582
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

A review on recent advances in LED-based non-thermal technique for food safety: current applications and future trends

ORCID Icon, , , ORCID Icon, , , , ORCID Icon & ORCID Icon show all

References

  • Alferez, F., H.-L. Liao, and J. K. Burns. 2012. Blue light alters infection by Penicillium digitatum in tangerines. Postharvest Biology and Technology 63 (1):11–5. doi: 10.1016/j.postharvbio.2011.08.001.
  • Amin, R. M., B. Bhayana, M. R. Hamblin, and T. Dai. 2016. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies . Lasers in Surgery and Medicine 48 (5):562–8. doi: 10.1002/lsm.22474.
  • Aneja, K. R., R. Dhiman, N. K. Aggarwal, and A. Aneja. 2014. Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices. International Journal of Microbiology 2014:1–14. doi: 10.1155/2014/758942.
  • Angarano, V., C. Smet, S. Akkermans, C. Watt, A. Chieffi, and J. F. Van Impe. 2020. Visible light as an antimicrobial strategy for inactivation of pseudomonas fluorescens and staphylococcus epidermidis biofilms. Antibiotics 9 (4):171. doi: 10.3390/antibiotics9040171.
  • Beales, N. 2004. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review. Comprehensive Reviews in Food Science and Food Safety 3 (1):1–20. doi: 10.1111/j.1541-4337.2004.tb00057.x.
  • Braidot, E., E. Petrussa, C. Peresson, S. Patui, A. Bertolini, F. Tubaro, U. Wählby, M. Coan, A. Vianello, and M. Zancani. 2014. Low-intensity light cycles improve the quality of lamb’s lettuce (Valerianella olitoria [L.] Pollich) during storage at low temperature. Postharvest Biology and Technology 90:15–23. doi: 10.1016/j.postharvbio.2013.12.003.
  • Buchovec, I., E. Paskeviciute, and Z. Luksiene. 2010. Photosensitization-based inactivation of food pathogen Listeria monocytogenes in vitro and on the surface of packaging material. Journal of Photochemistry and Photobiology. B, Biology 99 (1):9–14. doi: 10.1016/j.jphotobiol.2010.01.007.
  • Chang, M.-H., D. Das, P. V. Varde, and M. Pecht. 2012. Light emitting diodes reliability review. Microelectronics Reliability 52 (5):762–82. doi: 10.1016/j.microrel.2011.07.063.
  • Cheong, K. K., C. Strub, D. Montet, N. Durand, P. Alter, J.-C. Meile, S. S. Galindo, and A. Fontana. 2016. Effect of different light wavelengths on the growth and ochratoxin A production in Aspergillus carbonarius and Aspergillus westerdijkiae. Fungal Biology 120 (5):745–51. doi: 10.1016/j.funbio.2016.02.005.
  • Chong, L., V. Ghate, W. Zhou, and H.-G. Yuk. 2022. Developing an LED preservation technology to minimize strawberry quality deterioration during distribution. Food Chemistry 366:130566. doi: 10.1016/j.foodchem.2021.130566.
  • Chu, Z., X. Hu, X. Wang, J. Wu, T. Dai, and X. Wang. 2019. Inactivation of Cronobacter sakazakii by blue light illumination and the resulting oxidative damage to fatty acids. Canadian Journal of Microbiology 65 (12):922–9. doi: 10.1139/cjm-2019-0054.
  • Chua, A., L. Chong, V. Ghate, H.-G. Yuk, and W. Zhou. 2021. Antifungal action of 405 nm light emitting diodes on tomatoes in a meso-scale system and their effect on the physicochemical properties. Postharvest Biology and Technology 172:111366. doi: 10.1016/j.postharvbio.2020.111366.
  • DeVere, E., and, and D. Purchase. 2007. Effectiveness of domestic antibacterial products in decontaminating food contact surfaces. Food Microbiology 24 (4):425–30. doi: 10.1016/j.fm.2006.07.013.
  • Djouiai, B., J. E. Thwaite, T. R. Laws, F. M. Commichau, B. Setlow, P. Setlow, and R. Moeller. 2018. Role of DNA repair and protective components in Bacillus subtilis spore resistance to inactivation by 400-nm-wavelength blue light. Applied and Environmental Microbiology 84 (19):e01604–18. doi: 10.1128/AEM.01604-18.
  • Dos Anjos, C., F. P. Sellera, L. M. de Freitas, R. G. Gargano, E. O. Telles, R. O. Freitas, M. S. Baptista, M. S. Ribeiro, N. Lincopan, F. C. Pogliani, et al. 2020. Inactivation of milk-borne pathogens by blue light exposure. Journal of Dairy Science 103 (2):1261–8. doi: 10.3168/jds.2019-16758.
