522
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Routine analysis of pesticides in foodstuffs: Emerging ambient ionization mass spectrometry as an alternative strategy to be on your radar

, , , &

References

  • Albert, A., A. Kramer, S. Scheeren, and C. Engelhard. 2014. Rapid and quantitative analysis of pesticides in fruits by QuEChERS pretreatment and low-temperature plasma desorption/ionization orbitrap mass spectrometry. Analytical Methods 6 (15):5463–71. doi: 10.1039/C4AY00103F.
  • Albert, A., J. T. Shelley, and C. Engelhard. 2014. Plasma-based ambient desorption/ionization mass spectrometry: State-of-the-art in qualitative and quantitative analysis. Analytical and Bioanalytical Chemistry 406 (25):6111–27. doi: 10.1007/s00216-014-7989-z.
  • Andjelkovic, D., M. Brankovic, P. Milovanovic, and G. Kocic. 2022. Development of a screening method for selected pesticides in apples by direct injection ESI/MS. Food Control 133:108620. doi: 10.1016/j.foodcont.2021.108620.
  • Annangudi, S. P., K. Myung, C. Avila Adame, and J. R. Gilbert. 2015. MALDI-MS imaging analysis of fungicide residue distributions on wheat leaf surfaces. Environmental Science & Technology 49 (9):5579–83. doi: 10.1021/es506334y.
  • Asimakopoulos, A. G., A. Bletsou, K. Kannan, and N. S. Thomaidis. 2015. Recent developments in liquid chromatography-mass spectrometry: Advances in liquid chromatographic separations and ionization techniques/interfaces. In Mass spectrometry for the analysis of pesticide residues and their metabolites, ed. T. Despina, B. Helen, and E. Anastasios, 113–30. Hoboken: Wiley doi: 10.1002/9781119070771.ch5.
  • Basuri, P., A. Baidya, and T. Pradeep. 2019. Sub-parts-per-trillion level detection of analytes by superhydrophobic preconcentration paper spray ionization mass spectrometry (SHPPSI MS). Analytical Chemistry 91 (11):7118–24. doi: 10.1021/acs.analchem.9b00144.
  • Beneito-Cambra, M., P. Pérez-Ortega, A. Molina-Díaz, and J. F. García-Reyes. 2015. Rapid determination of multiclass fungicides in wine by low-temperature plasma (LTP) ambient ionization mass spectrometry. Analytical Methods 7 (17):7345–51. doi: 10.1039/C5AY00810G.
  • Bi, H., M. Xi, R. Zhang, C. Wang, L. Qiao, and J. Xie. 2018. Electrostatic spray ionization-mass spectrometry for direct and fast wine characterization. ACS Omega 3 (12):17881–7. doi: 10.1021/acsomega.8b02259.
  • Birse, N., P. McCarron, B. Quinn, K. Fox, O. Chevallier, Y. Hong, R. Ch, and C. Elliott. 2022. Authentication of organically grown vegetables by the application of ambient mass spectrometry and inductively coupled plasma (ICP) mass spectrometry; the leek case study. Food Chemistry 370:130851. doi: 10.1016/j.foodchem.2021.130851.
  • Botitsi, H., D. Tsipi, and A. Economou. 2022. Current legislation on pesticides. In Applications in high resolution mass spectrometry. ed. R. Romero-González and A. G. Frenich. 83–130. Amsterdam: Elsevier doi: 10.1016/B978-0-12-809464-8.00004-X.
  • Brabander, H. F., H. Noppe, K. Verheyden, J. Vanden Bussche, K. Wille, L. Okerman, L. Vanhaecke, W. Reybroeck, S. Ooghe, and S. Croubels. 2009. Residue analysis: Future trends from a historical perspective. Journal of Chromatography. A 1216 (46):7964–76. doi: 10.1016/j.chroma.2009.02.027.
  • Cha, K. H., J. Lee, J. Lee, and J. H. Kim. 2022. Development of a quantitative screening method for pesticide multiresidues in orange, chili pepper, and brown rice using gas chromatography-quadrupole time of flight mass spectrometry with dopant-assisted atmospheric pressure chemical ionization. Food Chemistry 374:131626. doi: 10.1016/j.foodchem.2021.131626.
  • Chen, S., Q. Chang, K. Yin, Q. He, Y. Deng, B. Chen, C. Liu, Y. Wang, and L. Wang. 2017. Rapid analysis of bisphenol A and its analogues in food packaging products by paper spray ionization mass spectrometry. Journal of Agricultural and Food Chemistry 65 (23):4859–65. doi: 10.1021/acs.jafc.7b02061.
