratio on EPS production in anaerobic sequencing batch biofilm reactors for wastewater treatment. Bioresource Technology 101 (4):1324–30. doi: 10.1016/j.biortech.2009.09.026.
  • Mituniewicz-Małek, A., D. Zielińska, and M. Ziarno. 2019. Probiotic monocultures in fermented goat milk beverages-sensory quality of final product. International Journal of Dairy Technology 72 (2):240–7. doi: 10.1111/1471-0307.12576.
  • Mohite, B. V., S. H. Koli, C. P. Narkhede, S. N. Patil, and S. V. Patil. 2017. Prospective of microbial exopolysaccharide for heavy metal exclusion. Applied Biochemistry and Biotechnology 183 (2):582–600. doi: 10.1007/s12010-017-2591-4.
  • Moradi, M., J. T. Guimarães, and S. Sahin. 2021. Current applications of exopolysaccharides from lactic acid bacteria in the development of food active edible packaging. Current Opinion in Food Science 40:33–9. doi: 10.1016/j.cofs.2020.06.001.
  • Moradi, Z., and, and N. Kalanpour. 2019. Kefiran, a branched polysaccharide: Preparation, properties and applications: A review. Carbohydrate Polymers 223:115100. doi: 10.1016/j.carbpol.2019.115100.
  • Nachtigall, C., G. Surber, F. Herbi, D. Wefers, D. Jaros, and H. Rohm. 2020. Production and molecular structure of heteropolysaccharides from two lactic acid bacteria. Carbohydrate Polymers 236:116019. doi: 10.1016/j.carbpol.2020.116019.
  • Nehal, F., M. Sahnoun, S. Smaoui, B. Jaouadi, S. Bejar, and S. Mohammed. 2019. Characterization, high production and antimicrobial activity of exopolysaccharides from Lactococcus lactis F-mou. Microbial Pathogenesis 132:10–9. doi: 10.1016/j.micpath.2019.04.018.
  • Ng, I.-S., and, and C. Xue. 2017. Enhanced exopolysaccharide production and biological activity of Lactobacillus rhamnosus ZY with calcium and hydrogen peroxide. Process Biochemistry 52:295–304. doi: 10.1016/j.procbio.2016.10.006.
  • Nguyen, P.-T., T.-T. Nguyen, D.-C. Bui, P.-T. Hong, Q.-K. Hoang, and H.-T. Nguyen. 2020. Exopolysaccharide production by lactic acid bacteria: The manipulation of environmental stresses for industrial applications. AIMS Microbiology 6 (4):451–69. doi: 10.3934/microbiol.2020027.
  • Notararigo, S., M. Nácher-Vázquez, I. Ibarburu, M. L. Werning, P. F. de Palencia, M. T. Dueñas, R. Aznar, P. López, and A. Prieto. 2013. Comparative analysis of production and purification of homo- and hetero-polysaccharides produced by lactic acid bacteria. Carbohydrate Polymers 93 (1):57–64. doi: 10.1016/j.carbpol.2012.05.016.
  • Nwodo, U. U., E. Green, and A. Okoh. 2012. Bacterial exopolysaccharides: Functionality and prospects. International Journal of Molecular Sciences 13 (11):14002–15. doi: 10.3390/ijms131114002.
  • Oleksy, M., and, and E. Klewicka. 2018. Exopolysaccharides produced by Lactobacillus sp.: Biosynthesis and applications. Critical Reviews in Food Science and Nutrition 58 (3):450–62. doi: 10.1080/10408398.2016.1187112.
  • Oleksy-Sobczak, M., and, and E. Klewicka. 2020. Optimization of media composition to maximize the yield of exopolysaccharides production by Lactobacillus rhamnosus strains. Probiotics and Antimicrobial Proteins 12 (2):774–83. doi: 10.1007/s12602-019-09581-2.