  • D’Souza, C., H. G. Yuk, G. H. Khoo, and W. Zhou. 2015. Application of light‐emitting diodes in food production, postharvest preservation, and microbiological food safety. Comprehensive Reviews in Food Science and Food Safety 14 (6):719–40. doi: 10.1111/1541-4337.12155.
  • Du, L., A. J. Prasad, M. Gänzle, and M. Roopesh. 2020. Inactivation of Salmonella spp. in wheat flour by 395 nm pulsed light emitting diode (LED) treatment and the related functional and structural changes of gluten. Food Research International (Ottawa, Ont.) 127:108716. doi: 10.1016/j.foodres.2019.108716.
  • Endarko, E., M. Maclean, I. V. Timoshkin, S. J. MacGregor, and J. G. Anderson. 2012. High-intensity 405 nm light inactivation of Listeria monocytogenes . Photochemistry and Photobiology 88 (5):1280–6. doi: 10.1111/j.1751-1097.2012.01173.x.
  • Eshamah, H. L., H. T. Naas, A. M. Garbaj, S. M. Azwai, F. T. Gammoudi, I. Barbieri, and I. M. Eldaghayes. 2020. Extent of pathogenic and spoilage microorganisms in whole muscle meat, meat products and seafood sold in Libyan market. Open Veterinary Journal 10 (3):276––88. doi: 10.4314/ovj.v10i3.6.
  • Fan, L., A. I. Muhammad, B. B. Ismail, and D. Liu. 2021. Sonodynamic antimicrobial chemotherapy: An emerging alternative strategy for microbial inactivation. Ultrasonics Sonochemistry 75:105591. doi: 10.1016/j.ultsonch.2021.105591.
  • Fanelli, F., R. Geisen, M. Schmidt-Heydt, A. Logrieco, and G. Mulè. 2016. Light regulation of mycotoxin biosynthesis: New perspectives for food safety. World Mycotoxin Journal 9 (1):129–46. doi: 10.3920/WMJ2014.1860.
  • Fanelli, F., M. Schmidt-Heydt, M. Haidukowski, R. Geisen, A. Logrieco, and G. Mulè. 2012. Influence of light on growth, fumonisin biosynthesis and FUM1 gene expression by Fusarium proliferatum. International Journal of Food Microbiology 153 (1–2):148–53. doi: 10.1016/j.ijfoodmicro.2011.10.031.
  • Ferrer-Espada, R., X. Liu, X. S. Goh, and T. Dai. 2019. Antimicrobial blue light inactivation of polymicrobial biofilms. Frontiers in Microbiology 10:721. doi: 10.3389/fmicb.2019.00721.
  • Ferrer‐Espada, R., Y. Wang, X. S. Goh, and T. Dai. 2020. Antimicrobial blue light inactivation of microbial isolates in biofilms. Lasers in Surgery and Medicine 52 (5):472–8. doi: 10.1002/lsm.23159.
  • Ghate, V., A. Kumar, M.-J. Kim, W.-S. Bang, W. Zhou, and H.-G. Yuk. 2017. Effect of 460 nm light emitting diode illumination on survival of Salmonella spp. on fresh-cut pineapples at different irradiances and temperatures. Journal of Food Engineering 196:130–8. doi: 10.1016/j.jfoodeng.2016.10.013.
  • Ghate, V., A. Kumar, W. Zhou, and H.-G. Yuk. 2016. Irradiance and temperature influence the bactericidal effect of 460-nanometer light-emitting diodes on Salmonella in orange juice. Journal of Food Protection 79 (4):553–60. doi: 10.4315/0362-028X.JFP-15-394.
  • Ghate, V. S., K. S. Ng, W. Zhou, H. Yang, G. H. Khoo, W.-B. Yoon, and H.-G. Yuk. 2013. Antibacterial effect of light emitting diodes of visible wavelengths on selected foodborne pathogens at different illumination temperatures. International Journal of Food Microbiology 166 (3):399–406. doi: 10.1016/j.ijfoodmicro.2013.07.018.
  • Ghate, V., I. Yew, W. Zhou, and H.-G. Yuk. 2021. Influence of temperature and relative humidity on the antifungal effect of 405 nm LEDs against Botrytis cinerea and Rhizopus stolonifer and their inactivation on strawberries and tomatoes. International Journal of Food Microbiology 359:109427. doi: 10.1016/j.ijfoodmicro.2021.109427.