  • Chen, L., A. Ghiasvand, E. S. Rodriguez, P. C. Innis, and B. Paull. 2021. Applications of nanomaterials in ambient ionization mass spectrometry. TRAC Trends in Analytical Chemistry 136:116202. doi: 10.1016/j.trac.2021.116202.
  • Cheng, S. C., R. H. Lee, J. Y. Jeng, C. W. Lee, and J. Shiea. 2020. Fast screening of trace multiresidue pesticides on fruit and vegetable surfaces using ambient ionization tandem mass spectrometry. Analytica Chimica Acta 1102:63–71. doi: 10.1016/j.aca.2019.12.038.
  • Chen, K. H., Y. C. Li, F. Sheu, and C. H. Lin. 2021. Rapid screening and determination of pesticides on lemon surfaces using the paper-spray mass spectrometry integrated via thermal desorption probe. Food Chemistry 363:130305. doi: 10.1016/j.foodchem.2021.130305.
  • Cody, R. B., J. A. Laramee, and H. D. Durst. 2005. Versatile new ion source for the analysis of materials in open air under ambient conditions. Analytical Chemistry 77 (8):2297–302. doi: 10.1021/ac050162j.
  • Cooks, R. G., Z. Ouyang, Z. Takats, and J. M. Wiseman. 2006. Detection technologies. Ambient mass spectrometry. Science (New York, NY) 311 (5767):1566–70. doi: 10.1126/science.1119426.
  • Evard, H., A. Kruve, R. Lõhmus, and I. Leito. 2015. Paper spray ionization mass spectrometry: Study of a method for fast-screening analysis of pesticides in fruits and vegetables. Journal of Food Composition and Analysis 41:221–5. doi: 10.1016/j.jfca.2015.01.010.
  • Feider, C. L., A. Krieger, R. J. DeHoog, and L. S. Eberlin. 2019. Ambient ionization mass spectrometry: Recent developments and applications. Analytical Chemistry 91 (7):4266–90. doi: 10.1021/acs.analchem.9b00807.
  • Fernández-Alba, A. R., and J. F. García-Reyes. 2008. Large-scale multi-residue methods for pesticides and their degradation products in food by advanced LC-MS. TRAC Trends in Analytical Chemistry 27 (11):973–90. doi: 10.1016/j.trac.2008.09.009.
  • García-Reyes, J. F., B. Gilbert-López, A. Agüera, A. R. Fernández-Alba, and A. Molina-Díaz. 2012. The potential of ambient desorption ionization methods combined with high-resolution mass spectrometry for pesticide testing in food. In Comprehensive analytical chemistry, ed. A. R. Fernandez-Alba, Vol. 58. 339–66. New York: Elsevier. doi: 10.1016/B978-0-444-53810-9.00004-3.
  • Gerbig, S., H. E. Brunn, B. Spengler, and S. Schulz. 2015. Spatially resolved investigation of systemic and contact pesticides in plant material by desorption electrospray ionization mass spectrometry imaging (DESI-MSI). Analytical and Bioanalytical Chemistry 407 (24):7379–89. doi: 10.1007/s00216-015-8900-2.
  • Gerbig, S., S. Neese, A. Penner, B. Spengler, and S. Schulz. 2017. Real-time food authentication using a miniature mass spectrometer. Analytical Chemistry 89 (20):10717–25. doi: 10.1021/acs.analchem.7b01689.
  • Gerbig, S., G. Stern, H. E. Brunn, R. A. During, B. Spengler, and S. Schulz. 2017. Method development towards qualitative and semi-quantitative analysis of multiple pesticides from food surfaces and extracts by desorption electrospray ionization mass spectrometry as a preselective tool for food control. Analytical and Bioanalytical Chemistry 409 (8):2107–17. doi: 10.1007/s00216-016-0157-x.
  • Gilbert-Lopez, B., M. Schilling, N. Ahlmann, A. Michels, H. Hayen, A. Molina-Diaz, J. F. Garcia-Reyes, and J. Franzke. 2013. Ambient diode laser desorption dielectric barrier discharge ionization mass spectrometry of nonvolatile chemicals. Analytical Chemistry 85 (6):3174–82. doi: 10.1021/ac303452w.
  • Gomez-Rios, G. A., E. Gionfriddo, J. Poole, and J. Pawliszyn. 2017. Ultrafast screening and quantitation of pesticides in food and environmental matrices by solid-phase microextraction-transmission mode (SPME-TM) and direct analysis in real time (DART). Analytical Chemistry 89 (13):7240–8. doi: 10.1021/acs.analchem.7b01553.
