459
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Fate of carotenoids in yeasts: synthesis and cleavage

, & ORCID Icon

References

  • Ahrazem, O., A. Rubio-Moraga, J. Berman, T. Capell, P. Christou, C. Zhu, and L. Gomez-Gomez. 2016. The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. New Phytologist 209:650–63. doi: 10.1111/nph.13609.
  • Ajikumar, P. K., W.-H. Xiao, K. E. J. Tyo, Y. Wang, F. Simeon, E. Leonard, O. Mucha, T. H. Phon, B. Pfeifer, G. Stephanopoulos, et al. 2010. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science (New York, N.Y.) 330 (6000):70–4. doi: 10.1126/science.1191652.
  • Albalat, R. 2012. Evolution of the genetic machinery of the visual cycle: a novelty of the vertebrate eye? Molecular Biology and Evolution 29:1461–9. doi: 10.1093/molbev/msr313.
  • Alder, A., M. Jamil, M. Marzorati, M. Bruno, M. Vermathen, P. Bigler, S. Ghisla, H. Bouwmeester, P. Beyer, and S. Al-Babili. 2012. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–51. doi: 10.1126/science.1218094.
  • Albertyn, J. C. H. Pohl, and B. C. Viljoen. 2014. Rhodotorula. In Encyclopedia of food microbiology, ed. C. A. Batt, and M. L. Tortorello, 291–5. American Academic Press.
  • Ambrogi, A., D. A. Cardarelli, and R. Eggers. 2006. Fractional extraction of paprika using supercritical carbon dioxide and on-line determination of carotenoids. Food Chemistry and Toxicology 67 (9):3236–41.
  • Arendrup, M. C., T. Boekhout, M. Akova, J. F. Meis, O. A. Cornely, and O. Lortholary. 2014. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clinical Microbiology and Infection 20:76–98. doi: 10.1111/1469-0691.12360.
  • Avalos, J. S. Nordzieke, O. Parra, J. Pardo-Medina, and M. C. Limón. 2017. Carotenoid production by filamentous fungi and yeasts. In Biotechnology of yeasts and filamentous fungi, ed. A. A. Sibirny, 226–61. Cham, Switzerland: Springer.
  • Avellone, G., A. Salvo, R. Costa, E. Saija, D. Bongiorno, V. Di Stefano, G. Calabrese, and G. Dugo.,. 2018. Investigation on the influence of spray-drying technology on the quality of Sicilian Nero d’Avola wines. Food Chemistry 240:222–30. doi: 10.1016/j.foodchem.2017.07.116.
  • Auldridge, M. E., D. R. McCarty, and H. J. Klee. 2006. Plant carotenoid cleavage oxygenases and their apocarotenoid products. Current Opinion in Plant Biology 9 (3):315–21. doi: 10.1016/j.pbi.2006.03.005.
  • Azeredo, H. M. C. 2008. Encapsulação: Aplicação à tecnologia de alimentos. Alimentos e Nutrição 16:89–97.
  • Bansal, N., D. Dasgupta, S. Hazra, T. Bhaskar, A. Ray, and D. Ghosh. 2020. Effect of utilization of crude glycerol as substrate on fatty acid composition of an oleaginous yeast Rhodotorula mucilagenosa IIPL32: Assessment of nutritional indices. Bioresource Technology 309:123330. doi: 10.1016/j.biortech.2020.123330.
  • Bennett, D. I. G., K. Amarnath, S. Park, C. J. Steen, J. M. Morris, and G. R. Fleming. 2019. Models and mechanisms of the rapidly reversible regulation of photosynthetic light harvesting. Open Biology 9 (4):190043. doi: 10.1098/rsob.190043.
  • Benucci, I., M. Cerreti, D. Maresca, G. Mauriello, and M. Esti. 2019. Yeast cells in double layer calcium alginate-chitosan microcapsules for sparkling wine production. Food Chemistry 300:125174. doi: 10.1016/j.foodchem.2019.125174.
  • Benucci, I., T. Cecchi, C. Lombardelli, D. Maresca, G. Mauriello, and M. Esti. 2021. Novel microencapsulated yeast for the primary fermentation of green beer: Kinetic behavior, volatiles and sensory profile. Food Chemistry 340:127900. 2020. doi: 10.1016/j.foodchem.2020.127900.
  • Borland, C. F., D. J. McGarvey, T. G. Truscott, R. J. Cogdell, and E. J. Land. 1987. Photophysical studies of bacteriochlorophyll a and bacteriopheophytin a singlet oxygen generation. Journal of Photochemistry and Photobiology B1:93–101. doi: 10.1038/nrmicro2237.
  • Borowski, T., M. R. Blomberg, and P. E. Siegbahn. 2008. Reaction mechanism of apocarotenoid oxygenase (ACO): A DFT study. Chemistry (Weinheim an Der Bergstrasse, Germany) 14 (7):2264–76. doi: 10.1002/chem.200701344.