  • Ghate, V., E. Zelinger, H. Shoyhet, and Z. Hayouka. 2019. Inactivation of Listeria monocytogenes on paperboard, a food packaging material, using 410 nm light emitting diodes. Food Control 96:281–90. doi: 10.1016/j.foodcont.2018.09.026.
  • Ghate, V. S., W. Zhou, & H. G. Yuk. 2019. Perspectives and trends in the application of photodynamic inactivation for microbiological food safety. Comprehensive Reviews in Food Science and Food Safety 18 (2):402–24. doi: 10.1111/1541-4337.12418.
  • Glueck, M., B. Schamberger, P. Eckl, and K. Plaetzer. 2017. New horizons in microbiological food safety: Photodynamic Decontamination based on a curcumin derivative. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society for Photobiology 16 (12):1784–91. doi: 10.1039/C7PP00165G.
  • Guffey, J. S., W. C. Payne, S. D. Motts, P. Towery, T. Hobson, G. Harrell, L. Meurer, and K. Lancaster. 2016. Inactivation of Salmonella on tainted foods: Using blue light to disinfect cucumbers and processed meat products. Food Science & Nutrition 4 (6):878–87. doi: 10.1002/fsn3.354.
  • Gunther, IV, N. W., J. G. Phillips, and C. Sommers. 2016. The effects of 405-nm visible light on the survival of Campylobacter on chicken skin and stainless steel. Foodborne Pathogens and Disease 13 (5):245–50. doi: 10.1089/fpd.2015.2084.
  • Gupta, S. D., and, and B. Jatothu. 2013. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnology Reports 7 (3):211–20. doi: 10.1007/s11816-013-0277-0.
  • Halstead, F., M. Hadis, N. Marley, K. Brock, M. Milward, P. Cooper, B. Oppenheim, and W. Palin. 2019. Violet-blue light arrays at 405 nanometers exert enhanced antimicrobial activity for photodisinfection of monomicrobial nosocomial biofilms. Applied and Environmental Microbiology 85 (21):e01346–19. doi: 10.1128/AEM.01346-19.
  • Halstead, F. D., J. E. Thwaite, R. Burt, T. R. Laws, M. Raguse, R. Moeller, M. A. Webber, and B. A. Oppenheim. 2016. Antibacterial activity of blue light against nosocomial wound pathogens growing planktonically and as mature biofilms. Applied and Environmental Microbiology 82 (13):4006–16. doi: 10.1128/AEM.00756-16.
  • Haughton, P. N., E. G. Grau, J. Lyng, D. Cronin, S. Fanning, and P. Whyte. 2012. Susceptibility of Campylobacter to high intensity near ultraviolet/visible 395 ± 5 nm light and its effectiveness for the decontamination of raw chicken and contact surfaces. International Journal of Food Microbiology 159 (3):267–73. doi: 10.1016/j.ijfoodmicro.2012.09.006.
  • He, Y., Z. Xie, Y. Xu, X. Zhao, L. Zhao, and H. Yang. 2022. Preservative effect of slightly acid electrolysed water ice generated by the developed sanitising unit on shrimp (Penaeus vannamei). Food Control 136:108876. doi: 10.1016/j.foodcont.2022.108876.
  • Hessling, M., B. Spellerberg, and K. Hoenes. 2017. Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths–a review on existing data. FEMS Microbiology Letters 364 (2):fnw270. doi: 10.1093/femsle/fnw270.
  • Ho, D. T., A. Kim, N. Kim, H. J. Roh, W.-K. Chun, Y. Lee, and D.-H. Kim. 2020. Effect of blue light emitting diode on viral hemorrhagic septicemia in olive flounder (Paralichthys olivaceus). Aquaculture 521:735019. doi: 10.1016/j.aquaculture.2020.735019.
  • Hu, X., X. Sun, S. Luo, S. Wu, Z. Chu, X. Zhang, Z. Liu, J. Wu, X. Wang, C. Liu, et al. 2021. Inactivation of Salmonella enterica Serovar Enteritidis on Chicken Eggshells Using Blue Light. Agriculture 11 (8):762. doi: 10.3390/agriculture11080762.
  • Huang, Y., Q. Pei, R. Deng, X. Zheng, J. Guo, D. Guo, Y. Yang, S. Liang, and C. Shi. 2020. Inactivation efficacy of 405 nm LED against Cronobacter sakazakii biofilm. Frontiers in Microbiology 11:610077 doi: 10.3389/fmicb.2020.610077.
  • Hyun, J.-E., and, and S.-Y. Lee. 2020a. Antibacterial effect and mechanisms of action of 460-470 nm light-emitting diode against Listeria monocytogenes and Pseudomonas fluorescens on the surface of packaged sliced cheese . Food Microbiology 86:103314. doi: 10.1016/j.fm.2019.103314.
