6,821
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Challenges and solutions of extracting value-added ingredients from fruit and vegetable by-products: a review

&

References

  • Abid, Y., S. Azabou, M. Jridi, I. Khemakhem, M. Bouaziz, and H. Attia. 2017. Storage stability of traditional Tunisian butter enriched with antioxidant extract from tomato processing by-products. Food Chemistry 233:476–82. doi: 10.1016/j.foodchem.2017.04.125.
  • Alancay, M. M., M. O. Lobo, C. M. Quinzio, and L. B. Iturriaga. 2017. Extraction and physicochemical characterization of pectin from tomato processing waste. Journal of Food Measurement and Characterization 11 (4):2119–30. doi: 10.1007/s11694-017-9596-0.
  • Al-Kaisey, M. T., A. H. Alwan, M. H. Mohammad, and A. H. Saeed. 2003. Effect of gamma irradiation on antinutritional factors in broad bean. Radiation Physics and Chemistry 67 (3–4):493–6. doi: 10.1016/S0969-806X(03)00091-4.
  • Álvarez, A., J. Poejo, A. A. Matias, C. M. M. Duarte, M. J. Cocero, and R. B. Mato. 2017. Microwave pretreatment to improve extraction efficiency and polyphenol extract richness from grape pomace. Effect on antioxidant bioactivity. Food and Bioproducts Processing 106:162–70. doi: 10.1016/j.fbp.2017.09.007.
  • Anal, A. K. 2018. Food processing by-products and their utilization. West Sussex, UK: John Wiley & Sons Ltd All.
  • Arikan, E. B., O. Canli, Y. Caro, L. Dufoss, and N. Dizge. 2020. roduction of bio-based pigments from food processing industry by-products (apple, pomegranate, black carrot, red beet pulps) using Aspergillus carbonarius. Journal of Fungi 6 (4):240. doi: 10.3390/jof6040240.
  • Arshadi, M., T. M. Attard, R. M. Lukasik, M. Brncic, A. M. da Costa Lopes, M. Finell, P. Geladi, L. N. Gerschenson, F. Gogus, M. Herrero, et al. 2016. Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chemistry 18 (23):6160–204. doi: 10.1039/C6GC01389A.
  • Asha, A., M. Manjunatha, R. M. Rekha, B. Surendranath, P. Heartwin, J. Rao, E. Magdaline, and C. Sinha. 2015. Antioxidant activities of orange peel extract in ghee (butter oil) stored at different storage temperatures. Journal of Food Science and Technology 52 (12):8220–7. doi: 10.1007/s13197-015-1911-3.
  • Averilla, J. N., J. Oh, Z. Wu, K.-H. Liu, C. H. Jang, H. J. Kim, J.-S. Kim, and J.-S. Kim. 2019. Improved extraction of resveratrol and antioxidants from grape peel using heat and enzymatic treatments. Journal of the Science of Food and Agriculture 99 (8):4043–53. doi: 10.1002/jsfa.9632.
  • Ayala-Zavala, J. F. G. González-Aguilar, and M. W. Siddiqui. 2018. Plant food by-products: industrial relevance for food additives and nutraceuticals. Taylor & Fransis Group.
  • Ayar, A., H. Siçramaz, S. Öztürk, and S. Ö. Yilmaz. 2018. Probiotic properties of ice creams produced with dietary fi bres from by-products of the food industry. International Journal of Dairy Technology 71 (1):174–82. doi: 10.1111/1471-0307.12387.
  • Azmir, J., I. S. M. Zaidul, M. M. Rahman, K. M. Sharif, A. Mohamed, F. Sahena, M. H. A. Jahurul, K. Ghafoor, N. A. N. Norulaini, and A. K. M. Omar. 2013. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering 117 (4):426–36. doi: 10.1016/j.jfoodeng.2013.01.014.
  • Badaoui, O., S. Hanini, A. Djebli, B. Haddad, and A. Benhamou. 2019. Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models. Renewable Energy 133:144–55. doi: 10.1016/j.renene.2018.10.020.
  • Bagade, S. B., and M. Patil. 2021. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A review. Critical Reviews in Analytical Chemistry 51 (2):138–49. doi: 10.1080/10408347.2019.1686966.
  • Banerjee, J., R. Singh, R. Vijayaraghavan, D. Macfarlane, A. F. Patti, and A. Arora. 2017. Bioactives from fruit processing wastes : Green approaches to valuable chemicals. Food Chemistry 225:10–22. doi: 10.1016/j.foodchem.2016.12.093.
  • Bao, Y., L. Reddivari, and J. Y. Huang. 2020. Enhancement of phenolic compounds extraction from grape pomace by high voltage atmospheric cold plasma. LWT 133 (July):109970. doi: 10.1016/j.lwt.2020.109970.
  • Barba, F. J., E. Roselló-Soto, K. Marszałek, D. B. Kovačević, A. R. Jambrak, J. M. Lorenzo, … P. Putnik. 2019. Green food processing: Concepts, strategies, and tools. Green Food Processing Techniques:1–21. doi: 10.1016/B978-0-12-815353-6.00001-X.
  • Benassi, L., I. Alessandri, and I. Vassalini. 2021. Assessing green methods for pectin extraction from waste orange peels. Molecules 26 (6):1766. doi: 10.3390/molecules26061766.
  • Bender, A. B. B., C. S. Speroni, P. R. Salvador, B. B. Loureiro, N. M. Lovatto, F. R. Goulart, M. T. Lovatto, M. Z. Miranda, L. P. Silva, and N. G. Penna. 2017. Grape pomace skins and the effects of its inclusion in the technological properties of muffins. Journal of Culinary Science & Technology 15 (2):143–57. doi: 10.1080/15428052.2016.1225535.
  • Benvenutti, L., D. G. Bortolini, A. Nogueira, A. A. F. Zielinski, and A. Alberti. 2019. Effect of addition of phenolic compounds recovered from apple pomace on cider. LWT 100:348–54. doi: 10.1016/j.lwt.2018.10.087.
  • Bhat, R. 2021. Sustainability challenges in the valorization of agri-food wastes and by-products. Valorization of agri-food wastes and by-products. Academic Press. doi: 10.1016/B978-0-12-824044-1.00022-2.
  • Bonfigli, M., E. Godoy, M. A. Reinheimer, and N. J. Scenna. 2017. Comparison between conventional and ultrasound-assisted techniques for extraction of anthocyanins from grape pomace. Experimental results and mathematical modeling. Journal of Food Engineering 207:56–72. doi: 10.1016/j.jfoodeng.2017.03.011.
  • Boussetta, N., E. Vorobiev, T. Reess, A. D. Ferron, L. Pecastaing, R. Ruscassié, and J. Lanoisellé. 2012. Scale-up of high voltage electrical discharges for polyphenols extraction from grape pomace : Effect of the dynamic shock waves. Innovative Food Science & Emerging Technologies 16:129–36. doi: 10.1016/j.ifset.2012.05.004.
  • Brandt, S., Z. Pek, E. Barna, A. Lugasi, and L. Helyes. 2006. Lycopene content and colour of ripening tomatoes as affected by environmental. Journal of the Science of Food and Agriculture 86 (4):568–72. doi: 10.1002/jsfa.2390.
