1,305
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Overview of fermentation process: structure-function relationship on protein quality and non-nutritive compounds of plant-based proteins and carbohydrates

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &

References

  • Abd Razak, M. F., P. Sabaratnam, and R. Issa. 2015. Potential pathogens among fungi identified as nonsporulating molds from blood cultures. Journal of Biosciences and Medicines 03 (10):39–44. doi: 10.4236/jbm.2015.310005.
  • Achi, O. K., and, and M. Ukwuru. 2015. Cereal-based fermented foods of Africa as functional foods. International Journal of Microbiology and Application 2 (4):71–83.
  • Acosta-Estrada, B. A., J. A. Gutiérrez-Uribe, and S. O. Serna-Saldívar. 2014. Bound phenolics in foods, a review. Food Chemistry 152:46–55. doi: 10.1016/j.foodchem.2013.11.093.
  • Adebo, O. A., and, and I. Gabriela Medina-Meza. 2020. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules 25 (4):927. doi: 10.3390/molecules25040927.
  • Afify, A. E. M. M., H. S. El-Beltagi, S. M. Abd El-Salam, and A. A. Omran. 2012. Protein solubility, digestibility and fractionation after germination of sorghum varieties. PloS One 7 (2):e31154. doi: 10.1371/journal.pone.0031154.
  • Aguilera, Y., M. Dueñas, I. Estrella, T. Hernandez, V. Benitez, R. M. Esteban, and M. A. Martin-Cabrejas. 2010. Evaluation of phenolic profile and antioxidant properties of Pardina lentil as affected by industrial dehydration. Journal of Agricultural and Food Chemistry 58 (18):10101–8. doi: 10.1021/jf102222t.
  • Ahuja, H., S. Kaur, A. K. Gupta, S. Singh, and J. Kaur. 2015. Biochemical mapping of lentil (Lens culinaris Medik) genotypes for quality traits. Acta Physiologiae Plantarum 37 (9):1–16. doi: 10.1007/s11738-015-1928-2.
  • Aiello, F., D. Restuccia, U. G. Spizzirri, G. Carullo, M. Leporini, and M. R. Loizzo. 2020. Improving kefir bioactive properties by functional enrichment with plant and agro-food waste extracts. Fermentation 6 (3):83. doi: 10.3390/fermentation6030083.
  • Ajila, C. M., S. K. Brar, M. Verma, R. D. Tyagi, and J. R. Valéro. 2011. Solid-state fermentation of apple pomace using Phanerocheate chrysosporium–Liberation and extraction of phenolic antioxidants. Food Chemistry 126 (3):1071–80. doi: 10.1016/j.foodchem.2010.11.129.
  • Ali, Z., J. Li, Y. Zhang, N. Naeem, S. Younas, and F. Javeed. 2020. Dates (Phoenix dactylifera) and date vinegar: Preventive role against various diseases and related in vivo mechanisms. Food Reviews International: Advance online publication. doi: 10.1080/87559129.2020.1735411.
  • Alrosan, M., T. C. Tan, A. M. Easa, S. Gammoh, and M. H. Alu’datt. 2022c. Recent updates on lentil and quinoa protein-based dairy protein alternatives: Nutrition, technologies, and challenges. Food Chemistry 383:132386. doi: 10.1016/j.foodchem.2022.132386.
  • Alrosan, M., T.-C. Tan, A. M. Easa, S. Gammoh, and M. H. Alu’datt. 2021a. Molecular forces governing protein-protein interaction: Structure-function relationship of complexes protein in the food industry. Critical Reviews in Food Science and Nutrition :1–17. doi: 10.1080/10408398.2021.1871589.
  • Alrosan, M., T.-C. Tan, A. Mat Easa, S. Gammoh, and M. H. Alu’datt. 2021b. Effects of Fermentation on the quality, structure, and nonnutritive contents of lentil (Lens culinaris) proteins. Journal of Food Quality 2021:1–7. doi: 10.1155/2021/5556450.
  • Alshikh, N., A. C. de Camargo, and F. Shahidi. 2015. Phenolics of selected lentil cultivars: Antioxidant activities and inhibition of low-density lipoprotein and DNA damage. Journal of Functional Foods 18:1022–38. doi: 10.1016/j.jff.2015.05.018.
  • Amarowicz, R., I. Estrella, T. Hernández, M. Dueñas, A. Troszyńska, A. Kosińska, and R. B. Pegg. 2009. Antioxidant activity of a red lentil extract and its fractions. International Journal of Molecular Sciences 10 (12):5513–27. doi: 10.3390/ijms10125513.
  • Amarowicz, R., I. Estrella, T. Hernández, S. Robredo, A. Troszyńska, A. Kosińska, and R. B. Pegg. 2010. Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chemistry 121 (3):705–11. doi: 10.1016/j.foodchem.2010.01.009.
  • Arbab Sakandar, H., Y. Chen, C. Peng, X. Chen, M. Imran, and H. Zhang. 2021. Impact of fermentation on antinutritional factors and protein degradation of legume seeds: A review. Food Reviews International: Advance online publication. doi: 10.1080/87559129.2021.1931300.