  • Gomez-Rios, G. A., T. Vasiljevic, E. Gionfriddo, M. Yu, and J. Pawliszyn. 2017. Towards on-site analysis of complex matrices by solid-phase microextraction-transmission mode coupled to a portable mass spectrometer via direct analysis in real time. The Analyst 142 (16):2928–35. doi: 10.1039/c7an00718c.
  • Gonzalez, N., M. Marques, M. Nadal, and J. L. Domingo. 2019. Occurrence of environmental pollutants in foodstuffs: A review of organic vs. Conventional food. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 125:370–5. doi: 10.1016/j.fct.2019.01.021.
  • Grimalt, S., and P. Dehouck. 2016. Review of analytical methods for the determination of pesticide residues in grapes. Journal of Chromatography. A 1433:1–23. doi: 10.1016/j.chroma.2015.12.076.
  • Grimm, R. L., and J. L. Beauchamp. 2010. Evaporation and discharge dynamics of highly charged multicomponent droplets generated by electrospray ionization. The Journal of Physical Chemistry. A 114 (3):1411–9. doi: 10.1021/jp907162w.
  • Guo, X., H. Bai, Y. Lv, G. Xi, J. Li, X. Ma, Y. Ren, Z. Ouyang, and Q. Ma. 2018. Rapid identification of regulated organic chemical compounds in toys using ambient ionization and a miniature mass spectrometry system. Talanta 180:182–92. doi: 10.1016/j.talanta.2017.12.050.
  • Guo, T., P. Fang, J. Jiang, F. Zhang, W. Yong, J. Liu, and Y. Dong. 2016. Rapid screening and quantification of residual pesticides and illegal adulterants in red wine by direct analysis in real time mass spectrometry. Journal of Chromatography. A 1471:27–33. doi: 10.1016/j.chroma.2016.09.073.
  • Guo, T., W. Yong, and Y. Dong. 2019. Automatically high-throughput quantification by paper spray ionization mass spectrometry for multiple pesticides in wine. Food Analytical Methods 12 (5):1208–17. doi: 10.1007/s12161-019-01450-6.
  • Hakami, R. A., A. Aqel, A. A. Ghfar, Z. A. Alothman, and A.-Y. Badjah-Hadj-Ahmed. 2021. Development of QuEChERS extraction method for the determination of pesticide residues in cereals using DART-TOF-MS and GC-MS techniques. Correlation and quantification study. Journal of Food Composition and Analysis 98:103822. doi: 10.1016/j.jfca.2021.103822.
  • Harper, J. D., N. A. Charipar, C. C. Mulligan, X. Zhang, R. G. Cooks, and Z. Ouyang. 2008. Low-temperature plasma probe for ambient desorption ionization. Analytical Chemistry 80 (23):9097–104. doi: 10.1021/ac801641a.
  • Hayen, H., A. Michels, and J. Franzke. 2009. Dielectric barrier discharge ionization for liquid chromatography/mass spectrometry. Analytical Chemistry 81 (24):10239–45. doi: 10.1021/ac902176k.
  • Hernández, F., Ó. J. Pozo, J. V. Sancho, F. J. López, J. M. Marín, and M. Ibáñez. 2005. Strategies for quantification and confirmation of multi-class polar pesticides and transformation products in water by LC-MS2 using triple quadrupole and hybrid quadrupole time-of-flight analyzers. TRAC Trends in Analytical Chemistry 24 (7):596–612. doi: 10.1016/j.trac.2005.04.007.
  • Hiraoka, K., S. Rankin-Turner, S. Ninomiya, H. Wada, H. Nakano, M. Matsumura, S. Sanada-Morimura, F. Tanaka, and H. Nonami. 2019. Component profiling in agricultural applications using an adjustable acupuncture needle for sheath-flow probe electrospray ionization/mass spectrometry. Journal of Agricultural and Food Chemistry 67 (11):3275–83. doi: 10.1021/acs.jafc.8b06424.
  • Huang, M., S. Cheng, Y. Cho, and J. Shiea. 2011. Ambient ionization mass spectrometry: A tutorial. Analytica Chimica Acta 702 (1):1–15. doi: 10.1016/j.aca.2011.06.017.