  • Brefort, T., D. Scherzinger, M. C. Limón, A. F. Estrada, D. Trautmann, C. Mengel, J. Avalos, and S. Al-Babili. 2011. Cleavage of resveratrol in fungi: Characterization of the enzyme Rco1 from Ustilago maydis. Fungal Genetics and Biology : FG & B 48 (2):132–43. doi: 10.1016/j.fgb.2010.10.009.
  • Britton G. 1995. Structure and properties of carotenoids in relation to function. FASEB Journal 9(15):1551–8. PMID: 8529834. doi: 10.1096/fasebj.9.15.8529834.
  • Britton, G. 2008. Functions of carotenoid metabolites and breakdown products. In Supplements, ed. B. George, H. Pfander, and S. Liaaen-Jensen, 309–24. Basel: Birkhäuser. doi: 10.1007/978-3-7643-7501-0_4.
  • Buttery, R. G., R. Teranishi, L. C. Ling, and J. G. Turnbaugh. 1990. Quantitative and sensory studies on tomato paste volatiles. Journal of Agricultural and Food Chemistry 38:336–40. doi: 10.1021/jf00091a074.
  • Chandran, S. S., J. T. Kealey, and C. D. Reeves. 2011. Microbial production of isoprenoids. Process Biochemistry 46 (9):1703–10. doi: 10.1016/j.procbio.2011.05.012.
  • Chen, N. 2020. A gene for color differences between sexes. Science (New York, N.Y.) 368 (6496):1185–6. 32527818. doi: 10.1126/science.abc2242.
  • Chubukov, V., A. Mukhopadhyay, C. J. Petzold, J. D. Keasling, and H. G. Martín. 2016. Synthetic and systems biology for microbial production of commodity chemicals. NPJ Systems Biology and Applications 2:16009. doi: 10.1038/npjsba.2016.9.
  • Cogdell, R. J., T. D. Howard, R. Bittl, E. Schlodder, I. Geisenheimer, and W. Lubitz. 2000. How carotenoids protect bacterial photosynthesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 355 (1402):1345–9. doi: 10.1098/rstb.2000.0696.
  • Croce, R., and H. van Amerongen. 2014. Natural strategies for photosynthetic light harvesting. Nature Chemical Biology 10 (7):492–501. doi: 10.1038/nchembio.1555.
  • Cox, A., G. K. Skouroumounis, G. M. Elsey, M. V. Perkins, and M. A. Sefton. 2005. Generation of (E)-1-(2,3,6-Trimethylphenyl) buta-1,3-diene from C13-norisoprenoid precursors. Journal of Agriculture and Food Chemistry 53 (17):6777–83. doi: 10.1021/jf051039w.
  • Czajka, J. J., J. A. Nathenson, V. T. Benites, E. E. K. Baidoo, Q. Cheng, Y. Wang, and Y. J. Tang. 2018. Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone. Microbial Cell Factories 17 (1):13. doi: 10.1186/s12934-018-0984-x.
  • Dahl, R. H., F. Zhang, J. Alonso-Gutierrez, E. Baidoo, T. S. Batth, A. M. Redding-Johanson, C. J. Petzold, A. Mukhopadhyay, T. S. Lee, P. D. Adams, et al. 2013. Engineering dynamic pathway regulation using stress-response promoters. Nature Biotechnology 31 (11):1039–46. doi: 10.1038/nbt.2689.
  • Daruwalla, A., and P. D. Kiser. 2020. Structural and mechanistic aspects of carotenoid cleavage dioxygenases (CCDs). Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1865 (11):158590. doi: 10.1016/j.bbalip.2019.158590.
  • Dellus-Gur, E., A. Toth-Petroczy, M. Elias, and D. S. Tawfik. 2013. What makes a protein fold amenable to functional innovation? Fold polarity and stability trade-offs. Journal of Molecular Biology 425 (14):2609–21. doi: 10.1016/j.jmb.2013.03.033.
  • dela Seña, C., S. Narayanasamy, K. M. Riedl, R. W. Curley, Jr., S. J. Schwartz, and E. H. Harrison. 2013. Substrate specificity of purified recombinant human β-carotene 15,15’-oxygenase (BCO1). The Journal of Biological Chemistry 288 (52):37094–103. doi: 10.1074/jbc.M113.507160.
  • Demain, A. L., and E. Martens. 2017. Production of valuable compounds by molds and yeasts. The Journal of Antibiotics 70 (4):347–60. doi: 10.1038/ja.2016.121.
  • Diaz-Sanchez, V., A. F. Estrada, M. C. Limon, S. Al-Babili, and J. Avalos. 2013. The oxygenase CAO-1 of Neurospora crassa is a resveratrol cleavage enzyme. Eukaryotic Cell 12 (9):1305–14. doi: 10.1128/EC.00084-13.
  • Dufossé, L. 2006. Microbial production of food grade pigments. Food Technology and Biotechnology 44 (3):313–21. doi: 10.1080/87559120600694622.