  • Aruna, T. E., O. C. Aworh, A. O. Raji, and A. I. Olagunju. 2017. Protein enrichment of yam peels by fermentation with Saccharomyces cerevisiae (BY4743). Annals of Agricultural Sciences 62 (1):33–7. doi: 10.1016/j.aoas.2017.01.002.
  • Atalar, I. 2019. Functional kefir production from high pressure homogenized hazelnut milk. LWT 107:256–63. doi: 10.1016/j.lwt.2019.03.013.
  • Ayala-Niño, A., G. M. Rodríguez-Serrano, R. Jiménez-Alvarado, M. Bautista-Avila, J. A. Sánchez-Franco, L. G. González-Olivares, and A. Cepeda-Saez. 2019. Bioactivity of peptides released during lactic fermentation of amaranth proteins with potential cardiovascular protective effect: An in vitro study. Journal of Medicinal Food 22 (10):976–81. doi: 10.1089/jmf.2019.0039.
  • Azi, F., C. Tu, H. A. Rasheed, and M. Dong. 2020. Comparative study of the phenolics, antioxidant and metagenomic composition of novel soy whey‐based beverages produced using three different water kefir microbiota. International Journal of Food Science & Technology 55 (4):1689–97. doi: 10.1111/ijfs.14439.
  • Bach, A., S. Calsamiglia, and M. D. Stern. 2005. Nitrogen metabolism in the rumen. Journal of Dairy Science 88:E9–E21. doi: 10.3168/jds.S0022-0302(05)73133-7.
  • Barakat, H., V. Reim, and S. Rohn. 2015. Stability of saponins from chickpea, soy and faba beans in vegetarian, broccoli-based bars subjected to different cooking techniques. Food Research International 76:142–9. doi: 10.1016/j.foodres.2015.03.043.
  • Bayu, A., M. F. Warsito, M. Y. Putra, S. Karnjanakom, and G. Guan. 2021. Macroalgae-derived rare sugars: Applications and catalytic synthesis. Carbon Resources Conversion 4:150–63. doi: 10.1016/j.crcon.2021.04.002.
  • Berrazaga, I., V. Micard, M. Gueugneau, and S. Walrand. 2019. The role of the anabolic properties of plant-versus animal-based protein sources in supporting muscle mass maintenance: A critical review. Nutrients 11 (8):1825. doi: 10.3390/nu11081825.
  • Bourrie, B. C. T., C. Richard, and B. P. Willing. 2020. Kefir in the prevention and treatment of obesity and metabolic disorders. Current Nutrition Reports 9 (3):184–92. doi: 10.1007/s13668-020-00315-3.
  • Çabuk, B., M. G. Nosworthy, A. K. Stone, D. R. Korber, T. Tanaka, J. D. House, and M. T. Nickerson. 2018. Effect of fermentation on the protein digestibility and levels of non-nutritive compounds of pea protein concentrate. Food Technology and Biotechnology 56 (2):257–64. doi: 10.17113/ftb.56.02.18.5450.
  • Cai, L., T. Giraud, N. Zhang, D. Begerow, G. Cai, and R. G. Shivas. 2011. The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fungal Diversity 50 (1):121–33. doi: 10.1007/s13225-011-0127-8.
  • Chandra-Hioe, M. V., C. H. M. Wong, and J. Arcot. 2016. The potential use of fermented chickpea and faba bean flour as food ingredients. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 71 (1):90–5. doi: 10.1007/s11130-016-0532-y.
  • Chandrasekara, A., and, and F. Shahidi. 2018. Herbal beverages: Bioactive compounds and their role in disease risk reduction - A review. Journal of Traditional and Complementary Medicine 8 (4):451–8. doi: 10.1016/j.jtcme.2017.08.006.
  • Chaves-López, C., C. Rossi, F. Maggio, A. Paparella, and A. Serio. 2020. Changes occurring in spontaneous maize fermentation: An overview. Fermentation 6 (1):36. doi: 10.3390/fermentation6010036.
  • Chaves-López, C., A. Serio, A. Paparella, M. Martuscelli, A. Corsetti, R. Tofalo, and G. Suzzi. 2014. Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk. Food Microbiology 42:117–21. doi: 10.1016/j.fm.2014.03.005.
  • Chawla, P., L. Bhandari, P. K. Sadh, and R. Kaushik. 2017. Impact of solid‐state fermentation (Aspergillus oryzae) on functional properties and mineral bioavailability of Black‐eyed pea (Vigna unguiculata) seed flour. Cereal Chemistry Journal 94 (3):437–42. doi: 10.1094/CCHEM-05-16-0128-R.
  • Chua, J. Y., S. J. Tan, and S. Q. Liu. 2021. The impact of mixed amino acids supplementation on Torulaspora delbrueckii growth and volatile compound modulation in soy whey alcohol fermentation. Food Research International (Ottawa, Ont.) 140:109901. doi: 10.1016/j.foodres.2020.109901.
  • Clark, A. J., B. K. Soni, B. Sharkey, T. Acree, E. Lavin, H. M. Bailey, H. H. Stein, A. Han, M. Elie, and M. Nadal. 2022. Shiitake mycelium fermentation improves digestibility, nutritional value, flavor and functionality of plant proteins. LWT 156:113065. doi: 10.1016/j.lwt.2021.113065.