  • Jadhav, M. R., A. Pudale, P. Raut, S. Utture, T. P. Ahammed Shabeer, and K. Banerjee. 2019. A unified approach for high-throughput quantitative analysis of the residues of multi-class veterinary drugs and pesticides in bovine milk using LC-MS/MS and GC-MS/MS. Food Chemistry 272:292–305. doi: 10.1016/j.foodchem.2018.08.033.
  • Jeng, J. Y., Z. H. Jiang, Y. T. Cho, H. Su, C. W. Lee, and J. Shiea. 2021. Obtaining molecular imagings of pesticide residues on strawberry surfaces with probe sampling followed by ambient ionization mass spectrometric analysis. Journal of Mass Spectrometry: JMS 56 (4):e4644. doi: 10.1002/jms.4644.
  • Jiao, B., H. Ye, X. Liu, J. Bu, J. Wu, W. Zhang, Y. Zhang, and Z. Ouyang. 2021. Handheld mass spectrometer with intelligent adaptability for on-site and point-of-care analysis. Analytical Chemistry 93 (47):15607–16. doi: 10.1021/acs.analchem.1c02508.
  • Kern, S. E., L. A. Lin, and F. L. Fricke. 2014. Accurate mass fragment library for rapid analysis of pesticides on produce using ambient pressure desorption ionization with high-resolution mass spectrometry. Journal of the American Society for Mass Spectrometry 25 (8):1482–8. doi: 10.1007/s13361-014-0912-1.
  • Khaled, A., J. R. Belinato, and J. Pawliszyn. 2020. Rapid and high-throughput screening of multi-residue pharmaceutical drugs in bovine tissue using solid phase microextraction and direct analysis in real time-tandem mass spectrometry (SPME-DART-GC-MS/MS). Talanta 217:121095. doi: 10.1016/j.talanta.2020.121095.
  • Khan, Z., N. Kamble, A. Bhongale, M. Girme, V. Bahadur Chauhan, and K. Banerjee. 2018. Analysis of pesticide residues in tuber crops using pressurised liquid extraction and gas chromatography-tandem mass spectrometry. Food Chemistry 241:250–7. doi: 10.1016/j.foodchem.2017.08.091.
  • Kuo, T. H., E. P. Dutkiewicz, J. Pei, and C. C. Hsu. 2020. Ambient ionization mass spectrometry today and tomorrow: Embracing challenges and opportunities. Analytical Chemistry 92 (3):2353–63. doi: 10.1021/acs.analchem.9b05454.
  • Lacorte, S., A. Agüera, M. Cortina-Puig, and C. Gómez-Canela. 2015. Recent developments in liquid chromatography–mass spectrometry. In Mass spectrometry for the analysis of pesticide residues and their metabolites, ed. T. Despina, B. Helen, and E. Anastasios, 131–59. Hoboken: Wiley. doi: 10.1002/9781119070771.ch6.
  • Lara, F. J., D. Chan, M. Dickinson, A. S. Lloyd, and S. J. Adams. 2017. Evaluation of direct analysis in real time for the determination of highly polar pesticides in lettuce and celery using modified quick polar pesticides extraction method. Journal of Chromatography A 1496:37–44. doi: 10.1016/j.chroma.2017.03.020.
  • Laskin, J., and I. Lanekoff. 2016. Ambient mass spectrometry imaging using direct liquid extraction techniques. Analytical Chemistry 88 (1):52–73. doi: 10.1021/acs.analchem.5b04188.
  • Leendert, V., H. Van Langenhove, and K. Demeestere. 2015. Trends in liquid chromatography coupled to high-resolution mass spectrometry for multi-residue analysis of organic micropollutants in aquatic environments. TRAC Trends in Analytical Chemistry 67:192–208. doi: 10.1016/j.trac.2015.01.010.
  • Li, Y., J. Chen, L. Meng, L. He, H. Liu, C. Xiong, and Z. Nie. 2021. Pocket-size "masspec pointer" for ambient ionization mass spectrometry. Analytical Chemistry 93 (39):13326–33. doi: 10.1021/acs.analchem.1c03087.
  • Li, B., S. J. B. Dunham, Y. Dong, S. Yoon, M. Zeng, and J. V. Sweedler. 2016. Analytical capabilities of mass spectrometry imaging and its potential applications in food science. Trends in Food Science & Technology 47:50–63. doi: 10.1016/j.tifs.2015.10.018.
  • Li, T., L. Fan, Y. Wang, X. Huang, J. Xu, J. Lu, M. Zhang, and W. Xu. 2017. Molecularly imprinted membrane electrospray ionization for direct sample analyses. Analytical Chemistry 89 (3):1453–8. doi: 10.1021/acs.analchem.6b02571.