  • Dufossé, L. 2018. Red colourants from filamentous fungi: Are they ready for the food industry? Journal of Food Composition and Analysis 69:156–61. doi: 10.1016/j.jfca.2017.11.002.
  • Dworecka-Kaszak, B., and M. Kizerwetter-Swida. 2011. Pseudomycelium forming Rhodotorula – unusual picture of biofilm. Mikologua Lekarska 18 (2):74–8.
  • Eugster, C. H., and E. Märki-Fischer. 1991. The chemistry of rose pigments. Angewandte Chemie International Edition in English 30 (6):654–72. doi: 10.1002/anie.199106541.
  • Favaro-Trindade, C. S., S. C. Pinho, and G. A. Rocha. 2008. Revisão: Microencapsulação de ingredientes alimentícios. Brazilian Journal of Food Technology 11:103–12.
  • Ferreira, K. N., T. M. Iverson, K. Maghlaoui, J. Barber, and S. Iwata. 2004. Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–8. doi: 10.1126/science.1093087.
  • Freitas, V., P. Ramalho, Z. Azevedo, and A. Macedo. 1999. Identification of some volatile descriptors on the rock-rose-like aroma of fortified red wines from Douro demarcated region. Journal of Agricultural Food Chemistry 47 (1999):4327–31. doi: 10.1021/jf9901035.
  • Feng, H., F. Yuan, P. A. Skinkis, and M. C. Qian. 2015. Influence of cluster zone leaf removal on Pinot noir grape chemical and volatile composition. Food Chemistry 173:414–23. doi: 10.1016/j.foodchem.2014.09.149.
  • Frengova, G. I., and D. M. Beshkova. 2009. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. Journal of Industrial Microbiology & Biotechnology 36 (2):163–80. doi: 10.1007/s10295-008-0492-9.
  • Frengova, G., E. Simova, and D. Beshkova. 2004. Use of whey ultrafiltrate as a substrate for production of carotenoids by the yeast Rhodotorula rubra. Applied Biochemistry and Biotechnology 112 (3):133–41. doi: 10.1385/ABAB:112:3:133.
  • Frusciante, S., G. Diretto, M. Bruno, P. Ferrante, P. Ferrante, M. Pietrella, A. Prado-Cabrero, et al. 2014. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 111:12246–51. doi: 10.1073/pnas.1404629111.
  • Galasso, C., C. Corinaldesi, and C. Sansone. 2017. Carotenoids from marine organisms: Biological functions and industrial applications. Antioxidants 6 (4):96. doi: 10.3390/antiox6040096.
  • Gaonkar, A. G., N. Vasisht, A. R. Khare, and R. Sobel. 2014. Microencapsulation in the food industry: A practical implementation guide. London: Academic Press – Elsevier.
  • Gharaghani, M., S. Taghipour, and A. Z. Mahmoudabadi. 2020. Molecular identification, biofilm formation and antifungal susceptibility of Rhodotorula spp. Molecular Biology Reports 47 (11):8903–9. doi: 10.1007/s11033-020-05942-1.
  • Gonçalves, A., B. N. Estevinho, and F. Rocha. 2016. Microencapsulation of vitamin A: A review. Trends in Food Science & Technology 51:76–87. doi: 10.1016/j.tifs.2016.03.001.
  • Gomez-Roldan V., S. Fermas, P. B. Brewer, V. Puech-Pages, E. A. Dun, J. -P. Pillot, F. Letisse, R. Matusova, S. Danoun, J.-C. Portais, et al. 2008. Strigolactone inhibition of shoot branching. Nature 455:189–94. DOI: 10.1038/nature07271.
  • Hamel, C. P., E. Tsilou, B. A. Pfeffer, J. J. Hooks, B. T. Detrick, and M. Redmond. 1993. Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. Journal of Biological Chemistry 268 (21):15751–7. 8340400. doi: 10.1016/S0021-9258(18)82319-5.
  • Hansen, S., and W. Maret. 1988. Retinal is not formed in vitro by enzymatic central cleavage of β-carotene. Biochemistry 27 (1):200–6. doi: 10.1021/bi00401a030.
  • Harrison, E. H., and R. E. Kopec. 2020. Enzymology of vertebrate carotenoid oxygenases. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1865 (11):158653. doi: 10.1016/j.bbalip.2020.158653.
  • Havaux, M. 2014. Carotenoid oxidation products as stress signals in plants. The Plant Journal : For Cell and Molecular Biology 79 (4):597–606. doi: 10.1111/tpj.12386.
  • Hof, H. 2019. Rhodotorula spp. in the gut - foe or friend? GMS Infectious Diseases 7:2195–8831.
  • Hu, K., Y. Qin, Y.-S. Tao, X.-L. Zhu, C.-T. Peng, and N. Ullah. 2016. Potential of glycosidase from non-Saccharomyces isolates for enhancement of wine aroma. Journal of Food Science 81 (4):M935–943. doi: 10.1111/1750-3841.13253.