  • Byg, I., J. Diaz, L. H. Øgendal, J. Harholt, B. Jørgensen, C. Rolin, R. Svava, and P. Ulvskov. 2012. Large-scale extraction of rhamnogalacturonan i from industrial potato waste. Food Chemistry 131 (4):1207–16. doi: 10.1016/j.foodchem.2011.09.106.
  • Casazza, A. A., M. Pettinato, and P. Perego. 2020. Polyphenols from apple skins: A study on microwave-assisted extraction optimization and exhausted solid characterization. Separation and Purification Technology 240 (January):116640. doi: 10.1016/j.seppur.2020.116640.
  • Cascaes Teles, A. S., D. W. Hidalgo Chávez, M. A. Zarur Coelho, A. Rosenthal, L. M. Fortes Gottschalk, and R. V. Tonon. 2021. Combination of enzyme-assisted extraction and high hydrostatic pressure for phenolic compounds recovery from grape pomace. Journal of Food Engineering 288:110128. doi: 10.1016/j.jfoodeng.2020.110128.
  • Catalkaya, G., and D. Kahveci. 2019. Optimization of enzyme assisted extraction of lycopene from industrial tomato waste. Separation and Purification Technology 219:55–63. doi: 10.1016/j.seppur.2019.03.006.
  • Chandrasekaran, M. 2013. Valorization of food processing by-products. Boca Raton, FL: CRC press. doi: 10.1021/jf60052a618.
  • Chemat, F., N. Rombaut, A.-G. Sicaire, A. Meullemiestre, A.-S. Fabiano-Tixier, and M. Abert-Vian. 2017. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry 34:540–60. doi: 10.1016/j.ultsonch.2016.06.035.
  • Chen, H., H. Zhang, J. Tian, J. Shi, R. J. Linhardt, T. Ding, … S. Chen. 2019. Recovery of high value-added nutrients from fruit and vegetable industrial wastewater. Comprehensive Reviews in Food Science and Food Safety 18 (5):1388–402. doi: 10.1111/1541-4337.12477.
  • Chen, M., and, and M. Lahaye. 2021. Natural deep eutectic solvents pretreatment as an aid for pectin extraction from apple pomace. Food Hydrocolloids. 115:106601. doi: 10.1016/j.foodhyd.2021.106601.
  • Cho, E. H., H. T. Jung, B. H. Lee, H. S. Kim, J. K. Rhee, and S. H. Yoo. 2019. Green process development for apple-peel pectin production by organic acid extraction. Carbohydrate Polymers 204:97–103. doi: 10.1016/j.carbpol.2018.09.086.
  • Chouchouli, V., N. Kalogeropoulos, S. J. Konteles, E. Karvela, D. P. Makris, and V. T. Karathanos. 2013. Fortification of yoghurts with grape (Vitis vinifera) seed extracts Vaya. LWT - Food Science and Technology 53 (2):522–9. doi: 10.1016/j.lwt.2013.03.008.
  • Choudhary, R., T. J. Bowser, P. Weckler, N. O. Maness, and W. Mcglynn. 2009. Rapid estimation of lycopene concentration in watermelon and tomato puree by fiber optic visible reflectance spectroscopy. Postharvest Biology and Technology 52 (1):103–9. doi: 10.1016/j.postharvbio.2008.10.002.
  • Ciriminna, R., D. Carnaroglio, R. Delisi, S. Arvati, A. Tamburino, and M. Pagliaro. 2016. Industrial feasibility of natural products extraction with microwave technology. ChemistrySelect 1 (3):549–55. doi: 10.1002/slct.201600075.
  • Coelho, J. P., R. M. Filipe, M. P. Robalo, and R. P. Stateva. 2018. Recovering value from organic waste materials: Supercritical fluid extraction of oil from industrial grape seeds. The Journal of Supercritical Fluids 141:68–77. doi: 10.1016/j.supflu.2017.12.008.
  • Costa, C., A. Lucera, V. Marinelli, M. A. Del Nobile, and A. Onte. 2018. Influence of different by-products addition on sensory and physicochemical aspects of Primosale cheese. Journal of Food Science and Technology 55 (10):4174–83. doi: 10.1007/s13197-018-3347-z.
  • Cuellar-Bermudez, S. P., I. Aguilar-Hernandez, D. L. Cardenas-Chavez, N. Ornelas-Soto, M. A. Romero-Ogawa, and N. Leon. 2015. Minireview extraction and purification of high-value metabolites from microalgae: Essential lipids, astaxanthin and phycobiliproteinS. Microbial Biotechnology 8 (2):190–209. doi: 10.1111/1751-7915.12167.
  • Da Porto, C., and A. Natolino. 2017. Supercritical fluid extraction of polyphenols from grape seed (Vitis vinifera): Study on process variables and kinetics. The Journal of Supercritical Fluids 130:239–45. doi: 10.1016/j.supflu.2017.02.013.
  • da Silva, L. C., M. C. Souza, B. R. Sumere, L. G. S. Silva, D. T. da Cunha, G. F. Barbero, R. M. N. Bezerra, and M. A. Rostagno. 2020. Simultaneous extraction and separation of bioactive compounds from apple pomace using pressurized liquids coupled on-line with solid-phase extraction. Food Chemistry 318:126450. doi: 10.1016/j.foodchem.2020.126450.
  • da Silva-Moreira, M. M. 2013. Extraction and characterization of natural antioxidants from brewing industry by-products. Doctoral diss., Universidade do Porto (Portugal).
  • Dassoff, E. S., J. X. Guo, Y. Liu, S. C. Wang, and Y. O. Li. 2021. Potential development of non-synthetic food additives from orange processing by-products—a review. Food Quality and Safety 5:1–14. doi: 10.1093/fqsafe/fyaa035.
  • Dastjerdi, Z. H., M. Nourani, and S. T. Dinani. 2022. Effect of electrohydrodynamic and ultrasonic pretreatments on the extraction of bioactive compounds from Melissa officinalis. Journal of Food Measurement and Characterization 16 (1):570–81. doi: 10.1007/s11694-021-01183-3.
  • de Camargo, A. C., A. R. Schwember, R. Parada, S. Garcia, M. R. Maróstica, M. Franchin, M. A. B. Regitano-d’Arce, and F. Shahidi. 2018. Opinion on the hurdles and potential health benefits in value-added use of plant food processing by-products as sources of phenolic compounds. International Journal of Molecular Sciences 19 (11):3498. doi: 10.3390/ijms19113498.
  • de França Serpa, J., J. de Sousa Silva, C. L. Borges Reis, L. Micoli, L. M. Alexandre e Silva, K. M. Canuto, A. Casimiro de Macedo, and M. V. Ponte Rocha. 2020. Extraction and characterization of lignins from cashew apple bagasse obtained by different treatments. Biomass and Bioenergy 141 (July):105728. doi: 10.1016/j.biombioe.2020.105728.
  • Demirkol, M., and Z. Tarakci. 2018. Effect of grape (Vitis labrusca L.) pomace dried by different methods on physicochemical, microbiological and bioactive properties of yoghurt. LWT 97:770–7. doi: 10.1016/j.lwt.2018.07.058.