  • Li, Y., L. Meng, Z. Li, Y. Wang, X. Wang, H. Liu, C. Xiong, and Z. Nie. 2021. Hand-powered ionization methods for the mass spectrometric detection of small molecules. International Journal of Mass Spectrometry 470:116716. doi: 10.1016/j.ijms.2021:116716.
  • Liu, Z., P. Qi, X. Wang, Z. Wang, X. Xu, W. Chen, L. Wu, H. Zhang, Q. Wang, and X. Wang. 2017. Multi-pesticides residue analysis of grains using modified magnetic nanoparticle adsorbent for facile and efficient cleanup. Food Chemistry 230:423–31. doi: 10.1016/j.foodchem.2017.03.082.
  • Liu, J., H. Wang, N. E. Manicke, J. M. Lin, R. G. Cooks, and Z. Ouyang. 2010. Development, characterization, and application of paper spray ionization. Analytical Chemistry 82 (6):2463–71. doi: 10.1021/ac902854g.
  • Lu, H., H. Zhang, K. Chingin, J. Xiong, X. Fang, and H. Chen. 2018. Ambient mass spectrometry for food science and industry. TRAC Trends in Analytical Chemistry 107:99–115. doi: 10.1016/j.trac.2018.07.017.
  • Ly, T. K., P. Behra, and T. T. Nhu-Trang. 2022. Quantification of 397 pesticide residues in different types of commercial teas: Validation of high accuracy methods and quality assessment. Food Chemistry 370:130986. doi: 10.1016/j.foodchem.2021.130986.
  • Ma, X., and Z. Ouyang. 2016. Ambient ionization and miniature mass spectrometry system for chemical and biological analysis. Trends in Analytical Chemistry: TRAC 85 (A):10–9. doi: 10.1016/j.trac.2016.04.009.
  • Mandal, M. K., T. Ozawa, S. Saha, M. M. Rahman, M. Iwasa, Y. Shida, H. Nonami, and K. Hiraoka. 2013. Development of sheath-flow probe electrospray ionization mass spectrometry and its application to real time pesticide analysis. Journal of Agricultural and Food Chemistry 61 (33):7889–95. doi: 10.1021/jf4014718.
  • Masia, A., M. M. Suarez-Varela, A. Llopis-Gonzalez, and Y. Pico. 2016. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Analytica Chimica Acta 936:40–61. doi: 10.1016/j.aca.2016.07.023.
  • Meisenbichler, C., F. Kluibenschedl, and T. Muller. 2020. A 3-in-1 hand-held ambient mass spectrometry interface for identification and 2D localization of chemicals on surfaces. Analytical Chemistry 92 (21):14314–8. doi: 10.1021/acs.analchem.0c02615.
  • Meng, X., W. Song, Y. Xiao, P. Zheng, C. Cui, W. Gao, and R. Hou. 2022. Rapid determination of 134 pesticides in tea through multi-functional filter cleanup followed by UPLC-QTOF-MS. Food Chemistry 370:130846. doi: 10.1016/j.foodchem.2021.130846.
  • Mirabelli, M. F., E. Gionfriddo, J. Pawliszyn, and R. Zenobi. 2018. A quantitative approach for pesticide analysis in grape juice by direct interfacing of a matrix compatible spme phase to dielectric barrier discharge ionization-mass spectrometry. The Analyst 143 (4):891–9. doi: 10.1039/c7an01663h.
  • Mirabelli, M. F., and R. Zenobi. 2018. Solid-phase microextraction coupled to capillary atmospheric pressure photoionization-mass spectrometry for direct analysis of polar and nonpolar compounds. Analytical Chemistry 90 (8):5015–22. doi: 10.1021/acs.analchem.7b04514.
  • Monge, M. E., G. A. Harris, P. Dwivedi, and F. M. Fernandez. 2013. Mass spectrometry: Recent advances in direct open air surface sampling/ionization. Chemical Reviews 113 (4):2269–308. doi: 10.1021/cr300309q.
  • Moura, A. C. M., I. N. Lago, C. F. Cardoso, A. dos Reis Nascimento, I. Pereira, and B. G. Vaz. 2020. Rapid monitoring of pesticides in tomatoes (Solanum Lycopersicum L.) during pre-harvest intervals by paper spray ionization mass spectrometry. Food Chemistry 310:125938. doi: 10.1016/j.foodchem.2019.125938.