  • Oleksy-Sobczak, M., E. Klewicka, and L. Piekarska-Radzik. 2020. Exopolysaccharides production by Lactobacillus rhamnosus strains—Optimization of synthesis and extraction conditions. Lwt 122:109055. doi: 10.1016/j.lwt.2020.109055.
  • Pachekrepapol, U., J. A. Lucey, Y. Gong, R. Naran, and P. Azadi. 2018. Corrigendum to "Characterization of the chemical structures and physical properties of exopolysaccharides produced by various Streptococcus thermophilus strains" (J. Dairy Sci. 100:3424-3435). Journal of Dairy Science 101 (6):5668. doi: 10.3168/jds.2018-101-6-5668.
  • Palomba, S., S. Cavella, E. Torrieri, A. Piccolo, P. Mazzei, G. Blaiotta, V. Ventorino, and O. Pepe. 2012. Polyphasic screening, homopolysaccharide composition, and viscoelastic behavior of wheat Sourdough from a Leuconostoc lactis and Lactobacillus curvatus exopolysaccharide-producing starter culture. Applied and Environmental Microbiology 78 (8):2737–47. doi: 10.1128/AEM.07302-11.
  • Pan, D., J. Liu, X. Zeng, L. Liu, H. Li, and Y. Guo. 2015. Immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp. Lactis. Food and Agricultural Immunology 26 (2):248–59. doi: 10.1080/09540105.2014.894000.
  • Patel, A., and, and J. Prajapati. 2013. Food and health applications of exopolysaccharides produced by lactic acid bacteria. Advances in Dairy Research 1 (2):1–7. doi: 10.4172/2329-888X.1000107.
  • Petry, S., S. Furlan, M. J. Crepeau, J. Cerning, and M. Desmazeaud. 2000. Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Applied and Environmental Microbiology 66 (8):3427–31. doi: 10.1128/AEM.66.8.3427-3431.2000.
  • Pintado, A. I. E., J. A. Ferreira, M. M. E. Pintado, A. M. P. Gomes, F. Xavier Malcata, and M. A. Coimbra. 2020. Efficiency of purification methods on the recovery of exopolysaccharides from fermentation media. Carbohydrate Polymers 231:115703. doi: 10.1016/j.carbpol.2019.115703.
  • Polak-Berecka, M., A. Choma, A. Waśko, S. Górska, A. Gamian, and J. Cybulska. 2015. Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources. Carbohydrate Polymers 117:501–9. doi: 10.1016/j.carbpol.2014.10.006.
  • Polak-Berecka, M., A. Waśko, R. Paduch, T. Skrzypek, and A. Sroka-Bartnicka. 2014. The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus. Antonie Van Leeuwenhoek 106 (4):751–62. doi: 10.1007/s10482-014-0245x
  • Prasanna, P. H. P., A. S. Grandison, and D. Charalampopoulos. 2012. Screening human intestinal Bifidobacterium strains for growth, acidification, EPS production and viscosity potential in low-fat milk. International Dairy Journal 23 (1):36–44. doi: 10.1016/j.idairyj.2011.09.008.
  • Rajoka, M. S. R., H. M. Mehwish, H. F. Hayat, N. Hussain, S. Sarwar, H. Aslam, A. Nadeem, and J. Shi. 2019. Characterization, the antioxidant and antimicrobial activity of exopolysaccharide isolated from poultry origin lactobacilli. Probiotics and Antimicrobial Proteins 11 (4):1132–42. doi: 10.1007/s12602-018-9494-8.
  • Rajoka, M. S. R., Y. Wu, H. M. Mehwish, M. Bansal, and L. Zhao. 2020. Lactobacillus exopolysaccharides: New perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health. Trends in Food Science & Technology 103:36–48. doi: 10.1016/j.tifs.2020.06.003.
  • Rana, S., and, L. S. B. Upadhyay. 2020. Microbial exopolysaccharides: Synthesis pathways, types and their commercial applications. International Journal of Biological Macromolecules 157:577–83. doi: 10.1016/j.ijbiomac.2020.04.084.