  • Deng, Y., T. Ju, and J. Xi. 2018. Circulating polyphenols extraction system with high-voltage electrical discharge: Design and performance evaluation. ACS Sustainable Chemistry & Engineering 6 (11):15402–10. doi: 10.1021/acssuschemeng.8b03827.
  • Dey, D., J. K. Richter, P. Ek, B. J. Gu, and G. M. Ganjyal. 2021. Utilization of food processing by-products in extrusion processing: A review. Frontiers in Sustainable Food Systems 4:304. doi: 10.3389/fsufs.2020.603751.
  • Dos Santos, K. M., I. C. de Oliveira, M. A. Lopes, A. P. G. Cruz, F. C. Buriti, and L. M. Cabral. 2017. Addition of grape pomace extract to probiotic fermented goat milk: The effect on phenolic content, probiotic viability and sensory acceptability. Journal of the Science of Food and Agriculture 97 (4):1108–15. doi: 10.1002/jsfa.7836.
  • Dranca, F., and M. Oroian. 2019. Ultrasound-assisted extraction of pectin from malus domestica ‘Fălticeni’ apple pomace. Processes 7 (8):488. doi: 10.3390/pr7080488.
  • Dranca, F., M. Vargas, and M. Oroian. 2020. Physicochemical properties of pectin from Malus domestica ‘Fălticeni’ apple pomace as affected by non-conventional extraction techniques. Food Hydrocolloids 100:105383. doi: 10.1016/j.foodhyd.2019.105383.
  • Duba, K., and L. Fiori. 2019. Supercritical CO2 extraction of grape seeds oil: Scale-up and economic analysis. International Journal of Food Science & Technology 54 (4):1306–12. doi: 10.1111/ijfs.14104.
  • Dumas, Y., M. Dadomo, G. Lucca, and P. Di Grolier. 2003. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. Journal of the Science of Food and Agriculture 83 (5):369–82. doi: 10.1002/jsfa.1370.
  • Dwyer, K., F. Hosseinian, and M. Rod. 2014. The market potential of grape waste alternatives. Journal of Food Research 3 (2):91. doi: 10.5539/jfr.v3n2p91.
  • El Kantar, S., N. Boussetta, H. N. Rajha, R. G. Maroun, N. Louka, and E. Vorobiev. 2018. High voltage electrical discharges combined with enzymatic hydrolysis for extraction of polyphenols and fermentable sugars from orange peels. Food Research International (Ottawa, ON) 107:755–62. doi: 10.1016/j.foodres.2018.01.070.
  • Elik, A., D. K. Yanık, and F. Göğüş. 2020. Microwave-assisted extraction of carotenoids from carrot juice processing waste using flaxseed oil as a solvent. LWT 123:109100. doi: 10.1016/j.lwt.2020.109100.
  • Escobar-Avello, D., C. Mardones, V. Saéz, S. Riquelme, D. von Baer, R. M. Lamuela-Raventós, and A. Vallverdú-Queralt. 2021. Pilot-plant scale extraction of phenolic compounds from grape canes : Comprehensive characterization by LC-ESI-LTQ-Orbitrap-MS. Food Research International (Ottawa, ON) 143:110265. doi: 10.1016/j.foodres.2021.110265.
  • Eyiz, V., I. Tontul, and S. Turker. 2020. Optimization of green extraction of phytochemicals from red grape pomace by homogenizer assisted extraction. Journal of Food Measurement and Characterization 14 (1):39–47. doi: 10.1007/s11694-019-00265-7.
  • Fakayode, O. A., and K. E. Abobi. 2018. Optimization of oil and pectin extraction from orange (Citrus sinensis) peels: A response surface approach. Journal of Analytical Science and Technology 9 (1):1–16. doi: 10.1186/s40543-018-0151-3.
  • FAO. 2011. Global food losses and food waste: Extent, causes and prevention. https://www.fao.org/3/i2697e/i2697e.pdf
  • FAO. 2013a. Food wastage footprint, Impacts on natural resources, Summary Report. https://www.fao.org/3/i3347e/i3347e.pdf
  • FAO. 2013b. Food wastage footprint: Impacts on natural resources; Technical report. Rome, Italy: Natural Resources Management and Environment Department. Retrieved from http://www.fao.org/3/ar429e/ar429e.pdf
  • FAO. 2015. Global Initiative on food loss and waste reduction. http://www.fao.org/3/i4068e/i4068e.pdf
  • FAO. 2019. The state of food and agriculture 2019. Moving forward on food loss and waste reduction. Rome. Licence: CC BY-NC-SA 3.0 IGO. https://www.fao.org/3/ca6030en/ca6030en.pdf
  • FAO/WHO. 2007. Codex alimentarius commission: Procedural manual. Rome, Italy: Food & Agriculture Org. https://www.fao.org/3/i5079e/i5079e.pdf
  • FAOSTAT, C. 2019. http://www.fao.org/faostat/en/#data/QC. Accessed July 12, 2021.
  • Farhat, A., Fabiano-Tixier, A.-SS. Maataoui, M. El, Maingonnat, J.-F F.Romdhane, M, and Chemat, F. 2011. Microwave steam diffusion for extraction of essential oil from orange peel: Kinetic data, extract’s global yield and mechanism. Food Chemistry 125 (1):255–61. doi: 10.1016/j.foodchem.2010.07.110.
  • Fava, F., G. Zanaroli, L. Vannini, E. Guerzoni, A. Bordoni, D. Viaggi, J. Robertson, K. Waldron, C. Bald, A. Esturo, et al. 2013. New advances in the integrated management of food processing by-products in Europe : sustainable exploitation of fruit and cereal processing by-products with the production of new food products (NAMASTE EU). New Biotechnology 30 (6):647–55. doi: 10.1016/j.nbt.2013.05.001.
  • Ferrentino, G., K. Morozova, O. K. Mosibo, M. Ramezani, and M. Scampicchio. 2018. Biorecovery of antioxidants from apple pomace by supercritical fluid extraction. Journal of Cleaner Production 186:253–61. doi: 10.1016/j.jclepro.2018.03.165.
  • Ferrentino, G., S. Giampiccolo, K. Morozova, N. Haman, S. Spilimbergo, and M. Scampicchio. 2020. Supercritical fluid extraction of oils from apple seeds: Process optimization, chemical characterization and comparison with a conventional solvent extraction. Innovative Food Science & Emerging Technologies 64 (June):102428. doi: 10.1016/j.ifset.2020.102428.
  • Franco-Vega, A., N. Ramírez-Corona, E. Palou, and A. López-Malo. 2016. Estimation of mass transfer coefficients of the extraction process of essential oil from orange peel using microwave assisted extraction. Journal of Food Engineering 170:136–43. doi: 10.1016/j.jfoodeng.2015.09.025.
  • Fuso, A., D. Risso, G. Rosso, F. Rosso, F. Manini, I. Manera, and A. Caligiani. 2021. Potential valorization of hazelnut shells through extraction, purification and structural characterization of prebiotic compounds: A critical review. Foods 10 (6):1197. doi: 10.3390/foods10061197.