  • da Silva Fernandes, M., F. S. Lima, D. Rodrigues, C. Handa, M. Guelfi, S. Garcia, and E. I. Ida. 2017. Evaluation of the isoflavone and total phenolic contents of kefir-fermented soymilk storage and after the in vitro digestive system simulation. Food Chemistry 229:373–80. doi: 10.1016/j.foodchem.2017.02.095.
  • Dakhili, S., L. Abdolalizadeh, S. M. Hosseini, S. Shojaee-Aliabadi, and L. Mirmoghtadaie. 2019. Quinoa protein: Composition, structure and functional properties. Food Chemistry 299:125161. doi: 10.1016/j.foodchem.2019.125161.
  • Daliri, E. B.-M., B. H. Lee, M. H. Park, J.-H. Kim, and D.-H. Oh. 2018. Novel angiotensin I-converting enzyme inhibitory peptides from soybean protein isolates fermented by Pediococcus pentosaceus SDL1409. LWT 93:88–93. doi: 10.1016/j.lwt.2018.03.026.
  • Dallas, D. C., N. M. Murray, and J. Gan. 2015. Proteolytic systems in milk: Perspectives on the evolutionary function within the mammary gland and the infant. Journal of Mammary Gland Biology and Neoplasia 20 (3–4):133–47. doi: 10.1007/s10911-015-9334-3.
  • Dawood, M. A. O., and, and S. Koshio. 2020. Application of fermentation strategy in aquafeed for sustainable aquaculture. Reviews in Aquaculture 12 (2):987–1002. doi: 10.1111/raq.12368.
  • D’Este, M., M. Alvarado-Morales, and I. Angelidaki. 2018. Amino acids production focusing on fermentation technologies - A review. Biotechnology Advances 36 (1):14–25. doi: 10.1016/j.biotechadv.2017.09.001.
  • Dey, T. B., S. Chakraborty, K. K. Jain, A. Sharma, and R. C. Kuhad. 2016. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends in Food Science & Technology 53:60–74. doi: 10.1016/j.tifs.2016.04.007.
  • Diether, N. E., and, and B. P. Willing. 2019. Microbial fermentation of dietary protein: An important factor in diet–microbe–host interaction. Microorganisms 7 (1):19. doi: 10.3390/microorganisms7010019.
  • Đorđević, T. M., S. S. Šiler-Marinković, and S. I. Dimitrijević-Branković. 2010. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chemistry 119 (3):957–63. doi: 10.1016/j.foodchem.2009.07.049.
  • Du, M., Huang, S., Zhang, J., Wang, J., Hu, L., and Jiang, J. 2014. Isolation of total saponins from Sapindus mukorossi Gaerth.Open Journal of Forestry, 04(01), 24, 27.04. doi: 10.4236/ojf.2014.410.
  • Dueñas, M., T. Hernandez, and I. Estrella. 2006. Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chemistry 98 (1):95–103. doi: 10.1016/j.foodchem.2005.05.052.
  • Duodu, K. G., J. R. N. Taylor, P. S. Belton, and B. R. Hamaker. 2003. Factors affecting sorghum protein digestibility. Journal of Cereal Science 38 (2):117–31. doi: 10.1016/S0733-5210(03)00016-X.
  • Duong, T. H., K. Grolle, T. T. V. Nga, G. Zeeman, H. Temmink, and M. van Eekert. 2019. Protein hydrolysis and fermentation under methanogenic and acidifying conditions. Biotechnology for Biofuels 12 (1):1–10. doi: 10.1186/s13068-019-1592-7.
  • Elsohaimy, S. A., T. M. Refaay, and M. A. M. Zaytoun. 2015. Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Sciences 60 (2):297–305. doi: 10.1016/j.aoas.2015.10.007.
  • Félix, F. K., C. do, L. A. J. Letti, G. Vinícius de Melo Pereira, P. G. B. Bonfim, V. T. Soccol, and C. R. Soccol. 2019. L-lysine production improvement: A review of the state of the art and patent landscape focusing on strain development and fermentation technologies. Critical Reviews in Biotechnology 39 (8):1031–55. doi: 10.1080/07388551.2019.1663149.
  • Fenwick, D. E., and, and D. Oakenfull. 1983. Saponin content of food plants and some prepared foods. Journal of the Science of Food and Agriculture 34 (2):186–91. doi: 10.1002/jsfa.2740340212.
  • Fiorda, F. A., G. V. de Melo Pereira, V. Thomaz-Soccol, S. K. Rakshit, M. G. B. Pagnoncelli, L. P. de Souza Vandenberghe, and C. R. Soccol. 2017. Microbiological, biochemical, and functional aspects of sugary kefir fermentation - A review. Food Microbiology 66:86–95. doi: 10.1016/j.fm.2017.04.004.
  • Food and Agriculture Organization (FAO). 2013. Dietary protein quality evaluation in human nutrition. Report of an FAO Expert Consultation. Food and Agriculture Organization of the United Nations, Rome. Accessed February 20, 2022. https://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf.
  • García-Lomillo, J., M. L. Gonzalez-SanJose, R. Del Pino-García, M. D. Rivero-Perez, and P. Muniz-Rodriguez. 2014. Antioxidant and antimicrobial properties of wine byproducts and their potential uses in the food industry. Journal of Agricultural and Food Chemistry 62 (52):12595–602. doi: 10.1021/jf5042678.