  • Hyun, J.-E., and, and S.-Y. Lee. 2020b. Blue light-emitting diodes as eco-friendly non-thermal technology in food preservation. Trends in Food Science & Technology 105:284–95. doi: 10.1016/j.tifs.2020.09.008.
  • Hyun, J.-E., S.-K. Moon, and S.-Y. Lee. 2021. Antibacterial activity and mechanism of 460–470 nm light-emitting diodes against pathogenic bacteria and spoilage bacteria at different temperatures. Food Control 123:107721. doi: 10.1016/j.foodcont.2020.107721.
  • Imada, K., S. Tanaka, Y. Ibaraki, K. Yoshimura, and S. Ito. 2014. Antifungal effect of 405-nm light on Botrytis cinerea . Letters in Applied Microbiology 59 (6):670–6. doi: 10.1111/lam.12330.
  • Josewin, S. W., V. Ghate, M.-J. Kim, and H.-G. Yuk. 2018. Antibacterial effect of 460 nm light-emitting diode in combination with riboflavin against Listeria monocytogenes on smoked salmon. Food Control 84:354–61. doi: 10.1016/j.foodcont.2017.08.017.
  • Kashef, N., and, and M. R. Hamblin. 2017. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? Drug Resistance Updates : Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy 31:31–42. doi: 10.1016/j.drup.2017.07.003.
  • Kim, M.-J., W. S. Bang, and H.-G. Yuk. 2017. 405 ± 5 nm light emitting diode illumination causes photodynamic inactivation of Salmonella spp. on fresh-cut papaya without deterioration. Food Microbiology 62:124–32. doi: 10.1016/j.fm.2016.10.002.
  • Kim, D.-K., and, and D.-H. Kang. 2021. Efficacy of light-emitting diodes emitting 395, 405, 415, and 425 nm blue light for bacterial inactivation and the microbicidal mechanism. Food Research International (Ottawa, Ont.) 141:110105. doi: 10.1016/j.foodres.2021.110105.
  • Kim, M.-J., D. K. Lianto, G. H. Koo, and H.-G. Yuk. 2021. Antibacterial mechanism of riboflavin-mediated 460 nm light emitting diode illumination against Listeria monocytogenes in phosphate-buffered saline and on smoked salmon. Food Control 124:107930. doi: 10.1016/j.foodcont.2021.107930.
  • Kim, M.-J., M. Mikš-Krajnik, A. Kumar, V. Ghate, H.-G. Yuk, and P. B. Biology. 2015. Antibacterial effect and mechanism of high-intensity 405 ± 5 nm light emitting diode on Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus under refrigerated condition. Journal of Photochemistry and Photobiology. B, Biology ‘, 153:33–9. doi: 10.1016/j.jphotobiol.2015.08.032.
  • Kim, M.-J., M. Mikš-Krajnik, A. Kumar, and H.-G. Yuk. 2016. Inactivation by 405 ± 5 nm light emitting diode on Escherichia coli O157: H7, Salmonella Typhimurium, and Shigella sonnei under refrigerated condition might be due to the loss of membrane integrity. Food Control ‘, 59:99–107. doi: 10.1016/j.foodcont.2015.05.012.
  • Kim, M.-J., B. X. A. Ng, Y. H. Zwe, and H.-G. Yuk. 2017. Photodynamic inactivation of Salmonella enterica Enteritidis by 405 ± 5-nm light-emitting diode and its application to control salmonellosis on cooked chicken. Food Control 82:305–15. doi: 10.1016/j.foodcont.2017.06.040.
  • Kim, M.-J., C. H. Tang, W. S. Bang, and H.-G. Yuk. 2017. Antibacterial effect of 405 ± 5nm light emitting diode illumination against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella on the surface of fresh-cut mango and its influence on fruit quality . International Journal of Food Microbiology 244:82–9. doi: 10.1016/j.ijfoodmicro.2016.12.023.
  • Kim, M.-J., and, and H.-G. Yuk. 2017. Antibacterial mechanism of 405-nanometer light-emitting diode against Salmonella at refrigeration temperature. Applied and Environmental Microbiology 83 (5):83. doi: 10.1128/AEM.02582-16.
  • Kingsley, D., R. Perez, Perez, G. Boyd, J. Sites, and B. Niemira. 2018. Evaluation of 405-nm monochromatic light for inactivation of Tulane virus on blueberry surfaces . Journal of Applied Microbiology 124 (4):1017–22. ‐doi: 10.1111/jam.13638.