  • Huang, F. C., P. Molnár, and W. Schwab. 2009. Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. Journal of Experimental Botany 60 (11):3011–22. doi: 10.1093/jxb/erp137.
  • Ilc, T., D. Werck-Reichhart, and N. Navrot. 2016. Meta-analysis of the core aroma components of grape and wine aroma. Frontiers in Plant Science 7:1472. doi: 10.3389/fpls.2016.01472.
  • Imlay, J. A. 2003. Pathways of oxidative damage. Annual Review of Microbiology 57:395–418. doi: 10.1146/annurev.micro.57.030502.090938.
  • Jafari, S. M. 2017. Nanoencapsulation of food bioactive ingredients: Principles and applications. London: Academic Press - Elsevier.
  • Janusz, A., D. L. Capone, C. J. Puglisi, M. V. Perkins, G. M. Elsey, and M. A. Sefton. 2003. (E)-1-(2,3,6-trimethylphenyl) buta-1,3-diene: a potent grape-derived odorant in wine. Journal of Agricultural and Food Chemistry 51:7759–63. doi: 10.1021/jf0347113.
  • Jones, J. A., Ö. D. Toparlak, and M. A. Koffas. 2014. Metabolic pathway balancing and its role in the production of biofuels and chemicals. Current Opinion in Biotechnology 33:52–9. doi: 10.1016/j.copbio.2014.11.013.
  • Kamoda, S., and Y. Saburi. 1993. Cloning, expression, and sequence analysis of a lignostilbene alpha, beta-dioxygenase gene from Pseudomonas paucimobilis TMY1009. Bioscience Biotechnology and Biochemistry 57:926–930. doi: 10.1271/bbb.57.926.
  • Kang, M. J., Y. M. Lee, S. H. Yoon, J. H. Kim, S. W. Ock, K. H. Jung, Y. C. Shin, J. D. Keasling, and S. W. Kim. 2005. Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method. Biotechnology and Bioengineering 91 (5):636–42. doi: 10.1002/bit.20539.
  • Kang, W., T. Ma, M. Liu, J.-L. Qu, Z.-J. Liu, and H.-W. Zhang. 2019. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux. Nature Communication 10:4248 doi: 10.1038/s41467-019-12247-w.
  • Kanani, D. M., B. P. Nikhade, P. Balakrishnan, G. Singh, and V. G. Pangarkar. 2003. Recovery of valuable tea aroma components by pervaporation. Industrial & Engineering Chemistry Research 42:6924–32.   doi: 10.1021/ie0340185.
  • Kim, H., S. J. Byeon, C. H. Kim, Y. A. Bae, H. Lee, and H. S. Kim. 2021. A case of localized fungal pneumonia caused by Rhodotorula mucilaginosa in an immunocompetent patient. Annals of Laboratory Medicine 41 (1):120–2. doi: 10.3343/alm.2021.41.1.120.
  • Kizer, L., D. J. Pitera, B. F. Pfleger, and J. D. Keasling. 2008. Application of functional genomics to pathway optimization for increased ­isoprenoid production. Applied and Environmental Microbiology 74 (10):3229–41. doi: 10.1128/AEM.02750-07.
  • Klinjapo, R., and W. Krasaekoopt. 2018. Microencapsulation of color and flavor in confectionery products. Natural and Artificial Flavoring Agents and Food Dyes 457–494. doi: 10.1016/B978-0-12-811518-3.00014-4.
  • Kloer, D. P., and G. E. Schulz. 2006. Structural and biological aspects of carotenoid cleavage. Cellular and Molecular Life Sciences : CMLS 63 (19-20):2291–303. doi: 10.1007/s00018-006-6176-6.
  • Kloer, D. P., S. Ruch, S. Al-Babili, P. Beyer, and G. E. Schulz. 2005. The structure of a retinal-forming carotenoid oxygenase. Science (New York, N.Y.) 308 (5719):267–9. doi: 10.1126/science.1108965.
  • Kong, C.-L., A.-H. Li, G.-J. Jin, X.-L. Zhu, and Y.-S. Tao. 2019. Evolution of volatile compounds treated with selected non-Saccharomyces extracellular extract during Pinot noir winemaking in monsoon climate. Food Research International (Ottawa, Ont.) 119:177–86. doi: 10.1016/j.foodres.2019.01.036.
  • Kotseridis, Y. 1999. Etude de l’arome des vins de Merlot et Cabernetsauvignon de la région Bordelaise. Thèse de Doctorat de L’Université Victor Segalen Bordeaux II, p. 652.
  • Korman, T. P., P. H. Opgenorth, and J. U. Bowie. 2017. A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nature Communications 8:15526. doi: 10.1038/ncomms15526.
  • Kruk, J., and R. Szymańska. 2021. Singlet oxygen oxidation products of carotenoids, fatty acids and phenolic prenyllipids. Journal of Photochemistry and Photobiology. B, Biology 216:112148. doi: 10.1016/j.jphotobiol.2021.112148.