  • Gadonna-Widehem, P., and J. C. Laguerre. 2017. Characterization of microbial inactivation by microwave heating. In Global food security and wellness. New York: Springer. doi: 10.1007/978-1-4939-6496-3_23.
  • Gallo, M., A. Formato, M. Ciaravolo, C. Langella, R. Cataldo, and D. Naviglio. 2019. A water extraction process for lycopene from tomato waste using a pressurized method: An application of a numerical simulation. European Food Research and Technology 245 (8):1767–75. doi: 10.1007/s00217-019-03300-5.
  • Gao, W., F. Chen, X. Wang, and Q. Meng. 2020. Recent advances in processing food powders by using superfine grinding techniques : A review. Comprehensive Reviews in Food Science and Food Safety 19 (4):2222–55. doi: 10.1111/1541-4337.12580.
  • Gebhardt, B., R. Sperl, R. Carle, and J. Müller-Maatsch. 2020. Assessing the sustainability of natural and artificial food colorants. Journal of Cleaner Production 260:120884. doi: 10.1016/j.jclepro.2020.120884.
  • Gerschenson, L. N. Q. Deng, and A. Cassano. 2021. Conventional macroscopic pretreatment. Food waste recovery. Academic Press. doi: 10.1016/B978-0-12-820563-1.00003-2.
  • Golmohammadi, M., A. Borghei, A. Zenouzi, N. Ashrafi, and M. J. Taherzadeh. 2018. Optimization of essential oil extraction from orange peels using steam explosion. Heliyon 4 (11):e00893. doi: 10.1016/j.heliyon.2018.e00893.
  • Grassino, A. N., M. Brnčić, D. Vikić-Topić, S. Roca, M. Dent, and S. R. Brnčić. 2016. Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chemistry 198:93–100. doi: 10.1016/j.foodchem.2015.11.095.
  • Grillo, G., L. Boffa, S. Talarico, R. Solarino, A. Binello, G. Cavaglià, S. Bensaid, G. Telysheva, and G. Cravotto. 2020. Batch and flow ultrasound‐assisted extraction of grape stalks: Process intensification design up to a multi‐kilo scale. Antioxidants 9 (8):730. doi: 10.3390/antiox9080730.
  • Gullón, P., B. Gullón, G. Astray, M. Carpena, M. Fraga-Corral, M. A. Prieto, and J. Simal-Gandara. 2020. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Research International (Ottawa, ON) 137 (June):109683. doi: 10.1016/j.foodres.2020.109683.
  • Guo, X., D. Han, H. Xi, L. Rao, X. Liao, X. Hu, and J. Wu. 2012. Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating: A comparison. Carbohydrate Polymers 88 (2):441–8. doi: 10.1016/j.carbpol.2011.12.026.
  • Hegde, S., S. Lodge, and T. A. Trabold. 2018. Characteristics of food processing wastes and their use in sustainable alcohol production. Renewable and Sustainable Energy Reviews 81 (2017):510–23. doi: 10.1016/j.rser.2017.07.012.
  • Hosseini, S. S., F. Khodaiyan, and M. S. Yarmand. 2016a. Aqueous extraction of pectin from sour orange peel and its preliminary physicochemical properties. International Journal of Biological Macromolecules 82:920–6. doi: 10.1016/j.ijbiomac.2015.11.007.
  • Hosseini, S. S., F. Khodaiyan, and M. S. Yarmand. 2016b. Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydrate Polymers 140:59–65. doi: 10.1016/j.carbpol.2015.12.051.
  • Jafari, F., F. Khodaiyan, H. Kiani, and S. S. Hosseini. 2017. Pectin from carrot pomace: Optimization of extraction and physicochemical properties. Carbohydrate Polymers 157:1315–22. doi: 10.1016/j.carbpol.2016.11.013.
  • Jiménez-Moreno, N., F. Volpe, J. A. Moler, I. Esparza, and C. Ancín-Azpilicueta. 2019. Impact of extraction conditions on the phenolic composition and antioxidant capacity of grape stem extracts. Antioxidants 8 (12):597. doi: 10.3390/antiox8120597.
  • Jiménez-Moreno, N., I. Esparza, F. Bimbela, L. M. Gandía, and C. Ancín-Azpilicueta. 2020. Technology Valorization of selected fruit and vegetable wastes as bioactive compounds : Opportunities and challenges. Critical Reviews in Environmental Science and Technology 50 (20):2061–108. doi: 10.1080/10643389.2019.1694819.
  • Jin, Q., L. Yang, N. Poe, and H. Huang. 2018. Integrated processing of plant-derived waste to produce value-added products based on the biorefinery concept. Trends in Food Science & Technology 74:119–31. doi: 10.1016/j.tifs.2018.02.014.
  • Jung, H., Y. J. Lee, and W. B. Yoon. 2018. Effect of moisture content on the grinding process and powder properties in food: A Review. Processes 6 (6):69. doi: 10.3390/pr6060069.
  • Kammerer, D. R., J. Kammerer, R. Valet, and R. Carle. 2014. Recovery of polyphenols from the by-products of plant food processing and application as valuable food ingredients. Food Research International 65:2–12. doi: 10.1016/j.foodres.2014.06.012.
  • Karaaslan, M., M. Ozden, H. Vardin, and H. Turkoglu. 2011. Phenolic fortification of yogurt using grape and callus extracts. LWT - Food Science and Technology 44 (4):1065–72. doi: 10.1016/j.lwt.2010.12.009.
  • Kaur, D., A. A. Wani, D. P. S. S. Oberoi, and D. S. Sogi. 2008. Effect of extraction conditions on lycopene extractions from tomato processing waste skin using response surface methodology. Food Chemistry 108 (2):711–8. doi: 10.1016/j.foodchem.2007.11.002.
  • Kavak, D. D., and B. Akdenİz. 2019. Physicochemical characteristics and antioxidant capacity of traditional yogurt fortified with grape (Vitis vinifera L.) seed extract at different levels. Kocatepe Veterinary Journal 12 (4):1–395. doi: 10.30607/kvj.596784.
  • Kehili, M., S. Sayadi, F. Frikha, A. Zammel, and N. Allouche. 2019. Optimization of lycopene extraction from tomato peels industrial by-product using maceration in refined olive oil. Food and Bioproducts Processing 117:321–8. doi: 10.1016/j.fbp.2019.08.004.
  • Kennard, N. J. J. 2019. Food waste management. In Zero Hunger. Cham: Springer International Publishing, 1–17. doi: 10.1007/978-3-319-69626-3.
  • Khan, M. K., M. Abert-Vian, A.-S. Fabiano-Tixier, O. Dangles, and F. Chemat. 2010. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry 119 (2):851–8. doi: 10.1016/j.foodchem.2009.08.046.
  • Kowalska, H., K. Czajkowska, J. Cichowska, and A. Lenart. 2017. What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends in Food Science & Technology 67:150–9. doi: 10.1016/j.tifs.2017.06.016.
  • Kwiatkowski, M., O. Kravchuk, G. K. Skouroumounis, and D. K. Taylor. 2020. Response surface parallel optimization of extraction of total phenolics from separate white and red grape skin mixtures with microwave-assisted and conventional thermal methods. Journal of Cleaner Production 251:119563. doi: 10.1016/j.jclepro.2019.119563.