  • Gu, L., G. Tao, W. Gu, and R. L. Prior. 2002. Determination of soyasaponins in soy with LC-MS following structural unification by partial alkaline degradation. Journal of Agricultural and Food Chemistry 50 (24):6951–9. doi: 10.1021/jf0257300.
  • Gupta, R. K., S. S. Gangoliya, and N. K. Singh. 2015. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology 52 (2):676–84. doi: 10.1007/s13197-013-0978-y.
  • Guzel-Seydim, Z. B., T. Kok-Tas, A. K. Greene, and A. C. Seydim. 2011. Review: Functional properties of kefir. Critical Reviews in Food Science and Nutrition 51 (3):261–8. doi: 10.1080/10408390903579029.
  • Guzmán-Ortiz, F. A., E. San Martín-Martínez, M. E. Valverde, Y. Rodríguez-Aza, J. D. J. Berríos, and R. Mora-Escobedo. 2017. Profile analysis and correlation across phenolic compounds, isoflavones and antioxidant capacity during germination of soybeans (Glycine max L.). CyTA - Journal of Food 15 (4):516–24. doi: 10.1080/19476337.2017.1302995.
  • Han, H., and, and B. Baik. 2008. Antioxidant activity and phenolic content of lentils (Lens culinaris), chickpeas (Cicer arietinum L.), peas (Pisum sativum L.) and soybeans (Glycine max), and their quantitative changes during processing. International Journal of Food Science & Technology 43 (11):1971–8. doi: 10.1111/j.1365-2621.2008.01800.x.
  • Heng, L., J.-P. Vincken, G. van Koningsveld, A. Legger, H. Gruppen, T. van Boekel, J. Roozen, and F. Voragen. 2006. Bitterness of saponins and their content in dry peas. Journal of the Science of Food and Agriculture 86 (8):1225–31. doi: 10.1002/jsfa.2473.
  • Hikmetoglu, M., E. Sogut, O. Sogut, C. Gokirmakli, and Z. B. Guzel-Seydim. 2020. Changes in carbohydrate profile in kefir fermentation. Bioactive Carbohydrates and Dietary Fibre 23:100220. doi: 10.1016/j.bcdf.2020.100220.
  • Hotz, C., and, and R. S. Gibson. 2007. Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. The Journal of Nutrition 137 (4):1097–100. doi: 10.1093/jn/137.4.1097.
  • Ikeda, M. 2017. Lysine fermentation: History and genome breeding. Advances in Biochemical Engineering/Biotechnology 159:73–102. doi: 10.1007/10_2016_27.
  • Jannathulla, R., J. S. Dayal, D. Vasanthakumar, K. Ambasankar, and M. Muralidhar. 2017. Effect of fermentation methods on amino acids, fiber fractions and anti-nutritional factors in different plant protein sources and essential amino acid index for Penaeus vannamei Boone, 1931. Indian Journal of Fisheries 64 (2):40–7. doi: 10.21077/ijf.2017.64.2.60341-07.
  • Jarpa-Parra, M., F. Bamdad, Y. Wang, Z. Tian, F. Temelli, J. Han, and L. Chen. 2014. Optimization of lentil protein extraction and the influence of process pH on protein structure and functionality. LWT - Food Science and Technology 57 (2):461–9. doi: 10.1016/j.lwt.2014.02.035.
  • Jia, J., B. Ji, L. Tian, M. Li, M. Lu, L. Ding, X. Liu, and X. Duan. 2021. Mechanism study on enhanced foaming properties of individual albumen proteins by Lactobacillus fermentation. Food Hydrocolloids. 111:106218. doi: 10.1016/j.foodhyd.2020.106218.
  • Karagozlu, C., G. Unal, A. S. Akalin, E. Akan, and O. Kinik. 2017. The effects of black and green tea on antioxidant activity and sensory characteristics of kefir. Agro FOOD Industry Hi Tech 28:77–80.
  • Kårlund, A., C. Gómez-Gallego, J. Korhonen, O.-M. Palo-Oja, H. El-Nezami, and M. Kolehmainen. 2020. Harnessing microbes for sustainable development: Food fermentation as a tool for improving the nutritional quality of alternative protein sources. Nutrients 12 (4):1020. doi: 10.3390/nu12041020.
  • Kesenkas, H. O. Gursoy, and H. Ozbas. 2017. Kefir. In Fermented foods in health and disease prevention. 1st ed., ed. J. Frías, C. Martínez-Villaluenga, and E. Peñas, 339–61. Amsterdam: Elsevier.
  • Khaire, K. C., K. Sharma, A. Thakur, V. S. Moholkar, and A. Goyal. 2021. Extraction and characterization of xylan from sugarcane tops as a potential commercial substrate. Journal of Bioscience and Bioengineering 131 (6):647–54. doi: 10.1016/j.jbiosc.2021.01.009.
  • Kim, H., L. E. Caulfield, V. Garcia‐Larsen, L. M. Steffen, J. Coresh, and C. M. Rebholz. 2019. Plant‐based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all‐cause mortality in a general population of middle‐aged adults. Journal of the American Heart Association 8 (16):e012865. doi: 10.1161/JAHA.119.012865.