  • Lashbrooke, J. G., P. R. Youngm, S. J. Dockrall, K. Vasanth, and M. A. Vivier. 2013. Functional characterisation of three members of the Vitis vinifera L carotenoid cleavage dioxygenase gene family. BMC Plant Biology 13:156. doi: 10.1186/1471-2229-13-156.
  • Lee, S.-H., M.-J. Seo, M. Riu, J. P. Cotta, D. E. Block, and N. K. Dokoozlian. 2007. Vine microclimate and norisoprenoid concentration in cabernet Sauvignon grapes and wines. American Journal of Enology and Viticulture 58:291–301.
  • Li, C., C. A. Swofford, and A. J. Sinskey. 2020. Modular engineering for microbial production of carotenoids. Metabolic Engineering Communications 10:e00118. doi: 10.1016/j.mec.2019.e00118.
  • Li, N., Q.-Q. Wang, Y.-H. Xu, A.-H. Li, and Y.-S. Tao. 2020. Increased glycosidase activities improved the production of wine varietal odorants in mixed fermentation of P. fermentans and high antagonistic S. cerevisiae. Food Chemistry 332:127426. doi: 10.1016/j.foodchem.2020.127426.
  • Libkind, D., and M. van Broock. 2006. Biomass and carotenoid pigment production by Patagonian native yeasts. World Journal of Microbiology and Biotechnology 22 (7):687–92. doi: 10.1007/s11274-005-9091-3.
  • Liu, Z.-J., C. Van den Berg, R. A. Weusthuis, G. Dragone, and S. I. Mussatto. 2021. Strategies for an improved extraction and separation of lipids and carotenoids from oleaginous yeast. Separation and Purification Technology 257:117946. doi: 10.1016/j.seppur.2020.117946.
  • López, J., K. Essus, I-k. Kim, R. Pereira, J. Herzog, V. Siewers, J. Nielsen, and E. Agosin.,. 2015. Production of β-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae. Microbial Cell Factories 14 (1):13. doi: 10.1186/s12934-015-0273-x.
  • Lv, F.-F., J. Zhou, L.-Z. Zeng, and D. Xing. 2015. β-Cyclocitral upregulates salicylic acid signalling to enhance excess light acclimation in Arabidopsis. Journal of Experimental Botany 66 (15):4719–32. doi: 10.1093/jxb/erv231.
  • Ma, D.-C., X. Yan, Q.-Q. Wang, Y.-N. Zhang, and Y.-S. Tao. 2017. Performance of selected P. fermentans and its excellular enzyme in co-inoculation with S. cerevisiae for wine aroma enhancement. LWT - Food Science and Technology 86:361–70. doi: 10.1016/j.lwt.2017.08.018.
  • Ma, T., B. Shi, Z. Ye, X. Li, M. Liu, Y. Chen, J. Xia, J. Nielsen, Z. Deng, and T. Liu.,. 2019. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metabolic Engineering 52:134–42. doi: 10.1016/j.ymben.2018.11.009.
  • Mapelli-Brahm, P., F. J. Barba, F. Remize, C. Garcia, A. Fessard, A. Mousavi Khaneghah, A. S. Sant’Ana, J. M. Lorenzo, D. Montesano, and A. J. Meléndez-Martínez. 2020. The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends in Food Science & Technology 99:389–401. doi: 10.1016/j.tifs.2020.03.013.
  • Mathieu, S., N. Terrier, J. Procureur, et al. 2005. A carotenoid cleavage dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. Journal of Experimental Botany 56:2721–31. doi: 10.1093/jxb/eri265.
  • Marasco, E. K., and C. Schmidt-Dannert. 2008. Identification of bacterial carotenoid cleavage dioxygenase homologues that cleave the interphenyl alpha, beta double bond of stilbene derivatives via a monooxygenase reaction. Chembiochem : A European Journal of Chemical Biology 9 (9):1450–61. doi: 10.1002/cbic.200700724.
  • Markets and Markets. 2020. Carotenoids market worth $2.0 billion by 2026. Retrieved from https://pdfs.vip/downloads/download-dsm-5-pdf.
  • Mata-Gómez, L. C., J. C. Montañez, A. Méndez-Zavala, and C. N. Aguilar. 2014. Biotechnological production of carotenoids by yeasts: An overview. Microbial Cell Factories 13:12–1. doi: 10.1186/1475-2859-13-12.
  • Mendes-Pinto, M. M. 2009. Carotenoid breakdown products the-norisoprenoids-in wine aroma. Archives of Biochemistry and Biophysics 483 (2):236–45. doi: 10.1016/j.abb.2009.01.008.
  • Mikš-Krajnik, M. M. Zoglowek, G. Buron-Moles, and J. Forster. 2017. Microbial production of flavors and fragrances. In: Consequences of microbial interactions with hydrocarbons, oils, and lipids: Production of fuels and chemicals, ed. S. Lee, 403–421. Cham, Switzerland: Springer.