  • Laaksonen, O., R. Kuldjärv, T. Paalme, M. Virkki, and B. Yang. 2017. Impact of apple cultivar, ripening stage, fermentation type and yeast strain on phenolic composition of apple ciders. Food Chemistry 233:29–37. doi: 10.1016/j.foodchem.2017.04.067.
  • Lachos-Perez, D., A. M. Baseggio, P. C. Mayanga-Torres, M. R. Maróstica, M. A. Rostagno, J. Martínez, and T. Forster-Carneiro. 2018. Subcritical water extraction of flavanones from defatted orange peel. The Journal of Supercritical Fluids 138 (January):7–16. doi: 10.1016/j.supflu.2018.03.015.
  • Lai, W. T., N. M. H. Khong, S. S. Lim, Y. Y. Hee, B. I. Sim, K. Y. Lau, and O. M. Lai. 2017. A review: Modified agricultural by-products for the development and fortification of food products and nutraceuticals. Trends in Food Science & Technology 59:148–60. doi: 10.1016/j.tifs.2016.11.014.
  • Lima, Á. S., C. M. F. Soares, R. Paltram, H. Halbwirth, and K. Bica. 2017. Extraction and consecutive purification of anthocyanins from grape pomace using ionic liquid solutions. Fluid Phase Equilibria 451:68–78. doi: 10.1016/j.fluid.2017.08.006.
  • Lopes de Menezes, M., G. Johann, A. Diório, N. C. Pereira, and E. A. da Silva. 2018. Phenomenological determination of mass transfer parameters of oil extraction from grape biomass waste. Journal of Cleaner Production 176:130–9. doi: 10.1016/j.jclepro.2017.12.128.
  • Lucera, A., Costa, C. Marinelli, V. Saccotelli, M. A. Nobile, M. A. Del, and Conte, A. 2018. Fruit and vegetable by-products to fortify spreadable cheese. Antioxidants 7 (5):61. doi: 10.3390/antiox7050061.
  • Luengo, E., I. Álvarez, and J. Raso. 2013. Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innovative Food Science & Emerging Technologies 17:79–84. doi: 10.1016/j.ifset.2012.10.005.
  • Luengo, E., S. Condón-Abanto, S. Condón, I. Álvarez, and J. Raso. 2014. Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Separation and Purification Technology 136:130–6. doi: 10.1016/j.seppur.2014.09.008.
  • Luo, S., X. Shen, L. Pan, Z. Zheng, Y. Zhao, X. Zhong, and S. Jiang. 2018. Effect of grape seed extract on sensory, textural, and anti-staling properties of Chinese steamed bread. Journal of Food Processing and Preservation 42 (2):e13497. doi: 10.1111/jfpp.13497.
  • M’hiri, N., I. Ioannou, N. Mihoubi Boudhrioua, and M. Ghoul. 2015. Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food and Bioproducts Processing 96:161–70. doi: 10.1016/j.fbp.2015.07.010.
  • Maetens, E., N. Hettiarachchy, K. Dewettinck, R. Horax, and K. Moens. 2018. Reductions of anti-nutritional factors of germinated soybeans by ultraviolet and infrared treatments for snack chips preparation. LWT 90:513–8. doi: 10.1016/j.lwt.2018.01.001.
  • Mahato, N., M. Sinha, K. Sharma, and M. H. Cho. 2019. Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods 8:523. doi: 10.3390/foods8110523.
  • Maher, M., S. Taghian Dinani, and H. Shahram. 2020. Extraction of phenolic compounds from lemon processing waste using electrohydrodynamic process. Journal of Food Measurement and Characterization 14 (2):749–60. doi: 10.1007/s11694-019-00323-0.
  • Majerska, J., A. Michalska, and A. Figiel. 2019. A review of new directions in managing fruit and vegetable processing by- products. Trends in Food Science & Technology 88:207–19. doi: 10.1016/j.tifs.2019.03.021.
  • Maner, S., A. K. Sharma, and K. Banerjee. 2017. Wheat flour replacement by wine grape pomace powder positively affects physical, functional and sensory properties of cookies. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 87 (1):109–13. doi: 10.1007/s40011-015-0570-5.
  • Marchiani, R., M. Bertolino, D. Ghirardello, P. L. H. Mcsweeney, and G. Zeppa. 2016. Physicochemical and nutritional qualities of grape pomace powder-fortified semi-hard cheeses. Journal of Food Science and Technology 53 (3):1585–96. doi: 10.1007/s13197-015-2105-8.
  • Marchiani, R., M. Bertolino, S. Belviso, M. Giordano, D. Ghirardello, L. Torri, M. Piochi, and G. Zeppa. 2016. Yogurt enrichment with grape pomace : Effect of grape cultivar on physicochemical, microbiological and sensory properties. Journal of Food Quality 39 (2):77–89. doi: 10.1111/jfq.12181.
  • Meini, M. R., I. Cabezudo, C. E. Boschetti, and D. Romanini. 2019. Recovery of phenolic antioxidants from Syrah grape pomace through the optimization of an enzymatic extraction process. Food Chemistry 283:257–64. doi: 10.1016/j.foodchem.2019.01.037.
  • Meshkani, S. M., S. A. Mortazavi, A. Hosein, E. Rad, and A. Beigbabaei. 2016. Optimization of protein extraction and evaluation of functional properties of tomato waste and seeds from tomato paste plants. Biosciences, Biotechnology Research Asia 13 (4):2387–401. doi: 10.13005/bbra/2410.
  • Mirheli, M., and, and S. Taghian Dinani. 2018. Extraction of β-carotene pigment from carrot processing waste using ultrasonic-shaking incubation method. Journal of Food Measurement and Characterization 12 (3):1818–28. doi: 10.1007/s11694-018-9796-2.
  • Mohan, K., T. Muralisankar, V. Uthayakumar, R. Chandirasekar, N. Revathi, A. Ramu Ganesan, K. Velmurugan, P. Sathishkumar, R. Jayakumar, and P. Seedevi. 2020. Trends in the extraction, purification, characterisation and biological activities of polysaccharides from tropical and sub-tropical fruits - A comprehensive review. Carbohydrate Polymers 238:116185. doi: 10.1016/j.carbpol.2020.116185.
  • Montero-Calderon, A., C. Cortes, A. Zulueta, A. Frigola, and M. J. Esteve. 2019. Green solvents and ultrasound-assisted extraction of bioactive orange (Citrus sinensis) peel compounds. Scientific Reports 9 (1):1–8. doi: 10.1038/s41598-019-52717-1.
  • Morales-Contreras, B. E., J. C. Contreras-Esquivel, L. Wicker, L. A. Ochoa-Martínez, and J. Morales-Castro. 2017. Husk tomato (Physalis ixocarpa Brot.) waste as a promising source of pectin: Extraction and physicochemical characterization. Journal of Food Science 82 (7):1594–601. doi: 10.1111/1750-3841.13768.
  • Motevalizadeh, E., S. A. Mortazavi, E. Milani, and M. A. Hooshmand-Dalir. 2018. Optimization of physicochemical and textural properties of pizza cheese fortified with soybean oil and carrot extract. Food Science & Nutrition 6 (2):356–72. doi: 10.1002/fsn3.563.