  • Raza, W., W. Yang, Y. Jun, F. Shakoor, Q. Huang, and Q. Shen. 2012. Optimization and characterization of a polysaccharide produced by Pseudomonas fluorescens WR-1 and its antioxidant activity. Carbohydrate Polymers 90 (2):921–9. doi: 10.1016/j.carbpol.2012.06.021.
  • Razavi, R., H. Tajik, M. Moradi, R. Molaei, and P. Ezati. 2020. Antimicrobial, microscopic and spectroscopic properties of cellulose paper coated with chitosan sol-gel solution formulated by epsilon-poly-L-lysine and its application in active food packaging. Carbohydrate Research 489:107912. doi: 10.1016/j.carres.2020.107912.
  • Ren, Y., G. Zheng, L. You, L. Wen, C. Li, X. Fu, and L. Zhou. 2017. Structural characterization and macrophage immunomodulatory activity of a polysaccharide isolated from Gracilaria lemaneiformis. Journal of Functional Foods 33:286–96. doi: 10.1016/j.jff.2017.03.062.
  • Ryan, P. M., R. P. Ross, G. F. Fitzgerald, N. M. Caplice, and C. Stanton. 2015. Sugar-coated: Exopolysaccharide producing lactic acid bacteria for food and human health applications. Food & Function 6 (3):679–93. doi: 10.1039/c4fo00529e.
  • Saadata, Y. R., A. Y. Khosroushahib, and B. P. Gargari. 2019. A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydrate Polymers 217:79–89. doi: 10.1016/j.carbpol.2019.04.025.
  • Saif, F. A. A. A., and, and E. A. E. Sakr. 2020. Characterization and bioactivities of exopolysaccharide produced from probiotic Lactobacillus plantarum 47FE and Lactobacillus pentosus 68FE. Bioactive Carbohydrates and Dietary Fibre 24:100231. doi: 10.1016/j.bcdf.2020.100231.
  • Sakr, E. A. E., M. I. Massoud, and S. Ragaee. 2021. Food wastes as natural sources of lactic acid bacterial exopolysaccharides for the functional food industry: A review. International Journal of Biological Macromolecules 189:232–41. doi: 10.1016/j.ijbiomac.2021.08.135.
  • Saleem, M., S. Malik, H. M. Mehwish, M. W. Ali, N. Hussain, M. Khurshid, M. S. R. Rajoka, and Y. Chen. 2021. Isolation and functional characterization of exopolysaccharide produced by Lactobacillus plantarum S123 isolated from traditional Chinese cheese. Archives of Microbiology 203 (6):3061–70. doi: 10.1007/s00203-021-02291-w.
  • Sanchez, J.-I., B. Martinez, R. Guillen, R. Jimenez-Diaz, and A. Rodriguez. 2006. Culture conditions determine the balance between two different exopolysaccharides produced by Lactobacillus pentosus LPS26. Applied and Environmental Microbiology 72 (12):7495–502. doi: 10.1128/Aem.01078-06.
  • Sato, T., J. Nishimura-Uemura, T. Shimosato, Y. Kawai, H. Kitazawa, and T. Saito. 2004. Dextran from Leuconostoc mesenteroides augments immunostimulatory effects by the introduction of phosphate groups. Journal of Food Protection 67 (8):1719–24. doi: 10.4315/0362-028X-67.8.1719.
  • Shankar, T., S. Palpperumal, D. Kathiresan, S. Sankaralingam, C. Balachandran, K. Baskar, A. Hashem, A. A. Alqarawi, and E. F. Abd Allah. 2021. Biomedical and therapeutic potential of exopolysaccharides by Lactobacillus paracasei isolated from sauerkraut: Screening and characterization. Saudi Journal of Biological Sciences 28 (5):2943–50. doi: 10.1016/j.sjbs.2021.02.030.
  • Shao, L., Z. Wu, H. Zhang, W. Chen, L. Ai, and B. Guo. 2014. Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydrate Polymers 107:51–6. doi: 10.1016/j.carbpol.2014.02.037.