  • Miziorko, H. M. 2011. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Archives of Biochemistry and Biophysics 505 (2):131–43. doi: 10.1016/j.abb.2010.09.028.
  • Mortensen, A. 2009. Carotenoids: Volume 5: Nutrition and health. In Supplements, ed. B. George, H. Pfander, and S. Liaaen-Jensen, 67–82. Basel: Birkhäuser. doi: 10.1007/978-3-7643-7501-0_4.
  • Nisar, N., L. Li, S. Lu, N. C. Khin, and B. J. Pogson. 2015. Carotenoid metabolism in plants. Molecular Plant 8 (1):68–82. doi: 10.1016/j.molp.2014.12.007.
  • Pandya, C., J. D. Farelli, D. Dunaway-Mariano, and K. N. Allen. 2014. Enzyme promiscuity: Engine of evolutionary innovation. The Journal of Biological Chemistry 289 (44):30229–36. doi: 10.1074/jbc.R114.572990.
  • Paniagua-Michel, J., J. Olmos-Soto, and M. A. Ruiz. 2012. Pathways of carotenoid biosynthesis in bacteria and microalgae. Methods in Molecular Biology (Clifton, N.J.) 892:1–12. doi: 10.1007/978-1-61779-879-5_1.
  • Pinnola, A., and R. Bassi. 2018. Molecular mechanisms involved in plant photoprotection. Biochemical Society Transactions 46 (2):467–82. doi: 10.1042/BST20170307.
  • Poliakov, E., S. Uppal, I. B. Rogozin, S. Gentleman, and T. M. Redmond. 2020. Evolutionary aspects and enzymology of metazoan carotenoid cleavage oxygenases. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1865 (11):158665. doi: 10.1016/j.bbalip.2020.158665.
  • Ramel, F., S. Birtic, C. Ginies, L. Soubigou-Taconnat, C. Triantaphylidès, and M. Havaux. 2012. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proceedings of the National Academy of Sciences of the United States of America 109 (14):5535–40. doi: 10.1073/pnas.1115982109.
  • Rapp, A., and H. Mandery. 1986. Wine aroma. Cellular and Molecular Life Sciences 42(8):873–84. doi: 10.1007/BF01941764. .
  • Rehman, A., Q. Tong, S. M. Jafari, E. Assadpour, Q. Shehzad, R. M. Aadil, M. W. Iqbal, M. M. A. Rashed, B. S. Mushtaq, and W. Ashraf.,. 2020. Carotenoid-loaded nanocarriers: A comprehensive review. Advances in Colloid and Interface Science 275:102048. doi: 10.1016/j.cis.2019.102048.
  • Ren, Y.-Y., S.-S. Liu, G.-J. Jin, X.-B. Yang, and Y.-J.-J. Zhou. 2020. Microbial production of limonene and its derivatives: Achievements and perspectives. Biotechnology Advances 44:107628. doi: 10.1016/j.biotechadv.2020.107628.
  • Reiss, E., H. Jean, and G. Marshall-Lyon. 2012. Fundamental medical mycology. Wiley-Blackwell.
  • Renu, R., and F. Zehra. 2015. Microencapsulation of flavours. International Journal of Basic Applied Biology 2 (5):333–8.
  • Ribeiro, J. S., and C. M. Veloso. 2021. Microencapsulation of natural dyes with biopolymers for application in food: A review. Food Hydrocolloids. 112:106374. doi: 10.1016/j.foodhyd.2020.106374.
  • Robinson, A. L., P. K. Boss, P. S. Solomon, R. D. Trengove, H. Heymann, and S. E. Ebeler. 2014. Origins of grape and wine aroma. Part 1. Chemical components and viticultural impacts. American Journal of Enology and Viticulture 65 (1):1–24. doi: 10.5344/ajev.2013.12070.
  • Rodrigo, M. J., B. Alquézar, E. Alós, V. Medina, L. Carmona, M. Bruno, et al. 2013. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments. Journal of Experimental Botany 64(14):4461–78. doi: 10.1093/jxb/ert260.
  • Rodriguez-Concepcion, M., J. Avalos, M. L. Bonet, A. Boronat, L. Gomez-Gomez, D. Hornero-Mendez, M. C. Limon, A. J. Meléndez-Martínez, B. Olmedilla-Alonso, A. Palou, et al. 2018. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research 70:62–93. doi: 10.1016/j.plipres.2018.04.004.
  • Ruban, A. V. 2018. Light harvesting control in plants. FEBS Letters 592 (18):3030–9. doi: 10.1002/1873-3468.13111.
  • Ruch, S., P. Beyer, H. Ernst, and S. Al-Babili. 2005. Retinal biosynthesis in eubacteria: In vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803. Molecular Microbiology 55 (4):1015–24. doi: 10.1111/j.1365-2958.2004.04460.x.
