724
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Environmental risk factors associated with the survival, persistence, and thermal tolerance of Cronobacter sakazakii during the manufacture of powdered infant formula

, ORCID Icon, , & ORCID Icon
Pages 12224-12239 | Published online: 15 Jul 2022

References

  • Abebe, G. M. 2020. Cronobacter sakazakii in infant food contamination and its survival strategies in hostile conditions. International Journal of Pediatric Research 6 (067)
  • Al Holy, M. A., M. Lin, M. M. Abu, Ghoush, H. M. Al Qadiri and B. A. Rasco. 2009. Thermal resistance, survival and inactivation of Enterobacter sakazakii (Cronobacter spp.) in powdered and reconstituted infant formula. Journal of Food Safety 29 (2):287–301. doi: 10.1111/j.1745-4565.2009.00157.x.
  • Al-Nabulsi, A. A., T. M. Osaili, M. A. Al-Holy, R. R. Shaker, M. M. Ayyash, A. N. Olaimat, and R. A. Holley. 2009. Influence of desiccation on the sensitivity of Cronobacter spp. to lactoferrin or nisin in broth and powdered infant formula. International Journal of Food Microbiology 136 (2):221–6. doi: 10.1016/j.ijfoodmicro.2009.08.008.
  • Al-Nabulsi, A. A., T. M. Osaili, N. A. Z. Elabedeen, Z. W. Jaradat, R. R. Shaker, K. A. Kheirallah, Y. H. Tarazi, and R. A. Holley. 2011. Impact of environmental stress desiccation, acidity, alkalinity, heat or cold on antibiotic susceptibility of Cronobacter sakazakii. International Journal of Food Microbiology 146 (2):137–43. doi: 10.1016/j.ijfoodmicro.2011.02.013.
  • Álvarez-Ordóñez, A., M. Begley, and C. Hill. 2012. Polymorphisms in rpoS and stress tolerance heterogeneity in natural isolates of Cronobacter sakazakii. Applied and Environmental Microbiology 78 (11):3975–84. doi: 10.1128/AEM.07835-11.
  • Álvarez-Ordóñez, A., M. Begley, T. Clifford, T. Deasy, B. Collins, and C. Hill. 2014. Transposon mutagenesis reveals genes involved in osmotic stress and drying in Cronobacter sakazakii. Food Research International 55:45–54. doi: 10.1016/j.foodres.2013.10.037.
  • Araújo, F. D. d S., L. M. R. Esper, A. Y. Kuaye, M. P. Sircili, and A. J. Marsaioli. 2012. N-acyl-homoserine lactones from Enterobacter sakazakii (Cronobacter spp.) and their degradation by Bacillus cereus enzymes. Journal of Agricultural and Food Chemistry 60 (2):585–92. doi: 10.1021/jf203846f.
  • Arku, B., S. Fanning, and K. Jordan. 2011. Heat adaptation and survival of Cronobacter spp. (formerly Enterobacter sakazakii). Foodborne Pathogens and Disease 8 (9):975–81. doi: 10.1089/fpd.2010.0819.
  • Arroyo, C., G. Cebrián, S. Condón, and R. Pagán. 2012. Development of resistance in Cronobacter sakazakii ATCC 29544 to thermal and nonthermal processes after exposure to stressing environmental conditions. Journal of Applied Microbiology 112 (3):561–70. doi: 10.1111/j.1365-2672.2011.05218.x.
  • Arroyo, C., S. Condón, and R. Pagán. 2009. Thermobacteriological characterization of Enterobacter sakazakii. International Journal of Food Microbiology 136 (1):110–8. doi: 10.1016/j.ijfoodmicro.2009.09.013.
  • Asakura, H., T. Morita, Ishihara, S. Yamamoto, and S. Igimi. ‐ 2007. Genetic characterization of thermal tolerance in Enterobacter sakazakii. Microbiology and Immunology 51 (7):671–7. doi: 10.1111/j.1348-0421.2007.tb03955.x.
  • Bai, Y., H. Yu, D. Guo, S. Fei, and C. Shi. 2019. Survival and environmental stress resistance of Cronobacter sakazakii exposed to vacuum or air packaging and stored at different temperatures. Frontiers in Microbiology 10:303. doi: 10.3389/fmicb.2019.00303.
  • Bao, X., X. Jia, L. Chen, B. M. Peters, C. W. Lin, D. Chen, L. Li, B. Li, Y. Li, Z. Xu, et al. 2017. Effect of polymyxin resistance (pmr) on biofilm formation of Cronobacter sakazakii. Microbial Pathogenesis 106:16–9. doi: 10.1016/j.micpath.2016.12.012.
  • Barron, J. C, and S. J. Forsythe. 2007. Dry stress and survival time of Enterobacter sakazakii and other Enterobacteriaceae in dehydrated powdered infant formula. Journal of Food Protection 70 (9):2111–7. doi: 10.4315/0362-028x-70.9.2111.
  • Bennour Hennekinne, R., L. Guillier, L. Fazeuilh, T. Ells, S. Forsythe, E. Jackson, T. Meheut, and N. G. Besse. 2018. Survival of Cronobacter in powdered infant formula and their variation in biofilm formation. Letters in Applied Microbiology 66 (6):496–505. doi: 10.1111/lam.12879.