  • Si, T., C. Liu, X. Qin, X. Li, Y. Luo, and E. Yang. 2017. Optimization of Biosynthesis Conditions for the Production of Exopolysaccharides by Lactobacillus plantarum YM-2. Food Science 38 (10):24–30. doi: 10.7506/spkx1002-6630-201710005.
  • Siddiqui, N. N., A. Aman, A. Silipo, S. A. Ul Qader, and A. Molinaro. 2014. Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides. Carbohydrate Polymers 99:331–8. doi: 10.1016/j.carbpol.2013.08.004.
  • Simsek, M., T. T. Asiyanbi-Hammed, N. Rasaq, and A. M. Hammed. 2021. Progress in bioactive polysaccharide-derivatives: A review. Food Reviews International 1–16. doi: 10.1080/87559129.2021.1935998.
  • Song, Y.-R., C.-M. Lee, S.-H. Lee, and S.-H. Baik. 2021. Evaluation of Probiotic Properties of Pediococcus acidilactici M76 Producing Functional Exopolysaccharides and Its Lactic Acid Fermentation of Black Raspberry Extract. Microorganisms 9 (7):1364. doi: 10.3390/microorganisms9071364.
  • Sorensen, U. B. S., K. Yao, Y. Yang, H. Tettelin, and M. Kilian. 2016. Capsular polysaccharide expression in commensal Streptococcus species: Genetic and antigenic similarities to Streptococcus pneumoniae. mBio 7 (6):e01844-16. doi: 10.1128/mBio.01844-16.
  • Soumya, M. P., and K. M. Nampoothiri. 2021. An overview of functional genomics and relevance of glycosyltransferases in exopolysaccharide production by lactic acid bacteria. International Journal of Biological Macromolecules 184:1014–25. doi: 10.1016/j.ijbiomac.2021.06.131.
  • Soumya, M. P., K. Sasikumar, A. Pandey, and K. M. Nampoothiri. 2019. Cassava starch hydrolysate as sustainable carbon source for exopolysaccharide production by Lactobacillus plantarum. Bioresource Technology Reports 6:85–8. doi: 10.1016/j.bietb.2019.02.012.
  • Surayot, U., J. Wang, P. Seesuriyachan, A. Kuntiya, M. Tabarsa, Y. Lee, J.-K. Kim, W. Park, and S. You. 2014. Exopolysaccharides from lactic acid bacteria: Structural analysis, molecular weight effect on immunomodulation. International Journal of Biological Macromolecules 68:233–40. doi: 10.1016/j.ijbiomac.2014.05.005.
  • Tang, W., M. Dong, W. Wang, S. Han, X. Rui, X. Chen, M. Jiang, Q. Zhang, J. Wu, and W. Li. 2017. Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1. Carbohydrate Polymers 173:654–64. doi: 10.1016/j.carbpol.2017.06.039.
  • Tinzl-Malang, S. K., F. Grattepanche, P. Rast, P. Fischer, J. Sych, and C. Lacroix. 2020. Purified exopolysaccharides from Weissella confusa 11GU-1 and Propionibacterium freudenreichii JS15 act synergistically on bread structure to prevent staling. LWT 127:109375. doi: 10.1016/j.lwt.2020.109375.
  • Tiwari, S., D. Kavitake, P. B. Devi, and P. H. Shetty. 2021. Bacterial exopolysaccharides for improvement of technological, functional and rheological properties of yoghurt. International Journal of Biological Macromolecules 183:1585–95. doi: 10.1016/j.ijbiomac.2021.05.140.
  • Tsuda, H., and, and T. Miyamoto. 2010. Production of exopolysaccharide by Lactobacillus plantarum and the prebiotic activity of the exopolysaccharide. Food Science and Technology Research 16 (1):87–92. doi: 10.3136/fstr.16.87.