  • Sabon, I., G. De Revel, Y. Kosteridis, and A. Bertrand. 2002. Determination of volatile compounds in Grenache Wines in relation with different terroirs in the Rhone Valley. Journal of Agricultural and Food Chemistry 50:6341–5. doi: 10.1021/jf025611k.
  • Saini, R. K., and Y.-S. Keum. 2018. Carotenoid extraction methods: A review of recent developments. Food Chemistry 240:90–103. doi: 10.1016/j.foodchem.2017.07.099.
  • Saini, R. K., S. H. Nile, and S. W. Park. 2015. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Research International (Ottawa, Ont.) 76 (Pt 3):735–50. doi: 10.1016/j.foodres.2015.07.047.
  • Schmidt, H., R. Kurtzer, W. Eisenreich, and W. Schwab. 2006. The carotenase AtCCD1 from Arabidopsis thaliana is a dioxygenase. The Journal of Biological Chemistry 281 (15):9845–51. doi: 10.1074/jbc.M511668200.
  • Schreier, P., F. Drawert, and A. Junker. 1976. Identification of volatile constituents from grapes. Journal of Agricultural and Food Chemistry 24:331–6. doi: 10.1021/jf60204a032.
  • Schwartz, S. H., X. Qin, and J. A. Zeevaart. 2001. Characterization of a novel carotenoid cleavage dioxygenase from plants. The Journal of Biological Chemistry 276 (27):25208–11. doi: 10.1074/jbc.M102146200.
  • Schweiggert, R. M., and R. Carle. 2017. Carotenoid deposition in plant and animal foods and its impact on bioavailability. Critical Reviews in Food Science and Nutrition 57 (9):1807–30. doi: 10.1080/10408398.2015.1012756.
  • Sena, C. d., K. M. Riedl, S. Narayanasamy, R. W. Curley, Jr., S. J. Schwartz, and E. H. Harrison. 2014. The human enzyme that converts dietary provitamin A carotenoids to vitamin A is a dioxygenase. The Journal of Biological Chemistry 289 (19):13661–6. doi: 10.1074/jbc.M114.557710.
  • Simpson, D. J., M. R. Baqar, and T. H. Lee. 1977. Chromoplast ultrastructure of Capsicum carotenoid mutants I. Ultrastructure and carotenoid composition of a new mutant. Zeitchrift für Pflanzenphysiologie 83:293–308. doi: 10.1016/S0044-328X(77)80154-2.
  • Simova, E. D., G. I. Frengova, and D. M. Beshkova. 2004. Synthesis of carotenoids by Rhodotorula rubra GED8 co-cultivated with yogurt starter cultures in whey ultraWltrate. Journal of Industrial Microbiology & Biotechnology 31 (3):115–21. doi: 10.1007/s10295-004-0122-0.
  • Song, J., R. E. Smart, R. G. Dambergs, A. M. Sparrow, R. B. Wells, H. Wang, and M. C. Qian. 2014. Pinot Noir wine composition from different vine vigour zones classified by remote imaging technology. Food Chemistry 153:52–9. doi: 10.1016/j.foodchem.2013.12.037.
  • Strauss, S., and S. I. Hoffman. 1985. The development of children’s concepts of death. Death Studies 9 (5–6):469–82. doi: 10.1080/07481188508252538.
  • Sui, X., A. C. Weitz, E. R. Farquhar, M. Badiee, S. Banerjee, J. von Lintig, G. P. Tochtrop, K. Palczewski, M. P. Hendrich, and P. D. Kiser. 2017. Structure and spectroscopy of alkene-cleaving dioxygenases containing an atypically coordinated non-heme iron center. Biochemistry 56 (22):2836–52. doi: 10.1021/acs.biochem.7b00251.
  • Sui, X., M. Golczak, J. Zhang, K. A. Kleinberg, J. von Lintig, K. Palczewski, and P. D. Kiser. 2015. Utilization of dioxygen by carotenoid cleavage oxygenases. The Journal of Biological Chemistry 290 (51):30212–23. doi: 10.1074/jbc.M115.696799.
  • Tavernini, L., C. Ottone, A. Illanes, and L. Wilson. 2020. Entrapment of enzyme aggregates in chitosan beads for aroma release in white wines. International Journal of Biological Macromolecules 154:1082–90. doi: 10.1016/j.ijbiomac.2020.03.031.
  • Thomas, L. D., S. Bandara, V. M. Parmar, R. Srinivasagan, N. Khadka, M. Golczak, P. D. Kiser, and J. von Lintig. 2020. The human mitochondrial enzyme BCO2 exhibits catalytic activity toward carotenoids and apocarotenoids. The Journal of Biological Chemistry 295 (46):15553–65. doi: 10.1074/jbc.RA120.015515.