  • Moure, A., J. M. Cruz, D. Franco, J. Domı́nguez, J. Sineiro, H. Domı́nguez, M. José Núñez, and J. Parajó. 2001. Natural antioxidants from residual sources. Food Chemistry 72 (2):145–71. doi: 10.1016/S0308-8146(00)00223-5.
  • Mustafa, A., L. M. Trevino, and C. Turner. 2012. Pressurized hot ethanol extraction of carotenoids from carrot by-products. Molecules (Basel, Switzerland) 17 (2):1809–18. doi: 10.3390/molecules17021809.
  • Nagarajaiah, S. B., and J. Prakash. 2015. Nutritional composition, acceptability, and shelf stability of carrot pomace-incorporated cookies with special reference to total and β-carotene retentio. Cogent Food & Agriculture 1 (1):1039886. doi: 10.1080/23311932.2015.1039886.
  • Natolino, A., and C. Da Porto. 2020. Kinetic models for conventional and ultrasound assistant extraction of polyphenols from defatted fresh and distilled grape marc and its main components skins and seeds. Chemical Engineering Research and Design 156:1–12. doi: 10.1016/j.cherd.2020.01.009.
  • Ndubuisi, T. I., U. E. Enebaku, and C. Ogueke. 2014. Waste to wealth- value recovery from agro- food processing wastes using biotechnology : A review. British Biotechnology Journal 4 (4):418–81.
  • Nieto, J. A., S. Santoyo, M. Prodanov, G. Reglero, and L. Jaime. 2020. Valorisation of grape stems as a source of phenolic antioxidants by using a sustainable extraction methodology. Foods 9 (5):604. doi: 10.3390/foods9050604.
  • Nobre, B. P., A. F. Palavra, F. L. P. P. Pessoa, and R. L. Mendes. 2009. Supercritical CO2 extraction of trans-lycopene from Portuguese tomato industrial waste. Food Chemistry 116 (3):680–5. doi: 10.1016/j.foodchem.2009.03.011.
  • Oliveira, V. R. de, L. T. Preto, H. de O. Schmidt, M. Komeroski, V. L. d. Silva, and A. d. O. Rios. 2016. Physicochemical and sensory evaluation of cakes made with passion fruit and orange residues. Journal of Culinary Science & Technology 14 (2):166–75. doi: 10.1080/15428052.2015.1102787.
  • Oyinloye, T. M., and W. B. Yoon. 2020. Effect of freeze-drying on quality and grinding process of food produce: A review. Processes 8 (3):354. doi: 10.3390/pr8030354.
  • Ozcan, M. M., Ghafoor, K. Juhaimi, F. Al, Uslu, N.Babiker, E. E.Babiker, E. E.Almusallam, I. A. … 2021. Influence of drying techniques on bioactive properties, phenolic compounds and fatty acid compositions of dried lemon and orange peel powders. Journal of Food Science and Technology 58 (1):147–58. doi: 10.1007/s13197-020-04524-0.
  • Ozturk, B., C. Parkinson, and M. Gonzalez-Miquel. 2018. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Separation and Purification Technology 206:1–13. doi: 10.1016/j.seppur.2018.05.052.
  • Panadare, D. C., A. Gondaliya, and V. K. Rathod. 2020. Comparative study of ultrasonic pretreatment and ultrasound assisted three phase partitioning for extraction of custard apple seed oil. Ultrasonics Sonochemistry 61:104821. doi: 10.1016/j.ultsonch.2019.104821.
  • Peng, X., J. Ma, K. Cheng, Y. Jiang, F. Chen, and M. Wang. 2010. The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chemistry 119 (1):49–53. doi: 10.1016/j.foodchem.2009.05.083.
  • Perazzini, H., F. B. Freire, F. B. Freire, and J. Teixeira. 2016. Thermal treatment of solid wastes using drying technologies: A review. Drying Technology 34 (1):39–52. doi: 10.1080/07373937.2014.995803.
  • Pereira, C. G., and M. A. A. Meireles. 2010. Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food and Bioprocess Technology 3 (3):340–72. doi: 10.1007/s11947-009-0263-2.
  • Pereira, D. T. V., A. G. Tarone, C. B. B. Cazarin, G. F. Barbero, and J. Martínez. 2019. Pressurized liquid extraction of bioactive compounds from grape marc. Journal of Food Engineering 240:105–13. doi: 10.1016/j.jfoodeng.2018.07.019.
  • Petrotos, K., I. Giavasis, K. Gerasopoulos, C. Mitsagga, C. Papaioannou, and P. Gkoutsidis. 2021. Optimization of the vacuum microwave assisted extraction of the natural polyphenols and flavonoids from the raw solid waste of the pomegranate juice producing industry at industrial scale. Molecules 26 (1):246. doi: 10.3390/molecules26041033.
  • Pingret, D., A.-S. Fabiano-Tixier, C. L. Bourvellec, C. M. G. C. Renard, and F. Chemat. 2012. Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. Journal of Food Engineering 111 (1):73–81. doi: 10.1016/j.jfoodeng.2012.01.026.
  • Pińkowska, H., M. Krzywonos, P. Wolak, and A. Złocińska. 2019. Pectin and neutral monosaccharides production during the simultaneous hydrothermal extraction of waste biomass from refining of sugar — optimization with the use of doehlert design. Molecules 24 (3):472. doi: 10.3390/molecules24030472.
  • Pintać, D., T. Majkić, L. Torović, D. Orčić, I. Beara, N. Simin, N. Mimica–Dukić, and M. Lesjak. 2018. Solvent selection for efficient extraction of bioactive compounds from grape pomace. Industrial Crops and Products 111:379–90. doi: 10.1016/j.indcrop.2017.10.038.
  • Prado, J. M., I. Dalmolin, N. D. D. Carareto, R. C. Basso, A. J. A. Meirelles, J. Vladimir Oliveira, E. A. C. Batista, and M. A. A. Meireles. 2012. Supercritical fluid extraction of grape seed : Process scale-up, extract chemical composition and economic evaluation. Journal of Food Engineering 109 (2):249–57. doi: 10.1016/j.jfoodeng.2011.10.007.
  • Prakash Maran, J., V. Sivakumar, K. Thirugnanasambandham, and R. Sridhar. 2013. Optimization of microwave assisted extraction of pectin from orange peel. Carbohydrate Polymers 97 (2):703–9. doi: 10.1016/j.carbpol.2013.05.052.
  • Purohit, A. J., and P. R. Gogate. 2015. Ultrasound-assisted extraction of β-carotene from waste carrot residue: Effect of operating parameters and type of ultrasonic irradiation. Separation Science and Technology 50 (10):1507–17. doi: 10.1080/01496395.2014.978472.
  • Raghavendra, S. N., S. R. Swamy, N. K. Rastogi, K. S. M. S. Raghavarao, S. Kumar, and R. N. Tharanathan. 2006. Grinding characteristics and hydration properties of coconut residue: A source of dietary fibe. Journal of Food Engineering 72 (3):281–6. doi: 10.1016/j.jfoodeng.2004.12.008.