  • Venkatesh, P., M. Ayyanna, R. Ankaiah, D. Arul, and V. Balraj. 2016. Physicochemical and biosorption properties of novel exopolysaccharide produced by Enterococcus faecalis. LWT—Food Science and Technology 68:606–14. doi: 10.1016/j.lwt.2016.01.005.
  • Wang, B., Q. Song, F. Zhao, Y. Han, and Z. Zhou. 2019. Production optimization, partial characterization and properties of an exopolysaccharide from Lactobacillus sakei L3. International Journal of Biological Macromolecules 141:21–8. doi: 10.1016/j.ijbiomac.2019.08.241.
  • Wang, J., X. Fang, T. Wu, L. Fang, C. Liu, and W. Min. 2020a. In vitro immunomodulatory effects of acidic exopolysaccharide produced by Lactobacillus planetarium JLAU103 on RAW264.7 macrophages. International Journal of Biological Macromolecules 156:1308–15. doi: 10.1016/j.ijbiomac.2019.11.169.
  • Wang, J., X. Zhao, Z. Tian, Y. Yang, and Z. Yang. 2015a. Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir. Carbohydrate Polymers 125:16–25. doi: 10.1016/j.carbpol.2015.03.003.
  • Wang, J., Y. Hu, D. Wang, J. Liu, J. Zhang, S. Abula, B. Zhao, and S. Ruan. 2010. Sulfated modification can enhance the immune-enhancing activity of lycium barbarum polysaccharides. Cellular Immunology 263 (2):219–23. doi: 10.1016/j.cellimm.2010.04.001.
  • Wang, K., M. Niu, D. Song, X. Song, J. Zhao, Y. Wu, B. Lu, and G. Niu. 2020b. Preparation, partial characterization and biological activity of exopolysaccharides produced from Lactobacillus fermentum S1. Journal of Bioscience and Bioengineering 129 (2):206–14. doi: 10.1016/j.jbiosc.2019.07.009.
  • Wang, K., W. Li, X. Rui, T. Li, X. Chen, M. Jiang, and M. Dong. 2015b. Chemical modification, characterization and bioactivity of a released exopolysaccharide (r-EPS1) from Lactobacillus plantarum 70810. Glycoconjugate Journal 32 (1–2):17–27. doi: 10.1007/s10719-014-9567-1.
  • Wang, K., W. Li, X. Rui, X. Chen, M. Jiang, and M. Dong. 2014a. Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. International Journal of Biological Macromolecules 63:133–9. doi: 10.1016/j.ijbiomac.2013.10.036.
  • Wang, K., W. Li, X. Rui, X. Chen, M. Jiang, and M. Dong. 2014b. Structural characterization and bioactivity of released exopolysaccharides from Lactobacillus plantarum 70810. International Journal of Biological Macromolecules 67:71–8. doi: 10.1016/j.ijbiomac.2014.02.056.
  • Wang, X., C. Shao, L. Liu, X. Guo, Y. Xu, and X. Lu. 2017. Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. International Journal of Biological Macromolecules 103:1173–84. doi: 10.1016/j.ijbiomac.2017.05.118.
  • Wang, Y., D. Compaore-Sereme, H. Sawadogo-Lingani, R. Coda, K. Katina, and N. H. Maina. 2019. Influence of dextran synthesized in situ on the rheological, technological and nutritional properties of whole grain pearl millet bread. Food Chemistry 285:221–30. doi: 10.1016/j.foodchem.2019.01.126.
  • Wang, Y., R. Du, X. Qiao, B. Zhao, Z. Zhou, and Y. Han. 2020c. Optimization and characterization of exopolysaccharides with a highly branched structure extracted from Leuconostoc citreum B-2. International Journal of Biological Macromolecules 142:73–84. doi: 10.1016/j.ijbiomac.2019.09.071.
  • Xiang, X., L. Yang, S. Huang, W. Li, Y. Sun, H. Ma, … X. Zeng. 2008. Determination of oligosaccharide contents in 19 cultivars of chickpea (Cicer arietinum L) seeds by high performance liquid chromatography. Food Chemistry 111 (1):215–9. doi: 10.1016/j.foodchem.2008.03.039.