  • Kumar, A., V. Ghate, M. Kim, W. Zhou, G. Khoo, and H. J. J. o a m. Yuk. 2016. Antibacterial efficacy of 405, 460 and 520 nm light emitting diodes on Lactobacillus plantarum, Staphylococcus aureus and Vibrio parahaemolyticus. Journal of Applied Microbiology 120 (1):49–56. doi: 10.1111/jam.12975.
  • Kumar, A., V. Ghate, M.-J. Kim, W. Zhou, G. H. Khoo, and H.-G. Yuk. 2017. Inactivation and changes in metabolic profile of selected foodborne bacteria by 460 nm LED illumination. Food Microbiology 63:12–21. doi: 10.1016/j.fm.2016.10.032.
  • Lacombe, A., B. A. Niemira, J. Sites, G. Boyd, J. B. Gurtler, B. Tyrell, and M. Fleck. 2016. Reduction of bacterial pathogens and potential surrogates on the surface of almonds using high-intensity 405-nanometer light. Journal of Food Protection 79 (11):1840–5. doi: 10.4315/0362-028X.JFP-15-418.
  • Laroche, C., F. Fine, and P. Gervais. 2005. Water activity affects heat resistance of microorganisms in food powders. International Journal of Food Microbiology 97 (3):307–15. doi: 10.1016/j.ijfoodmicro.2004.04.023.
  • Lee, H., and, and Y. Yoon. 2021. Etiological agents implicated in foodborne illness world wide. Food Science of Animal Resources 41 (1):1–7. doi: 10.5851/kosfa.2020.e75.
  • Li, X., M.-J. Kim, W.-S. Bang, and H.-G. Yuk. 2018. Anti-biofilm effect of 405-nm LEDs against Listeria monocytogenes in simulated ready-to-eat fresh salmon storage conditions. Food Control 84:513–21. doi: 10.1016/j.foodcont.2017.09.006.
  • Li, X., M.-J. Kim, and H.-G. Yuk. 2018. Influence of 405 nm light-emitting diode illumination on the inactivation of Listeria monocytogenes and Salmonella spp. on ready-to-eat fresh salmon surface at chilling storage for 8 h and their susceptibility to simulated gastric fluid. Food Control 88:61–8. doi: 10.1016/j.foodcont.2018.01.002.
  • Luksiene, Z., I. Buchovec, and E. Paskeviciute. 2010a. Inactivation of Bacillus cereus by Na‐chlorophyllin‐based photosensitization on the surface of packaging. Journal of Applied Microbiology 109:1540–48. doi: 10.1111/j.1365-2672.2010.04780.x.
  • Luksiene, Z., I. Buchovec, and E. Paskeviciute. 2010b. Inactivation of several strains of Listeria monocytogenes attached to the surface of packaging material by Na-chlorophyllin-based photosensitization. Journal of Photochemistry and Photobiology. B, Biology 101 (3):326–31. doi: 10.1016/j.jphotobiol.2010.08.002.
  • Luksiene, Z., and, and A. Zukauskas. 2009. Prospects of photosensitization in control of pathogenic and harmful micro-organisms. Journal of Applied Microbiology 107 (5):1415–24. doi: 10.1111/j.1365-2672.2009.04341.x.
  • Maclean, M., S. J. MacGregor, J. G. Anderson, and G. Woolsey. 2009. Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Applied and Environmental Microbiology 75 (7):1932–7. doi: 10.1128/AEM.01892-08.
  • Maclean, M., K. McKenzie, J. G. Anderson, G. Gettinby, and S. J. MacGregor. 2014. 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection Control The Journal of Hospital Infection 88 (1):1–11. doi: 10.1016/j.jhin.2014.06.004.
  • Maclean, M., L. E. Murdoch, S. J. MacGregor, and J. G. Anderson. 2013. Sporicidal effects of high-intensity 405 nm visible light on endospore-forming bacteria . Photochemistry and Photobiology 89 (1):120–6. doi: 10.1111/j.1751-1097.2012.01202.x. [22803813]
  • Mandal, R., A. Singh, and A. P. Singh. 2018. Recent developments in cold plasma decontamination technology in the food industry. Trends in Food Science & Technology 80:93–103. doi: 10.1016/j.tifs.2018.07.014.
  • Martegani, E., F. Bolognese, N. Trivellin, and V. T. Orlandi. 2020. Effect of blue light at 410 and 455 nm on Pseudomonas aeruginosa biofilm. Journal of Photochemistry and Photobiology. B, Biology 204:111790. doi: 10.1016/j.jphotobiol.2020.111790.