  • Moyano, E., and M. T. Galceran. 2017. Direct analysis of pesticides by stand-alone mass spectrometry: Flow injection and ambient ionization. In Applications in high resolution mass spectrometry, ed. R. Romero-González and A. G. Frenich, 265–313. Amsterdam: Elsevier. doi: 10.1016/B978-0-12-809464-8.00009-9.
  • Na, N., M. Zhao, S. Zhang, C. Yang, and X. Zhang. 2007. Development of a dielectric barrier discharge ion source for ambient mass spectrometry. Journal of the American Society for Mass Spectrometry 18 (10):1859–62. doi: 10.1016/j.jasms.2007.07.027.
  • Nielen, M. W., and T. A. van Beek. 2014. Macroscopic and microscopic spatially-resolved analysis of food contaminants and constituents using laser-ablation electrospray ionization mass spectrometry imaging. Analytical and Bioanalytical Chemistry 406 (27):6805–15. doi: 10.1007/s00216-014-7948-8.
  • Ouyang, Z., and R. G. Cooks. 2009. Miniature mass spectrometers. Annual Review of Analytical Chemistry (Palo Alto, CA) 2 (1):187–214. doi: 10.1146/annurev-anchem-060908-155229.
  • Peng, X.-T., L. Jiang, Y. Gong, X.-Z. Hu, L.-J. Peng, and Y.-Q. Feng. 2015. Preparation of mesoporous zro2-coated magnetic microsphere and its application in the multi-residue analysis of pesticides and PCBS in fish by GC-MS/MS. Talanta 132:118–25. doi: 10.1016/j.talanta.2014.08.069.
  • Pereira, I., B. Banstola, K. Wang, F. Donnarumma, B. G. Vaz, and K. K. Murray. 2019. Matrix-assisted laser desorption ionization imaging and laser ablation sampling for analysis of fungicide distribution in apples. Analytical Chemistry 91 (9):6051–6. doi: 10.1021/acs.analchem.9b00566.
  • Płotka-Wasylka, J., N. Szczepańska, M. de la Guardia, and J. Namieśnik. 2015. Miniaturized solid-phase extraction techniques. TRAC Trends in Analytical Chemistry 73:19–38. doi: 10.1016/j.trac.2015.04.026.
  • Poole, C. F. 2003. Chapter 9 - spectroscopic detectors for identification and quantification. In The essence of chromatography, ed. C. F. Poole, 719–92. Amsterdam: Elsevier. doi: 10.1016/B978-044450198-1/50022-7
  • Ranganathan, N., A. M. Lozier, M. C. Rawson, M. B. Johnson, and P. Li. 2020. Direct analysis of surface chemicals using vibrating sharp-edge spray ionization mass spectrometry. Rapid Communications in Mass Spectrometry: RCM 34 (20):e8902. doi: 10.1002/rcm.8902.
  • Santos, L., and F. Ramos. 2016. Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: A review. Trends in Food Science & Technology 52:16–30. doi: 10.1016/j.tifs.2016.03.015.
  • Schwanz, T. G., C. K. Carpilovsky, G. C. C. Weis, and I. H. Costabeber. 2019. Validation of a multi-residue method and estimation of measurement uncertainty of pesticides in drinking water using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Journal of Chromatography. A 1585:10–8. doi: 10.1016/j.chroma.2018.11.058.
  • Seró, R., O. Núñez, and E. Moyano. 2015. Ambient ionization-high resolution mass spectrometry: Environmental, food, doping and forensic analysis. In Comprehensive analytical chemistry, ed. A. R. Fernandez-Alba, Vol. 71: 51–88. New York: Elsevier. doi: 10.1016/bs.coac.2016.01.003.
  • Sharpe, S., and D. Mackay. 2000. A framework for evaluating bioaccumulation in food webs. Environmental Science & Technology 34 (12):2373–9. doi: 10.1021/es9910208.
  • Shelley, J. T., G. C. Y. Chan, and G. M. Hieftje. 2012. Understanding the flowing atmospheric-pressure afterglow (FAPA) ambient ionization source through optical means. Journal of the American Society for Mass Spectrometry 23 (2):407–17. doi: 10.1007/s13361-011-0292-8.
  • Shiea, C., Y. L. Huang, D. L. Liu, C. C. Chou, J. H. Chou, P. Y. Chen, J. Shiea, and M. Z. Huang. 2015. Rapid screening of residual pesticides on fruits and vegetables using thermal desorption electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry: RCM 29 (2):163–70. doi: 10.1002/rcm.7086.