  • Rahimpour, S., and, and S. Taghian Dinani. 2018. Lycopene extraction from tomato processing waste using ultrasound and cell-wall degrading enzymes. Journal of Food Measurement and Characterization 12 (4):2394–403. doi: 10.1007/s11694-018-9856-7.
  • Ran, L., C. Yang, M. Xu, Z. Yi, D. Ren, and L. Yi. 2019. Enhanced aqueous two-phase extraction of proanthocyanidins from grape seeds by using ionic liquids as adjuvants. Separation and Purification Technology 226:154–61. doi: 10.1016/j.seppur.2019.05.089.
  • Rangel, A. E. T., J. M. Gómez Ramírez, and A. F. González Barrios. 2020. From industrial by-products to value-added compounds: The design of efficient microbial cell factories by coupling systems metabolic engineering and bioprocesses. Biofuels, Bioproducts and Biorefining 14 (6):1228–38. doi: 10.1002/bbb.2127.
  • Ranjha, M. M. A. N., S. Amjad, S. Ashraf, L. Khawar, M. N. Safdar, S. Jabbar, M. Nadeem, S. Mahmood, and M. A. Murtaza. 2020. Extraction of polyphenols from apple and pomegranate peels employing different extraction techniques for the development of functional date bars. International Journal of Fruit Science 20 (sup3):S1201–S1221. doi: 10.1080/15538362.2020.1782804.
  • Rao, M., A. Bast, and A. de Boer. 2021. Valorized food processing by-products in the EU: Finding the balance between safety, nutrition, and sustainability. Sustainability 13 (8):4428–18. doi: 10.3390/su13084428.
  • Rodríguez García, S. L., and V. Raghavan. 2021. Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds—A review. Critical Reviews in Food Science and Nutrition:1–21. doi: 10.1080/10408398.2021.1901651.
  • Saberian, H., Z. Hamidi-Esfahani, H. Ahmadi Gavlighi, and M. Barzegar. 2017. Optimization of pectin extraction from orange juice waste assisted by ohmic heating. Chemical Engineering and Processing: Process Intensification 117:154–61. doi: 10.1016/j.cep.2017.03.025.
  • Sabio, E., M. Lozano, V. Montero De Espinosa, R. L. Mendes, A. P. Pereira, A. F. Palavra, and J. A. Coelho. 2003. Lycopene and β-Carotene extraction from tomato processing waste using supercritical CO2. Industrial & Engineering Chemistry Research 42 (25):6641–6. doi: 10.1021/ie0301233.
  • Sadh, P. K., S. Kumar, P. Chawla, and J. S. Duhan. 2018. Fermentation: A boon for production of bioactive compounds by processing of food industries wastes (by-products). Molecules 23 (10):2560. doi: 10.3390/molecules23102560.
  • Sagar, N. A., S. Pareek, S. Sharma, E. M. Yahia, and M. G. Lobo. 2018. Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety 17 (3):512–31. doi: 10.1111/1541-4337.12330.
  • Salehi, L., and S. Taghian Dinani. 2020. Application of electrohydrodynamic‐ultrasonic procedure for extraction of β-carotene from carrot pomace. Journal of Food Measurement and Characterization 14 (6):3031–9. doi: 10.1007/s11694-020-00542-w.
  • Santamaría-Fernández, M., B. Molinuevo-Salces, M. Lübeck, and H. Uellendahl. 2018. Biogas potential of green biomass after protein extraction in an organic biorefinery concept for feed, fuel and fertilizer production. Renewable Energy 129:769–75. doi: 10.1016/j.renene.2017.03.012.
  • Sarangi, P. K., S. Nanda, and P. Mohanty. 2018. Recent advancements in biofuels and bioenergy utilization. Berlin, Germany: Springer.
  • Schieber, A., F. C. Stintzing, and R. Carle. 2001. By-products of plant food processing as a source of functional compounds — recent developments. Trends in Food Science & Technology 12 (11):401–13. doi: 10.1016/S0924-2244(02)00012-2.
  • Schweiggert, R. M. 2018. Perspective on the ongoing replacement of artificial and animal-based dyes with alternative natural pigments in foods and beverages. Journal of Agricultural and Food Chemistry 66 (12):3074–81. doi: 10.1021/acs.jafc.7b05930.
  • Scotter, M. J. 2011. Emerging and persistent issues with artificial food colours: Natural colour additives as alternatives to synthetic colours in food and drink. Quality Assurance and Safety of Crops & Foods 3 (1):28–39. doi: 10.1111/j.1757-837X.2010.00087.x.
  • Sengar, A. S., A. Rawson, M. Muthiah, and S. K. Kalakandan. 2020. Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste. Ultrasonics Sonochemistry 61:104812. doi: 10.1016/j.ultsonch.2019.104812.
  • Šeregelj, V., L. Pezo, O. Šovljanski, S. Lević, V. Nedović, S. Markov, A. Tomić, J. Čanadanović-Brunet, J. Vulić, V. T. Šaponjac, et al. 2021. New concept of fortified yogurt formulation with encapsulated carrot waste extract. LWT 138:110732. doi: 10.1016/j.lwt.2020.110732.
  • Shahram, H., and S. T. Dinani. 2019. Optimization of ultrasonic-assisted enzymatic extraction of β-carotene from orange processing waste. Journal of Food Process Engineering 42 (4):1–16. doi: 10.1111/jfpe.13042.
  • Shahram, H., and S. Taghian Dinani. 2019. Influences of electrohydrodynamic time and voltage on extraction of phenolic compounds from orange pomace. LWT 111:23–30. doi: 10.1016/j.lwt.2019.05.002.
  • Shahram, H., S. Taghian Dinani, and M. Amouheydari. 2019. Effects of pectinase concentration, ultrasonic time, and pH of an ultrasonic-assisted enzymatic process on extraction of phenolic compounds from orange processing waste. Journal of Food Measurement and Characterization 13 (1):487–98. doi: 10.1007/s11694-018-9962-6.
  • Shinde, T. S., J. D. Brooks, and D. Sun-Waterhouse. 2015. Preparation and use of apple skin polyphenol extracts in milk: enhancement of the viability and adhesion of probiotic Lactobacillus acidophilus (ATCC 1643) bacteria. International Journal of Food Science & Technology 50 (6):1303–10. doi: 10.1111/ijfs.12759.
  • Silva, R. P. F. F. da, T. A. P. Rocha-Santos, and A. C. Duarte. 2016. Supercritical fluid extraction of bioactive compounds. TrAC Trends in Analytical Chemistry 76:40–51. doi: 10.1016/j.trac.2015.11.013.
  • Singh Nee Nigam, P., and A. Pandey. 2009. Biotechnology for agro-industrial residues utilisation: Utilisation of agro-residues. Springer. doi: 10.1007/978-1-4020-9942-7.
  • Singh, K., T. Kumar, V. Prince Kumar, S. Sharma, and J. Rani. 2019. A review on conversion of food wastes and by-products into value added products. International Journal of Chemical Studies 7 (2):2068–73. https://www.researchgate.net/publication/333903468.