  • McKenzie, K., M. Maclean, M. H. Grant, P. Ramakrishnan, S. J. MacGregor, and J. G. Anderson. 2016. The effects of 405 nm light on bacterial membrane integrity determined by salt and bile tolerance assays, leakage of UV-absorbing material and SYTOX green labelling. Microbiology (Reading, England) 162 (9):1680–8. doi: 10.1099/mic.0.000350.
  • Meurer, L., and, and K. Lancaster. 2016. The use of 405nm and 464nm blue light to inhibit Listeria monocytogenes in ready-to-eat (RTE) meat. European Journal of Academic Essays 3:76–80. doi:
  • Moorhead, S., M. Maclean, J. E. Coia, S. J. MacGregor, and J. G. Anderson. 2016. Synergistic efficacy of 405 nm light and chlorinated disinfectants for the enhanced decontamination of Clostridium difficile spores. Anaerobe 37:72–7. doi: 10.1016/j.anaerobe.2015.12.006.
  • Murdoch, L. E., M. Maclean, E. Endarko, S. J. MacGregor, and J. G. Anderson. 2012. Bactericidal effects of 405 nm light exposure demonstrated by inactivation of Escherichia, Salmonella, Shigella, Listeria, and Mycobacterium species in liquid suspensions and on exposed surfaces. The Scientific World Journal 2012:1–8. doi: 10.1100/2012/137805.
  • Murdoch, L. E., M. Maclean, S. J. MacGregor, and J. G. Anderson. 2010. Inactivation of Campylobacter jejuni by exposure to high-intensity 405-nm visible light. Foodborne Pathogens and Disease 7 (10):1211–6. doi: 10.1089/fpd.2010.0561.
  • Murdoch, L., K. McKenzie, M. Maclean, S. Macgregor, and J. Anderson. 2013. Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans, and on dormant and germinating spores of Aspergillus niger. Fungal Biology 117 (7–8):519–27. doi: 10.1016/j.funbio.2013.05.004.
  • Nassarawa, S. S., A. M. Abdelshafy, Y. Xu, L. Li, and Z. Luo. 2021. Effect of light-emitting diodes (LEDs) on the quality of fruits and vegetables during postharvest period: A review. Food and Bioprocess Technology 14 (3):388–27. doi: 10.1007/s11947-020-02534-6.
  • Nitzan, Y., M. Salmon-Divon, E. Shporen, Z. J. P. Malik, and P. Sciences. 2004. ALA induced photodynamic effects on gram positive and negative bacteria. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society for Photobiology 3 (5):430–5. doi: 10.1039/B315633H.
  • Prasad, A., L. Du, M. Zubair, S. Subedi, A. Ullah, and M. Roopesh. 2020. Applications of light-emitting diodes (LEDs) in food processing and water treatment. Food Engineering Reviews 12 (3):268–89. doi: 10.1007/s12393-020-09221-4.
  • Prasad, A., M. Gänzle, and M. Roopesh. 2019. Inactivation of Escherichia coli and Salmonella using 365 and 395 nm high intensity pulsed light emitting diodes. Foods 8 (12):679. doi: 10.3390/foods8120679.
  • Priesterjahn, E.-M., R. Geisen, and M. Schmidt-Heydt. 2020. Influence of light and water activity on growth and mycotoxin formation of selected isolates of Aspergillus flavus and Aspergillus parasiticus. Microorganisms 8 (12):2000. doi: 10.3390/microorganisms8122000.
  • Proulx, J., L. Hsu, B. Miller, G. Sullivan, K. Paradis, and C. Moraru. 2015. Pulsed-light inactivation of pathogenic and spoilage bacteria on cheese surface. Journal of Dairy Science 98 (9):5890–8. doi: 10.3168/jds.2015-9410.
  • Rathnasinghe, R., S. Jangra, L. Miorin, M. Schotsasert, C. Yahnke, and A. Garcίa-Sastre. 2021. Lighting a better future: The virucidal effects of 405 nm visible light on SARS-CoV-2 and influenza A virus. Scientific Reports 11 (1):1–10. doi: 10.1101/2021.03.14.435337.
  • Ricciardi, E. F., S. Pedros-Garrido, K. Papoutsis, J. G. Lyng, A. Conte, and M. A. Del Nobile. 2020. Novel technologies for preserving ricotta cheese: Effects of ultraviolet and near-ultraviolet–visible light. Foods 9 (5):580. doi: 10.3390/foods9050580.
  • Richardson, T. B., and, and C. D. Porter. 2005. Inactivation of murine leukaemia virus by exposure to visible light. Virology 341 (2):321–9. doi: 10.1016/j.virol.2005.07.025.