  • Kim, D.-H., D. Jeong, Y.-T. Oh, K.-Y. Song, H.-S. Kim, J.-W. Chon, H. Kim, and K.-H. Seo. 2017. Stimulating the growth of kefir-isolated lactic acid bacteria using addition of crude flaxseed (Linum usitatissimum L.) extract. Journal of Milk Science and Biotechnology 35 (2):93–7. doi: 10.22424/jmsb.2017.35.2.93.
  • Kıvanç, M., and, and E. Yapıcı. 2015. Kefir as a probiotic dairy beverage: Determination lactic acid bacteria and yeast. International Journal of Food Engineering 1 (1):55–60. doi: 10.18178/ijfe.1.1.55-60.
  • Koh, W. Y., U. Utra, R. Ahmad, I. A. Rather, and Y.-H. Park. 2018. Evaluation of probiotic potential and anti-hyperglycemic properties of a novel Lactobacillus strain isolated from water kefir grains. Food Science and Biotechnology 27 (5):1369–76. doi: 10.1007/s10068-018-0360-y.
  • Kumar, R., S. Balaji, T. S. Uma, A. B. Mandal, and P. K. Sehgal. 2010. Optimization of influential parameters for extracellular keratinase production by Bacillus subtilis (MTCC9102) in solid state fermentation using horn meal-a biowaste management. Applied Biochemistry and Biotechnology 160 (1):30–9. doi: 10.1007/s12010-008-8452-4.
  • Kumitch, H. M., A. K. Stone, M. T. Nickerson, D. R. Korber, and T. Tanaka. 2020. Effect of fermentation time on the physicochemical and functional properties of pea protein‐enriched flour fermented by Aspergillus oryzae and Aspergillus niger. Cereal Chemistry 97 (2):416–28. doi: 10.1002/cche.10257.
  • Lagouri, V., G. Dimitreli, and A. Kouvatsi. 2019. Effects of Greek pomegranate extracts in the antioxidant properties and storage stability of kefir. Current Bioactive Compounds 15 (4):437–41. doi: 10.2174/1573407214666180808113450.
  • Lai, L.-R., S.-C. Hsieh, H.-Y. Huang, and C.-C. Chou. 2013. Effect of lactic fermentation on the total phenolic, saponin and phytic acid contents as well as anti-colon cancer cell proliferation activity of soymilk. Journal of Bioscience and Bioengineering 115 (5):552–6. doi: 10.1016/j.jbiosc.2012.11.022.
  • Lam, A. C. Y., A. Can Karaca, R. T. Tyler, and M. T. Nickerson. 2018. Pea protein isolates: Structure, extraction, and functionality. Food Reviews International 34 (2):126–47. doi: 10.1080/87559129.2016.1242135.
  • Li, M., D. J. Cha, Y. Lai, A. E. Villaruz, D. E. Sturdevant, and M. Otto. 2007. The antimicrobial peptide-sensing system aps of Staphylococcus aureus . Molecular Microbiology 66 (5):1136–47. doi: 10.1111/j.1365-2958.2007.05986.x.
  • Liu, Q., C. Wang, G. Guo, W. J. Huo, Y. L. Zhang, C. X. Pei, S. L. Zhang, and H. Wang. 2018. Effects of branched-chain volatile fatty acids supplementation on growth performance, ruminal fermentation, nutrient digestibility, hepatic lipid content and gene expression of dairy calves. Animal Feed Science and Technology 237:27–34. doi: 10.1016/j.anifeedsci.2018.01.006.
  • Liyana-Pathirana, C. M., and, and F. Shahidi. 2006. Importance of insoluble-bound phenolics to antioxidant properties of wheat. Journal of Agricultural and Food Chemistry 54 (4):1256–64. doi: 10.1021/jf052556h.
  • Melini, F., V. Melini, F. Luziatelli, A. G. Ficca, and M. Ruzzi. 2019. Health-promoting components in fermented foods: An up-to-date systematic review. Nutrients 11 (5):1189. doi: 10.3390/nu11051189.
  • Mirali, M., S. J. Ambrose, S. A. Wood, A. Vandenberg, and R. W. Purves. 2014. Development of a fast extraction method and optimization of liquid chromatography-mass spectrometry for the analysis of phenolic compounds in lentil seed coats. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 969:149–61. doi: 10.1016/j.jchromb.2014.08.007.
  • Miron, Y., G. Zeeman, J. B. van Lier, and G. Lettinga. 2000. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Research 34 (5):1705–13. doi: 10.1016/S0043-1354(99)00280-8.
  • Mohamedshah, F. Y. 2020. New U.S. dietary guidelines encourage people to make every bite count. Accessed February 20, 2022. https://www.ift.org/news-and-publications/blog/2021/new-us-dietary-guidelines.
  • Moore, D. R., and P. B. Soeters. 2015. The biological value of protein. In The importance of nutrition as an integral part of disease management, ed. R. F. Meier, B. R. Reddy, and P. B. Soeters, vol. 82, 39–51. Basel: Karger AG.
  • Mudryj, A. N., N. Yu, and H. M. Aukema. 2014. Nutritional and health benefits of pulses. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme 39 (11):1197–204. doi: 10.1139/apnm-2013-0557.