  • Xiao, L., S. Han, J. Zhou, Q. Xu, M. Dong, X. Fan, X. Rui, X. Chen, Q. Zhang, and W. Li. 2020. Preparation, characterization and antioxidant activities of derivatives of exopolysaccharide from Lactobacillus helveticus MB2-1. International Journal of Biological Macromolecules 145:1008–17. doi: 10.1016/j.ijbiomac.2019.09.192.
  • Xu, Y., Y. Cui, F. Yue, L. Liu, Y. Shan, B. Liu, Y. Zhou, and X. Lü. 2019. Exopolysaccharides produced by lactic acid bacteria and Bifidobacteria: Structures, physiochemical functions and applications in the food industry. Food Hydrocolloids. 94:475–99. doi: 10.1016/j.foodhyd.2019.03.032.
  • Yang, X., Y. Ren, L. Zhang, Z. Wang, and L. Li. 2021. Structural characteristics and antioxidant properties of exopolysaccharides isolated from soybean protein gel induced by lactic acid bacteria. LWT 150:111811. doi: 10.1016/j.lwt.2021.111811.
  • Yang, Y., F. Feng, Q. Zhou, F. Zhao, R. Du, Z. Zhou, and Y. Han. 2018. Isolation, purification and characterization of exopolysaccharide produced by Leuconostoc pseudomesenteroides YF32 from soybean paste. International Journal of Biological Macromolecules 114:529–35. doi: 10.1016/j.ijbiomac.2018.03.162.
  • You, X., L. Yang, X. Zhao, K. Ma, X. Chen, C. Zhang, G. Wang, M. Dong, X. Rui, Q. Zhang, et al. 2020b. Isolation, purification, characterization and immunostimulatory activity of an exopolysaccharide produced by Lactobacillus pentosus LZ-R-17 isolated from Tibetan kefir. International Journal of Biological Macromolecules 158:408–19. doi: 10.1016/j.ijbiomac.2020.05.027.
  • You, X., Z. Li, K. Ma, C. Zhang, X. Chen, G. Wang, L. Yang, M. Dong, X. Rui, Q. Zhang, et al. 2020a. Structural characterization and immunomodulatory activity of an exopolysaccharide produced by Lactobacillus helveticus LZ-R-5. Carbohydrate Polymers 235:115977. doi: 10.1016/j.carbpol.2020.115977.
  • Zannini, E., D. M. Waters, A. Coffey, and E. K. Arendt. 2016. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Applied Microbiology and Biotechnology 100 (3):1121–35. doi: 10.1007/s00253-015-7172-2.
  • Zannini, E., D. M. Waters, and E. K. Arendt. 2014. The application of dextran compared to other hydrocolloids as a novel food ingredient to compensate for low protein in biscuit and wholemeal wheat flour. European Food Research and Technology 238 (5):763–71. doi: 10.1007/s00217-014-2161-8.
  • Zarour, K., M. a. G. Llamas, A. Prieto, P. Rúas-Madiedo, M. T. Dueñas, P. F. de Palencia, R. Aznar, M. Kihal, and P. López. 2017. Rheology and bioactivity of high molecular weight dextrans synthesised by lactic acid bacteria. Carbohydrate Polymers 174:646–57. doi: 10.1016/j.carbpol.2017.06.113.
  • Zayed, A., M. K. Mansour, M. S. Sedeek, M. H. Habib, R. Ulber, and M. A. Farag. 2021. Rediscovering bacterial exopolysaccharides of terrestrial and marine origins: Novel insights on their distribution, biosynthesis, biotechnological production, and future perspectives. Critical Reviews in Biotechnology 1–21. doi: 10.1080/07388551.2021.1942779.