  • Rupel, K., L. Zupin, G. Ottaviani, I. Bertani, V. Martinelli, D. Porrelli, S. Vodret, R. Vuerich, D. Passos da Silva, R. Bussani, et al. 2019. Blue laser light inhibits biofilm formation in vitro and in vivo by inducing oxidative stress. NPJ Biofilms and Microbiomes 5 (1):1–11. doi: 10.1038/s41522-019-0102-9.
  • Schmidt-Heydt, M., B. Cramer, I. Graf, S. Lerch, H.-U. Humpf, and R. Geisen. 2012. Wavelength-dependent degradation of ochratoxin and citrinin by light in vitro and in vivo and its implications on Penicillium. Toxins 4 (12):1535–51. doi: 10.3390/toxins4121535.
  • Schmidt-Heydt, M., C. Rüfer, F. Raupp, A. Bruchmann, G. Perrone, and R. Geisen. 2011. Influence of light on food relevant fungi with emphasis on ochratoxin producing species. International Journal of Food Microbiology 145 (1):229–37. doi: 10.1016/j.ijfoodmicro.2010.12.022.
  • Shabbir, M. A., H. Ahmed, A. A. Maan, A. Rehman, M. T. Afraz, M. W. Iqbal, I. M. Khan, R. M. Amir, W. Ashraf, M. R. Khan, et al. 2021. Effect of non-thermal processing techniques on pathogenic and spoilage microorganisms of milk and milk products. Food Science and Technology 41 (2):279–94. doi: 10.1590/fst.05820.
  • Shahi, S., R. Khorvash, M. Goli, S. M. Ranjbaran, A. Najarian, and A. Mohammadi Nafchi. 2021. Review of proposed different irradiation methods to inactivate food-processing viruses and microorganisms . Food Science & Nutrition 9 (10):5883–96. doi: 10.1002/fsn3.2539.
  • Sommers, C., N. W. Gunther, I. V, and S. Sheen. 2017. Inactivation of Salmonella spp., pathogenic Escherichia coli, Staphylococcus spp., or Listeria monocytogenes in chicken purge or skin using a 405-nm LED array. Food Microbiology 64:135–8. doi: 10.1016/j.fm.2016.12.011.
  • Srimagal, A., T. Ramesh, and J. K. Sahu. 2016. Effect of light emitting diode treatment on inactivation of Escherichia coli in milk. LWT - Food Science and Technology 71:378–85. doi: 10.1016/j.lwt.2016.04.028.
  • Subedi, S., L. Du, A. Prasad, B. Yadav, and M. Roopesh. 2020. Inactivation of Salmonella and quality changes in wheat flour after pulsed light-emitting diode (LED) treatments. Food and Bioproducts Processing 121:166–77. doi: 10.1016/j.fbp.2020.02.004.
  • Tomb, R. M., M. Maclean, J. E. Coia, E. Graham, M. McDonald, C. D. Atreya, S. J. MacGregor, and J. G. Anderson. 2017. New proof-of-concept in viral inactivation: Virucidal efficacy of 405 nm light against feline calicivirus as a model for norovirus decontamination. Food and Environmental Virology 9 (2):159–67. doi: 10.1007/s12560-016-9275-z.
  • Tomb, R. M., M. Maclean, J. E. Coia, S. J. MacGregor, and J. G. Anderson. 2017. Assessment of the potential for resistance to antimicrobial violet-blue light in Staphylococcus aureus. Antimicrobial Resistance & Infection Control 6 (1):1–13. doi: 10.1186/s13756-017-0261-5.
  • Tomb, R. M., M. Maclean, P. R. Herron, P. A. Hoskisson, S. J. MacGregor, and J. G. Anderson. 2014. Inactivation of Streptomyces phage ɸC31 by 405 nm light: Requirement for exogenous photosensitizers? Bacteriophage 4:e32129. doi: 10.4161/bact.32129.
  • Tomb, R. M., T. A. White, J. E. Coia, J. G. Anderson, S. J. MacGregor, and M. Maclean. 2018. Review of the comparative susceptibility of microbial species to photoinactivation using 380-480 nm violet-blue light. Photochemistry and Photobiology 94 (3):445–58. doi: 10.1111/php.12883.
  • Trzaska, W. J., H. E. Wrigley, J. E. Thwaite, and R. C. May. 2017. Species-specific antifungal activity of blue light. Scientific Reports 7 (1):1–7. doi: 10.1038/s41598-017-05000-0.
  • Vatter, P., K. Hoenes, and M. Hessling. 2021. Blue light inactivation of the enveloped RNA virus Phi6. BMC Research Notes 14 (1):1–5. doi: 10.1038/s41598-017-05000-0.