  • Timmins, J. J. B., H. Kroukamp, I. T. Paulsen, and I. S. Pretorius. 2020. The sensory significance of apocarotenoids in wine: importance of carotenoid cleavage dioxygenase 1 (CCD1) in the production of β-ionone. Molecules 25 (12):2779. doi: 10.3390/molecules25122779.
  • Vasconcelos, B., J. C. Teixeira, G. Dragone, and J. A. Teixeira. 2019. Oleaginous yeasts for sustainable lipid production-from biodiesel to surf boards, a wide range of "green" applications. Applied Microbiology and Biotechnology 103 (9):3651–67. doi: 10.1007/s00253-019-09742-x.
  • Verdoes, J. C., P. Krubasik, G. Sandmann, and A. J. J. Van Ooyen. 1999. Isolation and functional characterisation of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Molecular & General Genetics : MGG 262 (3):453–61. doi: 10.1007/s004380051105.
  • Wang, J., B. Wu, N. Zhang, M. Zhao, T. Jing, Y. Wu, Y. Hu, F. Yu, X. Wan, W. Schwab, et al. 2020. Dehydration-induced carotenoid cleavage dioxygenase 1 reveals a novel route for β-ionone formation during tea (Camellia sinensis) withering. Journal of Agricultural and Food Chemistry 68 (39):10815–21. doi: 10.1021/acs.jafc.0c04208.
  • Wang, X.-C., A.-H. Li, M. Dizy, N. Ullah, W.-X. Sun, and Y.-S. Tao. 2017. Evaluation of aroma enhancement for “ "Ecolly" dry white wines by mixed inoculation of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae”. Food Chemistry 228:550–9. doi: 10.1016/j.foodchem.2017.01.113.
  • Winterhalter, P., and R. Rouseff. 2001. Carotenoid-derived aroma compounds: an introduction. In Carotenoid-derived aroma compounds, 1–17. Washington, DC: American Chemical Society, ACS Symposium Series. doi: 10.1021/bk-2002-0802.ch001.
  • Yabuzaki, J. 2017. Carotenoids database: structures, chemical fingerprints and distribution among organisms. Oxford Database 2017:1–11. doi: 10.1093/database/bax004.
  • Yadav, V. G., M. De Mey, C. G. Lim, P. K. Ajikumar, and G. Stephanopoulos. 2012. The future of metabolic engineering and synthetic biology: Towards a systematic practice. Metabolic Engineering 14 (3):233–41. doi: 10.1016/j.ymben.2012.02.001.
  • Yahyaa, M., A. Berim, T. Isaacson, S. Marzouk, E. Bar, R. Davidovich-Rikanati, E. Lewinsohn, and M. Ibdah. 2015. Isolation and functional characterization of carotenoid cleavage dioxygenase-1 from Laurus nobilis L. (Bay Laurel) fruits. Journal of Agricultural and Food Chemistry 63 (37):8275–82. doi: 10.1021/acs.jafc.5b02941.
  • Yoon, S.-H., S.-H. Lee, A. Das, H.-K. Ryu, H.-J. Jang, J.-Y. Kim, D.-K. Oh, J. D. Keasling, and S.-W. Kim. 2009. Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli. Journal of Biotechnology 140 (3-4):218–26. doi: 10.1016/j.jbiotec.2009.01.008.
  • Yuan, H., J. X. Zhang, D. Nageswaran, and L. Li. 2015. Carotenoid metabolism and regulation in horticultural crops. Horticulture Research 2:15036. doi: 10.1038/hortres.2015.36.
  • Zaas, A. K., M. Boyce, W. Schell, B. A. Lodge, J. L. Miller, and J. R. Perfect. 2003. Risk of fungemia due to Rhodotorula and antifungal susceptibility testing of Rhodotorula isolates. Journal of Clinical Microbiology 41 (11):5233–5. doi: 10.1128/JCM.41.11.5233-5235.2003.
  • Zhang, C., R. Zou, X. Chen, G. Stephanopoulos, and H.-P. Too. 2015. Experimental design-aided systematic pathway optimization of glucose uptake and deoxyxylulose phosphate pathway for improved amorphadiene production. Applied Microbiology and Biotechnology 99 (9):3825–37. doi: 10.1007/s00253-015-6463-y.
  • Zhang, C., V. Y. Seow, X. Chen, and H.-P. Too. 2018. Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli. Nature Communications 9 (1):1858. doi: 10.1038/s41467-018-04211-x.
  • Zhang, F., J. M. Carothers, and J. D. Keasling. 2012. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nature Biotechnology 30 (4):354–9. doi: 10.1038/nbt.2149.
  • Zheng, H., Q. Zhang, J. Quan, Q. Zheng, and W. Xi. 2016. Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps. Food Chemistry 205:112–21. doi: 10.1016/j.foodchem.2016.03.007.
  • Ziegelhoffer, E. C., and T. J. Donohue. 2009. Bacterial responses to photo-oxidative stress. Nature Reviews. Microbiology 7 (12):856–63. doi: 10.1038/nrmicro2237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.