  • Nardini, M., and, and A. Ghiselli. 2004. Determination of free and bound phenolic acids in beer. Food Chemistry 84 (1):137–43. doi: 10.1016/S0308-8146(03)00257-7.
  • Nkhata, S. G., E. Ayua, E. H. Kamau, and J. Shingiro. 2018. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science & Nutrition 6 (8):2446–58. doi: 10.1002/fsn3.846.
  • Ogodo, A. C., O. C. Ugbogu, R. A. Onyeagba, and H. C. Okereke. 2019. Microbiological quality, proximate composition and in vitro starch/protein digestibility of Sorghum bicolor flour fermented with lactic acid bacteria consortia. Chemical and Biological Technologies in Agriculture 6 (1):7. doi: 10.1186/s40538-019-0145-4.
  • Omemu, A. M., and, and O. W. Faniran. 2011. Assessment of the antimicrobial activity of lactic acid bacteria isolated from two fermented maize products-ogi and kunnu-zaki. Malaysian Journal of Microbiology 7 (3):124–8. doi: 10.21161/mjm.25710.
  • Oomah, B. D., F. Caspar, L. J. Malcolmson, and A.-S. Bellido. 2011. Phenolics and antioxidant activity of lentil and pea hulls. Food Research International 44 (1):436–41. doi: 10.1016/j.foodres.2010.09.027.
  • Osman, M. A. 2004. Changes in sorghum enzyme inhibitors, phytic acid, tannins and in vitro protein digestibility occurring during Khamir (local bread) fermentation. Food Chemistry 88 (1):129–34. doi: 10.1016/j.foodchem.2003.12.038.
  • Osman, C., D. R. Voelker, and T. Langer. 2011. Making heads or tails of phospholipids in mitochondria. The Journal of Cell Biology 192 (1):7–16. doi: 10.1083/jcb.201006159.
  • Özogul, F., and, and I. Hamed. 2018. The importance of lactic acid bacteria for the prevention of bacterial growth and their biogenic amines formation: A review. Critical Reviews in Food Science and Nutrition 58 (10):1660–70. doi: 10.1080/10408398.2016.1277972.
  • Päivärinta, E., S. T. Itkonen, T. Pellinen, M. Lehtovirta, M. Erkkola, and A. M. Pajari. 2020. Replacing animal-based proteins with plant-based proteins changes the composition of a whole Nordic diet—a randomised clinical trial in healthy Finnish adults. Nutrients 12 (4):943. doi: 10.3390/nu12040943.
  • Panwar, R., N. Kumar, V. Kashyap, C. Ram, and R. Kapila. 2019. Aflatoxin M1 detoxification ability of probiotic lactobacilli of Indian origin in in vitro digestion model. Probiotics and Antimicrobial Proteins 11 (2):460–9. doi: 10.1007/s12602-018-9414-y.
  • Patel, S., S. Shukla. 2017. Fermentation of food wastes for generation of nutraceuticals and supplements. In Fermented foods in health and disease prevention. 1st ed., ed. J. Frías, C. Martínez-Villaluenga, and E. Peñas, 707–34. Amsterdam: Elsevier.
  • Pathak, A. P., M. G. Rathod, M. P. Mahabole, and R. S. Khairnar. 2020. Enhanced catalytic activity of Bacillus aryabhattai P1 protease by modulation with nanoactivator. Heliyon 6 (6):e04053. doi: 10.1016/j.heliyon.2020.e04053.
  • Pazoki, A., G. R. Ghorbani, S. Kargar, A. Sadeghi-Sefidmazgi, J. K. Drackley, and M. H. Ghaffari. 2017. Growth performance, nutrient digestibility, ruminal fermentation, and rumen development of calves during transition from liquid to solid feed: Effects of physical form of starter feed and forage provision. Animal Feed Science and Technology 234:173–85. doi: 10.1016/j.anifeedsci.2017.06.004.
  • Petrova, P., and, and K. Petrov. 2020. Lactic acid fermentation of cereals and pseudocereals: Ancient nutritional biotechnologies with modern applications. Nutrients 12 (4):1118. doi: 10.3390/nu12041118.
  • Pranoto, Y., S. Anggrahini, and Z. Efendi. 2013. Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of sorghum flour. Food Bioscience 2:46–52. doi: 10.1016/j.fbio.2013.04.001.
  • Price, K. R., I. T. Johnson, G. R. Fenwick, and M. R. Malinow. 1987. The chemistry and biological significance of saponins in foods and feedingstuffs. Critical Reviews in Food Science and Nutrition 26 (1):27–135. doi: 10.1080/10408398709527461.
  • Puerari, C., K. T. Magalhães, and R. F. Schwan. 2012. New cocoa pulp-based kefir beverages: Microbiological, chemical composition and sensory analysis. Food Research International 48 (2):634–40. doi: 10.1016/j.foodres.2012.06.005.
  • Randazzo, W., O. Corona, R. Guarcello, N. Francesca, M. A. Germanà, H. Erten, G. Moschetti, and L. Settanni. 2016. Development of new non-dairy beverages from Mediterranean fruit juices fermented with water kefir microorganisms. Food Microbiology 54:40–51. doi: 10.1016/j.fm.2015.10.018.