  • Snyder, D. T., C. J. Pulliam, Z. Ouyang, and R. G. Cooks. 2016. Miniature and fieldable mass spectrometers: Recent advances. Analytical Chemistry 88 (1):2–29. doi: 10.1021/acs.analchem.5b03070.
  • Song, X., Z. Luo, X. Li, T. Li, Z. Wang, C. Sun, L. Huang, P. Xie, X. Liu, J. He, et al. 2017. In situ hydrogel conditioning of tissue samples to enhance the drug’s sensitivity in ambient mass spectrometry imaging. Analytical Chemistry 89 (12):6318–23. doi: 10.1021/acs.analchem.7b00091.
  • Song, S., K. Zhu, L. Han, Y. Sapozhnikova, Z. Zhang, and W. Yao. 2018. Residue analysis of 60 pesticides in red swamp crayfish using QuEChERS with high-performance liquid chromatography-tandem mass spectrometry. Journal of Agricultural and Food Chemistry 66 (20):5031–8. doi: 10.1021/acs.jafc.7b05339.
  • Soparawalla, S., F. K. Tadjimukhamedov, J. S. Wiley, Z. Ouyang, and R. G. Cooks. 2011. In situ analysis of agrochemical residues on fruit using ambient ionization on a handheld mass spectrometer. The Analyst 136 (21):4392–6. doi: 10.1039/c1an15493a.
  • Su, H., Y. P. Lin, S. C. Yang, C. H. Kuo, D. C. Wu, J. Shiea, and C. W. Lee. 2019. Rapid detection of non-volatile household pesticides in drained gastric juice by ambient mass spectrometry for emergency management. Analytica Chimica Acta 1066:69–78. doi: 10.1016/j.aca.2019.03.013.
  • Su, Y., X. Ma, and Z. Ouyang. 2018. Rapid screening of multi-class antimicrobial residues in food of animal origin by paper spray mass spectrometry. International Journal of Mass Spectrometry 434:233–9. doi: 10.1016/j.ijms.2018.10.003.
  • Taha, S. M., and S. A. Gadalla. 2017. Development of an efficient method for multi residue analysis of 160 pesticides in herbal plant by ethyl acetate hexane mixture with direct injection to GC-MS/MS. Talanta 174:767–79. doi: 10.1016/j.talanta.2017.06.080.
  • Taira, S., M. Tokai, D. Kaneko, H. Katano, and Y. Kawamura-Konishi. 2015. Mass spectrometry imaging analysis of location of procymidone in cucumber samples. Journal of Agricultural and Food Chemistry 63 (27):6109–12. doi: 10.1021/acs.jafc.5b00957.
  • Takats, Z., J. M. Wiseman, B. Gologan, and R. G. Cooks. 2004. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science (New York, NY) 306 (5695):471–3. doi: 10.1126/science.1104404.
  • Theurillat, X., M. Dubois, and J. F. Huertas-Perez. 2021. A multi-residue pesticide determination in fatty food commodities by modified QuEChERS approach and gas chromatography-tandem mass spectrometry. Food Chemistry 353:129039. doi: 10.1016/j.foodchem.2021.129039.
  • Tsagkaris, A. S., J. L. D. Nelis, G. M. S. Ross, S. Jafari, J. Guercetti, K. Kopper, Y. Zhao, K. Rafferty, J. P. Salvador, D. Migliorelli, et al. 2019. Critical assessment of recent trends related to screening and confirmatory analytical methods for selected food contaminants and allergens. TRAC Trends in Analytical Chemistry 121:115688. doi: 10.1016/j.trac.2019.115688.
  • Vargas-Perez, M., I. Dominguez, F. J. E. Gonzalez, and A. G. Frenich. 2020. Application of full scan gas chromatography high resolution mass spectrometry data to quantify targeted-pesticide residues and to screen for additional substances of concern in fresh-food commodities. Journal of Chromatography A 1622:461118. doi: 10.1016/j.chroma.2020.461118.
  • Venter, A. R., K. A. Douglass, J. T. Shelley, G. Hasman, Jr., and E. Honarvar. 2014. Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry. Analytical Chemistry 86 (1):233–49. doi: 10.1021/ac4038569.
  • Wang, B., X. Ding, Z. Zhao, and Y. Duan. 2015. Method development for directly screening pesticide residues in foodstuffs using ambient microfabricated glow discharge plasma (MFDGP) desorption/ionization mass spectrometry. International Journal of Mass Spectrometry 377:507–14. doi: 10.1016/j.ijms.2014.05.018.