  • Zeidan, A. A., V. K. Poulsen, T. Janzen, P. Buldo, P. M. F. Derkx, G. Oregaard, and A. R. Neves. 2017. Polysaccharide production by lactic acid bacteria: From genes to industrial applications. FEMS Microbiology Reviews 41 (Supp_1):S168–S200. doi: 10.1093/femsre/fux017.
  • Zhang, G., W. Zhang, L. Sun, F. A. Sadiq, Y. Yang, J. Gao, and Y. Sang. 2019. Preparation screening, production optimization and characterization of exopolysaccharides produced by Lactobacillus sanfranciscensis Ls-1001 isolated from Chinese traditional sourdough. International Journal of Biological Macromolecules 139:1295–303. doi: 10.1016/j.ijbiomac.2019.08.077.
  • Zhang, J., Y. Cao, J. Wang, X. Guo, Y. Zheng, W. Zhao, X. Mei, T. Guo, and Z. Yang. 2016a. Physicochemical characteristics and bioactivities of the exopolysaccharide and its sulphated polymer from Streptococcus thermophilus GST-6. Carbohydrate Polymers 146:368–75. doi: 10.1016/j.carbpol.2016.03.063.
  • Zhang, L., B. Zhao, C.-J. Liu, and E. Yang. 2020. Optimization of Biosynthesis Conditions for the Production of Exopolysaccharides by Lactobacillus plantarum SP8 and the Exopolysaccharides Antioxidant Activity Test. Indian Journal of Microbiology 60 (3):334–45. doi: 10.1007/s12088-020-00865-8.
  • Zhang, Y., X. Dai, H. Jin, C. Man, and Y. Jiang. 2021. The effect of optimized carbon source on the synthesis and composition of exopolysaccharides produced by Lactobacillus paracasei. Journal of Dairy Science 104 (4):4023–32. doi: 10.3168/jds.2020-19448.
  • Zhang, Z., Z. Liu, X. Tao, and H. Wei. 2016b. Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities. Carbohydrate Polymers 153:25–33. doi: 10.1016/j.carbpol.2016.07.084.
  • Zheng, J., S. Wittouck, E. Salvetti, C. M. A. P. Franz, H. M. B. Harris, P. Mattarelli, P. W. O’Toole, B. Pot, P. Vandamme, J. Walter, et al. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology 70 (4):2782–858. doi: 10.1099/ijsem.0.004107.
  • Zhou, Y., Y. Cui, and X. Qu. 2019. Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydrate Polymers 207:317–32. doi: 10.1016/j.carbpol.2018.11.093.
  • Zhu, Y., J. Bai, Y. Zhou, Y. Zhang, Y. Zhao, Y. Dong, and X. Xiao. 2021. Water-soluble and alkali-soluble polysaccharides from bitter melon inhibited lipid accumulation in HepG2 cells and Caenorhabditis elegans. International Journal of Biological Macromolecules 166:155–65. doi: 10.1016/j.ijbiomac.2020.10.128.
  • Zhu, Y., X. Wang, W. Pan, X. Shen, Y. He, H. Yin, K. Zhou, L. Zou, S. Chen, and S. Liu. 2019. Exopolysaccharides produced by yogurt-texture improving Lactobacillus plantarum RS20D and the immunoregulatory activity. International Journal of Biological Macromolecules 121:342–9. doi: 10.1016/j.ijbiomac.2018.09.201.
  • Ziadi, M., T. Bouzaiene, S. M’Hir, K. Zaafouri, F. Mokhtar, M. Hamdi, and C. Boisset-Helbert. 2018. Evaluation of the efficiency of ethanol precipitation and ultrafiltration on the purification and characteristics of exopolysaccharides produced by three lactic acid bacteria. BioMed Research International 2018:1896240. doi: 10.1155/2018/1896240.
  • Zisu, B., and, and N. Shah. 2003. Effects of pH, temperature, supplementation with whey protein concentrate, and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275. Journal of Dairy Science 86 (11):3405–15. doi: 10.3168/jds.S0022-0302(03)73944-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.