  • Reif, T. M., S. Zikeli, A.-M. Rieps, C. P. Lang, J. Hartung, and S. Gruber. 2020. Reviving a neglected crop: A case study on lentil (Lens culinaris Medikus subsp. culinaris) cultivation in Germany. Sustainability 13 (1):133. doi: 10.3390/su13010133.
  • Reyes‐Moreno, C., E. O. Cuevas‐Rodríguez, J. Milán‐Carrillo, O. G. Cárdenas‐Valenzuela, and J. Barrón‐Hoyos. 2004. Solid state fermentation process for producing chickpea (Cicer arietinum L) tempeh flour. Physicochemical and nutritional characteristics of the product. Journal of the Science of Food and Agriculture 84 (3):271–8. doi: 10.1002/jsfa.1637.
  • Rodrigues, K. L., T. H. Araújo, J. M. Schneedorf, C. de Souza Ferreira, G. Moraes, O. I. de, R. S. Coimbra, and M. R. Rodrigues. 2016. A novel beer fermented by kefir enhances anti-inflammatory and anti-ulcerogenic activities found isolated in its constituents. Journal of Functional Foods 21:58–69. doi: 10.1016/j.jff.2015.11.035.
  • Ruiz, R. G., K. R. Price, A. E. Arthur, M. E. Rose, M. J. C. Rhodes, and R. G. Fenwick. 1996. Effect of soaking and cooking on the saponin content and composition of chickpeas (Cicer arietinum) and lentils (Lens culinaris). Journal of Agricultural and Food Chemistry 44 (6):1526–30. doi: 10.1021/jf950721v.
  • Sagratini, G., Y. Zuo, G. Caprioli, G. Cristalli, D. Giardinà, F. Maggi, L. Molin, M. Ricciutelli, P. Traldi, and S. Vittori. 2009. Quantification of soyasaponins I and βg in Italian lentil seeds by solid-phase extraction (SPE) and high-performance liquid chromatography-mass spectrometry (HPLC-MS). Journal of Agricultural and Food Chemistry 57 (23):11226–33. doi: 10.1021/jf901707z.
  • Salem, A. Z. M., H. M. Gado, D. Colombatto, and M. M. Y. Elghandour. 2013. Effects of exogenous enzymes on nutrient digestibility, ruminal fermentation and growth performance in beef steers. Livestock Science 154 (1–3):69–73. doi: 10.1016/j.livsci.2013.02.014.
  • Samtiya, M., R. E. Aluko, A. K. Puniya, and T. Dhewa. 2021. Enhancing micronutrients bioavailability through fermentation of plant-based foods: A concise review. Fermentation 7 (2):63. doi: 10.3390/fermentation7020063.
  • Sasaki, K., M. Morita, D. Sasaki, J. Nagaoka, N. Matsumoto, N. Ohmura, and H. Shinozaki. 2011. Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus. Journal of Bioscience and Bioengineering 112 (5):469–72. doi: 10.1016/j.jbiosc.2011.07.003.
  • Shahidi, F., and, and J. Yeo. 2016. Insoluble-bound phenolics in food. Molecules 21 (9):1216. doi: 10.3390/molecules21091216.
  • Shi, Y., A. Singh, D. D. Kitts, and A. Pratap-Singh. 2021. Lactic acid fermentation: A novel approach to eliminate unpleasant aroma in pea protein isolates. LWT 150:111927. doi: 10.1016/j.lwt.2021.111927.
  • Shi, J., S. J. Xue, Y. Ma, D. Li, Y. Kakuda, and Y. Lan. 2009. Kinetic study of saponins B stability in navy beans under different processing conditions. Journal of Food Engineering 93 (1):59–65. doi: 10.1016/j.jfoodeng.2008.12.035.
  • Singh, A. K., J. Rehal, A. Kaur, and G. Jyot. 2015. Enhancement of attributes of cereals by germination and fermentation: A review. Critical Reviews in Food Science and Nutrition 55 (11):1575–89. doi: 10.1080/10408398.2012.706661.
  • Singh, B., J. P. Singh, N. Singh, and A. Kaur. 2017. Saponins in pulses and their health promoting activities: A review. Food Chemistry 233:540–9. doi: 10.1016/j.foodchem.2017.04.161.
  • Singh, P. K., M. Singh, and D. Vyas. 2010. Biocontrol of Fusarium Wilt of Chickpea using Arbuscular Mycorrhizal Fungi and Rhizobium leguminosorum Biovar. Caryologia 63 (4):349–53. doi: 10.1080/00087114.2010.10589745.
  • Srivastava, R. P., and, and H. Vasishtha. 2012. Saponins and lectins of Indian chickpeas (Cicer arietinum) and lentils (Lens culinaris). Indian Journal of Agricultural Biochemistry 25 (1):44–7.
  • Srivastava, R. P., and, and H. Vasishtha. 2013. Soaking and cooking effect on sapogenols of chickpeas (Cicer arietinum). Current Advances in Agricultural Sciences 5 (1):141–3.