  • Wang, Y., L. Xu, H. Zhu, J. Dong, P. Cheng, and Z. Zhou. 2019. Spray-inlet microwave plasma torch and low temperature plasma ionization for ambient mass spectrometry of agrochemicals. Analytical Methods 11 (42):5421–30. doi: 10.1039/C9AY01978B.
  • Wiley, J. S., J. F. Garcia-Reyes, J. D. Harper, N. A. Charipar, Z. Ouyang, and R. G. Cooks. 2010. Screening of agrochemicals in foodstuffs using low-temperature plasma (LTP) ambient ionization mass spectrometry. The Analyst 135 (5):971–9. doi: 10.1039/b919493b.
  • Wiley, J. S., J. T. Shelley, and R. G. Cooks. 2013. Handheld low-temperature plasma probe for portable "point-and-shoot" ambient ionization mass spectrometry. Analytical Chemistry 85 (14):6545–52. doi: 10.1021/ac4013286.
  • Wu, X., W. Li, P. Guo, Z. Zhang, and H. Xu. 2018. Rapid trace detection and isomer quantitation of pesticide residues via matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry. Journal of Agricultural and Food Chemistry 66 (15):3966–74. doi: 10.1021/acs.jafc.8b00427.
  • Xian, F., C. L. Hendrickson, and A. G. Marshall. 2012. High resolution mass spectrometry. Analytical Chemistry 84 (2):708–19. doi: 10.1021/ac203191t.
  • Xiao, J., Q. He, Q. Liu, Z. Wang, F. Yin, Y. Chai, Q. Yang, X. Jiang, M. Liao, L. Yu, et al. 2022. Analysis of honey bee exposure to multiple pesticide residues in the hive environment. The Science of the Total Environment 805:150292. doi: 10.1016/j.scitotenv.2021.150292.
  • Xue, J., Y. Bai, and H. Liu. 2019. Recent advances in ambient mass spectrometry imaging. TRAC Trends in Analytical Chemistry 120:115659. doi: 10.1016/j.trac.2019.115659.
  • Yan, B., T. Murta, E. A. Elia, R. T. Steven, and J. Bunch. 2021. Direct tissue mass spectrometry imaging by atmospheric pressure UV-laser desorption plasma postionization. Journal of the American Society for Mass Spectrometry 32 (2):429–35. doi: 10.1021/jasms.0c00315.
  • Yang, Y., Y. Li, Z. Huang, Y. Tian, C. Qian, and Y. Duan. 2021. Trace detection of organophosphorus pesticides in vegetables via enrichment by magnetic zirconia and temperature-assisted ambient micro-fabricated glow discharge plasma desorption ionization mass spectrometry. The Analyst 146 (22):6944–54. doi: 10.1039/d1an01600h.
  • Yang, Y., H. Yu, Y. Yang, J. Zhang, J. Yin, and B. Shao. 2021. Simultaneous determination of 118 pesticides in vegetables by atmospheric pressure gas chromatography–tandem mass spectrometry and QuEChERS based on multiwalled carbon nanotubes. ACS Agricultural Science & Technology 1 (5):460–8. doi: 10.1021/acsagscitech.1c00078.
  • Yong, W., T. Guo, P. Fang, J. Liu, Y. Dong, and F. Zhang. 2017. Direct determination of multi-pesticides in wine by ambient mass spectrometry. International Journal of Mass Spectrometry 417:53–7. doi: 10.1016/j.ijms.2017.03.005.
  • Zaitsu, K. 2020. Introduction to ambient ionization mass spectrometry. In Ambient ionization mass spectrometry in life sciences, ed. K. Zaitsu, 1–32. Amsterdam: Elsevier. doi: 10.1016/B978-0-12-817220-9.00001-1
  • Zhang, J., Z. Zhou, J. Yang, W. Zhang, Y. Bai, and H. Liu. 2012. Thin layer chromatography/plasma assisted multiwavelength laser desorption ionization mass spectrometry for facile separation and selective identification of low molecular weight compounds. Analytical Chemistry 84 (3):1496–503. doi: 10.1021/ac202732y.
  • Zhao, M. A., Y. N. Feng, Y. Z. Zhu, and J. H. Kim. 2014. Multi-residue method for determination of 238 pesticides in Chinese cabbage and cucumber by liquid chromatography-tandem mass spectrometry: Comparison of different purification procedures. Journal of Agricultural and Food Chemistry 62 (47):11449–56. doi: 10.1021/jf504570b.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.