  • Socas-Rodríguez, B., G. Alvarez-Rivera, A. Valdes, E. Ibanez, and A. Cifuentes. 2021. Food by-products and food wastes: Are they safe enough for their valorization? Trends in Food Science & Technology 114:133–47. doi: 10.1016/j.tifs.2021.05.002.
  • Sporin, M., M. Avbelj, B. Kovac, and S. S. Mozina. 2018. Quality characteristics of wheat flour dough and bread containing grape pomace flour. Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional 24 (3):251–63. doi: 10.1177/1082013217745398.
  • Strati, I. F., and V. Oreopoulou. 2011. Effect of extraction parameters on the carotenoid recovery from tomato waste. International Journal of Food Science & Technology 46 (1):23–9. doi: 10.1111/j.1365-2621.2010.02496.x.
  • Strati, I. F., E. Gogou, and V. Oreopoulou. 2015. Enzyme and high pressure assisted extraction of carotenoids from tomato waste. Food and Bioproducts Processing 94:668–74. doi: 10.1016/j.fbp.2014.09.012.
  • Teigiserova, D. A., L. Hamelin, and M. Thomsen. 2019. Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resources, Conservation & Recycling 149:413–26. doi: 10.1016/j.resconrec.2019.05.003.
  • Tielens, J., and J. Candel. 2014. Reducing food wastage, improving food security? An inventory study on stakeholders’ perspectives and the current state. Food & Business Knowledge Platform. https://knowledge4food.net/wp-content/uploads/2014/07/140702_fbkp_report-foodwastage_DEF.pdf
  • Tiwari, S., N. Upadhyay, A. K. Singh, G. S. Meena, and S. Arora. 2019. Organic solvent-free extraction of carotenoids from carrot bio-waste and its physico-chemical properties. Journal of Food Science and Technology 56 (10):4678–87. doi: 10.1007/s13197-019-03920-5.
  • Todd, R., and S. Baroutian. 2017. A techno-economic comparison of subcritical water, supercritical CO2 and organic solvent extraction of bioactives from grape marc. Journal of Cleaner Production 158:349–58. doi: 10.1016/j.jclepro.2017.05.043.
  • Toledo, N. M. V. de, L. P. Nunes, P. P. M. da Silva, M. H. F. Spoto, and S. G. Canniatti-Brazaca. 2017. Original article Influence of pineapple, apple and melon by-products on cookies : physicochemical and sensory aspects. International Journal of Food Science & Technology 52 (5):1185–92. doi: 10.1111/ijfs.13383.
  • Toma, A., O. Craciunescu, and R. Tatia. 2019. Comparative study on extraction methods of pectin from by-products of juiced carrots. Scientific Bulletin, Series F. Biotechnologies 23:71–7.
  • Tomašević, I., P. Putnik, F. Valjak, B. Pavlić, B. Šojić, A. Bebek Markovinović, and D. Bursać Kovačević. 2021. 3D printing as novel tool for fruit-based functional food production. Current Opinion in Food Science 41:138–45. doi: 10.1016/j.cofs.2021.03.015.
  • Tripathi, M. K., R. S. Jadam, S. K. Giri, and R. M. Srivastva. 2019. Food processing by-products: Future for food applications. Octa Journal of Biosciences 7 (2):93–9.
  • Trujillo-Juárez, L. G., Ó. Hernández-Meléndez, M. Gimeno, J. Gracia-Fadrique, and E. Bárzana. 2021. Extraction of essential oil from waste grapefruit peel using a pilot-scale twin-screw extruder. ACS Food Science & Technology 1 (7):1198–205. doi: 10.1021/acsfoodscitech.1c00098.
  • Twinomuhwezi, H., A. C. Godswill, and D. Kahunde. 2020. Extraction and characterization of pectin from orange (Citrus sinensis), lemon (Citrus limon) and tangerine (Citrus tangerina). American Journal of Physical Sciences 1:17–30.
  • Uwineza, P. A., and A. Waśkiewicz. 2020. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules 25 (17):3847. doi: 10.3390/molecules25173847.
  • Vakili, S., and S. A. Yasini Ardakani. 2018. Antioxidant effect of orange peel extract on chemical quality, sensory properties, and black spots of farmed white shrimp (Litopenaeus vannamei). Journal of Nutrition and Food Security 3 (1):19–26. http://jnfs.ssu.ac.ir/article-1-122-en.html.
  • van der Goot, A. J., P. J. M. Pelgrom, J. A. M. Berghout, M. E. J. Geerts, L. Jankowiak, N. A. Hardt, J. Keijer, M. A. I. Schutyser, C. V. Nikiforidis, and R. M. Boom. 2016. Concepts for further sustainable production of foods. Journal of Food Engineering 168:42–51. doi: 10.1016/j.jfoodeng.2015.07.010.
  • Vital, A. C. P., S. N. Woruby, P. T. Matumoto-Pintro, M. R. da. S. Scapim, and G. S. Madrona. 2018. Ice cream supplemented with grape juice residue as a source of antioxidants. International Journal of Dairy Technology 71 (1):183–9. doi: 10.1111/1471-0307.12412.
  • Wang, L., N. Boussetta, N. Lebovka, and E. Vorobiev. 2018. Effects of ultrasound treatment and concentration of ethanol on selectivity of phenolic extraction from apple pomace. International Journal of Food Science & Technology 53 (9):2104–9. doi: 10.1111/ijfs.13835.
  • Wu, D. 2016. Recycle technology for potato peel waste processing: A review. Procedia Environmental Sciences 31:103–7. doi: 10.1016/j.proenv.2016.02.014.
  • Xiong, X., X. Cao, Q. Zeng, X. Yang, Y. Wang, R. Zhang, F. Huang, L. Dong, M. Zhang, and D. Su. 2021. Effects of heat pump drying and superfine grinding on the composition of bound phenolics, morphology and microstructure of lychee juice. LWT 144:111206. doi: 10.1016/j.lwt.2021.111206.
  • Yadav, D., H. Kumar, A. Kumar, A. Jha, P. Kumar, and P. K. A. Goyal. 2016. Optimization of polyphenolic fortification of grape peel extract in stirred yogurt by response surface methodology. Indian Journal of Dairy Science 69 (1):41–9.
  • Yan, L., L. He, and J. Xi. 2017. High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds-A review. Critical Reviews in Food Science and Nutrition 57 (13):2877–88. doi: 10.1080/10408398.2015.1077193.
  • Yan, L., Y. Deng, T. Ju, K. Wu, and J. Xi. 2018. Continuous high voltage electrical discharge extraction of flavonoids from peanut shells based on "annular gap type" treatment chamber. Food Chemistry 256:350–7. doi: 10.1016/j.foodchem.2018.02.129.
  • Yeoh, S., S. Zhang, J. Shi, and T. A. G. Langrish. 2008. A comparison of different techniques for water-based extraction of pectin from orange peels. Chemical Engineering Communications 195 (5):511–20. doi: 10.1080/00986440701707479.
  • Zhongdong, L., W. Guohua, G. Yunchang, and J. F. Kennedy. 2006. Image study of pectin extraction from orange skin assisted by microwave. Carbohydrate Polymers 64 (4):548–52. doi: 10.1016/j.carbpol.2005.11.006.