  • Suárez-Estrella, D., G. Borgonovo, S. Buratti, P. Ferranti, F. Accardo, M. A. Pagani, and A. Marti. 2021. Sprouting of quinoa (Chenopodium quinoa Willd.): Effect on saponin content and relation to the taste and astringency assessed by electronic tongue. LWT 144:111234. doi: 10.1016/j.lwt.2021.111234.
  • Thakur, M. K. Singh, and R. Khedkar. 2020. Phytochemicals: Extraction process, safety assessment, toxicological evaluations, and regulatory issues. In Functional and preservative properties of phytochemicals, ed. B. Prakash, 341–61. Amsterdam: Elsevier.
  • Tu, C., F. Azi, J. Huang, X. Xu, G. Xing, and M. Dong. 2019. Quality and metagenomic evaluation of a novel functional beverage produced from soy whey using water kefir grains. LWT 113:108258. doi: 10.1016/j.lwt.2019.108258.
  • Untersmayr, E., and, and E. Jensen-Jarolim. 2008. The role of protein digestibility and antacids on food allergy outcomes. The Journal of Allergy and Clinical Immunology 121 (6):1301–8. doi: 10.1016/j.jaci.2008.04.025.
  • Urbano, G. J. M. Porres, J. Frías, and C. Vidal-Valverde. 2007. Nutritional Value. In Lentil: An ancient crop for modern times, ed. S. S. Yadav, D. McNeil, and P. C. Stevenson, 47–93. Dordrecht: Springer. doi: 10.1007/978-1-4020-6313-8_5
  • Valanciene, E., I. Jonuskiene, M. Syrpas, E. Augustiniene, P. Matulis, A. Simonavicius, and N. Malys. 2020. Advances and prospects of phenolic acids production, biorefinery and analysis. Biomolecules 10 (6):874. doi: 10.3390/biom10060874.
  • Viridiana, C. R. D. A. Lidia, P. L. Audry, and H. S. Humberto. 2018. Lactic acid bacteria isolated from vegetable fermentations: Probiotic characteristics. In Reference module in food science. Amsterdam: Elsevier. doi: 10.1016/B978-0-08-100596-5.22601-2.
  • Wang, Z., Y. Li, L. Jiang, B. Qi, and L. Zhou. 2014. Relationship between secondary structure and surface hydrophobicity of soybean protein isolate subjected to heat treatment. Journal of Chemistry 2014:1–doi: 10. 1155/2014/475389. doi: 10.1155/2014/475389.
  • Wang, R., P. Xu, Z. Chen, X. Zhou, and T. Wang. 2019. Complexation of rice proteins and whey protein isolates by structural interactions to prepare soluble protein composites. LWT 101:207–13. doi: 10.1016/j.lwt.2018.11.006.
  • Wu, S., Z. F. Bhat, R. S. Gounder, I. A. Ahmed, F. Y. Al-Juhaimi, Y. Ding, and A. E. D. Bekhit. 2022. Effect of dietary protein and processing on gut microbiota – A systematic review. Nutrients 14 (3):453. doi: 10.3390/nu14030453.
  • Wu, Q., Y. Wang, and M. Guo. 2011. Triterpenoid saponins from the seeds of Celosia argentea and their anti-inflammatory and antitumor activities. Chemical & Pharmaceutical Bulletin 59 (5):666–71. doi: 10.1248/cpb.59.666.
  • Xiao, Y., X. Rui, G. Xing, H. Wu, W. Li, X. Chen, M. Jiang, and M. Dong. 2015. Solid state fermentation with Cordyceps militaris SN-18 enhanced antioxidant capacity and DNA damage protective effect of oats (Avena sativa L.). Journal of Functional Foods 16:58–73. doi: 10.1016/j.jff.2015.04.032.
  • Xu, M., Z. Jin, Y. Lan, J. Rao, and B. Chen. 2019. HS-SPME-GC-MS/olfactometry combined with chemometrics to assess the impact of germination on flavor attributes of chickpea, lentil, and yellow pea flours. Food Chemistry 280:83–95. doi: 10.1016/j.foodchem.2018.12.048.
  • Yasar, S., R. Tosun, and Z. Sonmez. 2020. Fungal fermentation inducing improved nutritional qualities associated with altered secondary protein structure of soybean meal determined by FTIR spectroscopy. Measurement 161:107895. doi: 10.1016/j.measurement.2020.107895.
  • Yilmaz, B., H. Sharma, E. Melekoglu, and F. Ozogul. 2022. Recent developments in dairy kefir-derived lactic acid bacteria and their health benefits. Food Bioscience 46:101592. doi: 10.1016/j.fbio.2022.101592.
  • Zhang, B., Z. Deng, D. D. Ramdath, Y. Tang, P. X. Chen, R. Liu, Q. Liu, and R. Tsao. 2015. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chemistry 172:862–72. doi: 10.1016/j.foodchem.2014.09.144.
  • Zhao, Y., S. Du, H. Wang, and M. Cai. 2014. In vitro antioxidant activity of extracts from common legumes. Food Chemistry 152:462–6. doi: 10.1016/j.foodchem.2013.12.006.
  • Zhu, Y., Z. Wang, and L. Zhang. 2019. Optimization of lactic acid fermentation conditions for fermented tofu whey beverage with high-isoflavone aglycones. LWT 111:211–7. doi: 10.1016/j.lwt.2019.05.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.