  • Wang, Y., X. Wu, J. Chen, R. Amin, M. Lu, B. Bhayana, J. Zhao, C. K. Murray, M. R. Hamblin, D. C. Hooper, et al. 2016. Antimicrobial blue light inactivation of gram-negative pathogens in biofilms: In vitro and in vivo studies. The Journal of Infectious Diseases 213 (9):1380–7. doi: 10.1093/infdis/jiw070.
  • Wu, J., Z. Chu, Z. Ruan, X. Wang, T. Dai, X. J. F. I, and p. Hu. 2018. Changes of intracellular porphyrin, reactive oxygen species, and fatty acids profiles during inactivation of methicillin-resistant Staphylococcus aureus by antimicrobial blue light. Frontiers in Physiology ‘, 9:1658. doi: 10.3389/fphys.2018.01658.
  • Wu, J., W. Hou, B. Cao, T. Zuo, C. Xue, A. W. Leung, C. Xu, and Q.-J. Tang. 2015. Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters. Photodiagnosis and Photodynamic Therapy 12 (3):385–92. doi: 10.1016/j.pdpdt.2015.06.005.
  • Wu, S., C. Ross, J. Hadi, and G. Brightwell. 2021. In vitro inactivation effect of blue light emitting diode (LED) on Shiga-toxin-producing Escherichia coli (STEC). Food Control 125:107990. doi: 10.1016/j.foodcont.2021.107990.
  • Wu, S., P. Subharat, and G. Brightwell. 2021. A New Insight into the Bactericidal Mechanism of 405 nm Blue Light-Emitting-Diode against Dairy Sourced Cronobacter sakazakii. Foods 10 (9):1996. doi: 10.3390/foods10091996.
  • Wu, J., L. Zhao, S. Lai, and H. Yang. 2021. NMR-based metabolomic investigation of antimicrobial mechanism of electrolysed water combined with moderate heat treatment against Listeria monocytogenes on salmon. Food Control 125:107974. doi: 10.1016/j.foodcont.2021.107974.
  • Yamaga, I., and, and S. Nakamura. 2018. Blue LED irradiation induces scoparone production in wounded satsuma mandarin ‘Aoshima Unshu’and reduces fruit decay during long-term storage. The Horticulture Journal 87 (4):474–80. doi: 10.2503/hortj.OKD-147.
  • Yamaga, I., T. Takahashi, K. Ishii, M. Kato, and Y. Kobayashi. 2015. Suppression of blue mold symptom development in satsuma mandarin fruits treated by low-intensity blue LED irradiation. Food Science and Technology Research 21 (3):347–51. doi: 10.3136/fstr.21.347.
  • Yang, Y., S. Ma, Y. Xie, M. Wang, T. Cai, J. Li, D. Guo, L. Zhao, Y. Xu, S. Liang, et al. 2020. Inactivation of Pseudomonas aeruginosa biofilms by 405-nanometer-light-emitting diode illumination. Applied and Environmental Microbiology 86 (10):e00092–20. doi: 10.1128/AEM.00092-20.
  • Zhang, H., G. Wang, Q. Yang, X. Yang, Y. Zheng, Y. Liu, and F. Xing. 2021. Effects of light on the ochratoxigenic fungi Aspergillus ochraceus and A. carbonarius. Toxins 13 (4):251. doi: 10.3390/toxins13040251.
  • Zhang, Y., and, and J. Xie. 2021. Effects of 405 nm light‐emitting diode treatment on microbial community on fresh‐cut pakchoi and antimicrobial action against Pseudomonas reinekei and Pseudomonas palleroniana. Journal of Food Safety 41 (5):e12920. doi: 10.1111/jfs.12920.
  • Zheng, Z., Y. Xie, S. Ma, J. Tu, J. Li, S. Liang, Y. Xu, and C. Shi. 2021. Effect of 405-nm light-emitting diode on environmental tolerance of Cronobacter sakazakii in powdered infant formula. Food Research International (Ottawa, Ont.) 144:110343. doi: 10.1016/j.foodres.2021.110343.
  • Zou, Y., Y. Yu, L. Cheng, L. Li, B. Zou, J. Wu, W. Zhou, J. Li, and Y. Xu. 2021. Effects of curcumin-based photodynamic treatment on quality attributes of fresh-cut pineapple. LWT 141:110902. doi: 10.1016/j.lwt.2021.110902.
  • Zupin, L., R. Gratton, F. Fontana, L. Clemente, L. Pascolo, M. Ruscio, and S. Crovella. 2021. Blue photobiomodulation LED therapy impacts SARS-CoV-2 by limiting its replication in Vero cells . Journal of Biophotonics 14 (4):e202000496. doi: 10.1002/jbio.202000496.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.