  • Beuchat, L. R., H. Kim, J. B. Gurtler, L. C. Lin, J. H. Ryu, and G. M. Richards. 2009. Cronobacter sakazakii in foods and factors affecting its survival, growth, and inactivation. International Journal of Food Microbiology 136 (2):204–13. doi: 10.1016/j.ijfoodmicro.2009.02.029.
  • Beuchat, L. R., E. Komitopoulou, H. Beckers, R. P. Betts, F. Bourdichon, S. Fanning, H. M. Joosten, and B. H. Ter Kuile. 2013. Low–water activity foods: Increased concern as vehicles of foodborne pathogens. Journal of Food Protection 76 (1):150–72. doi: 10.4315/0362-028X.JFP-12-211.
  • Brandão, M. L. L., N. S. Umeda, E. Jackson, S. J. Forsythe, and I. de Filippis. 2017. Isolation, molecular and phenotypic characterization, and antibiotic susceptibility of Cronobacter spp. from Brazilian retail foods. Food Microbiology 63:129–38. doi: 10.1016/j.fm.2016.11.011.
  • Brandwein, M., D. Steinberg, and S. Meshner. 2016. Microbial biofilms and the human skin microbiome. NPJ Biofilms and Microbiomes 2 (1):3–6. doi: 10.1038/s41522-016-0004-z.
  • Breeuwer, P., A. Lardeau, M. Peterz, and H. M. Joosten. 2003. Desiccation and heat tolerance of Enterobacter sakazakii. Journal of Applied Microbiology 95 (5):967–73. doi: 10.1046/j.1365-2672.2003.02067.x.
  • Burgess, C. M., A. Gianotti, N. Gruzdev, J. Holah, S. Knøchel, A. Lehner, E. Margas, S. S. Esser, S. Sela, and O. Tresse. 2016. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. International Journal of Food Microbiology 221:37–53. doi: 10.1016/j.ijfoodmicro.2015.12.014.
  • Cao, Y., L. Li, Y. Zhang, F. Liu, X. Xiao, X. Li, and Y. Yu. 2021. SdiA plays a crucial role in stress tolerance of C. sakazakii CICC 21544. Lwt 143:111189. doi: 10.1016/j.lwt.2021.111189.
  • Carrascosa, C., D. Raheem, F. Ramos, A. Saraiva, and A. Raposo. 2021. Microbial biofilms in the food industry—A comprehensive review. International Journal of Environmental Research and Public Health 18 (4):2014. doi: 10.3390/ijerph18042014.
  • Chang, C. H., M. L. Chiang, and C. C. Chou. 2009. The effect of temperature and length of heat shock treatment on the thermal tolerance and cell leakage of Cronobacter sakazakii BCRC 13988. International Journal of Food Microbiology 134 (3):184–9. doi: 10.1016/j.ijfoodmicro.2009.06.005.
  • Chang, C. H., M. L. Chiang, and C. C. Chou. 2010. The effect of heat shock on the response of Cronobacter sakazakii to subsequent lethal stresses. Foodborne Pathogens and Disease 7 (1):71–6. doi: 10.1089/fpd.2009.0345.
  • Chauhan, R., W. Azmi, S. Bansal, and G. Goel. 2021. Multivariate analysis of adaptive response to ferulic acid and p‐coumaric acid after physiological stresses in Cronobacter sakazakii. Journal of Applied Microbiology 131 (6):3069–80. doi: 10.1111/jam.15164.
  • Chauhan, R., S. Bansal, W. Azmi, and G. Goel. 2020. Increased thermal tolerance in Cronobacter sakazakii strains in reconstituted milk powder due to cross protection by physiological stresses. Journal of Food Safety 40 (4):e12810. doi: 10.1111/jfs.12810.
  • Choi, Y., K. P. Kim, K. Kim, J. Choi, H. Shin, D. H. Kang, and S. Ryu. 2012. Possible roles of LysR-type transcriptional regulator (LTTR) homolog as a global regulator in Cronobacter sakazakii ATCC 29544. International Journal of Medical Microbiology: IJMM 302 (6):270–5. doi: 10.1016/j.ijmm.2012.06.001.
  • Choi, Y., S. Kim, H. Hwang, K. P. Kim, D. H. Kang, and S. Ryu. 2015. Plasmid-encoded MCP is involved in virulence, motility, and biofilm formation of Cronobacter sakazakii ATCC 29544. Infection and Immunity 83 (1):197–204. doi: 10.1128/IAI.02633-14.
  • Dahl, J. U., M. J. Gray, and U. Jakob. 2015. Protein quality control under oxidative stress conditions. Journal of Molecular Biology 427 (7):1549–63. doi: 10.1016/j.jmb.2015.02.014.
  • Dancer, G. I., J. H. Mah, M. S. Rhee, I. G. Hwang, and D. H. Kang. 2009. Resistance of Enterobacter sakazakii (Cronobacter spp.) to environmental stresses. Journal of Applied Microbiology 107 (5):1606–14. doi: 10.1111/j.1365-2672.2009.04347.x.
  • Depardieu, F., I. Podglajen, R. Leclercq, E. Collatz, and P. Courvalin. 2007. Modes and modulations of antibiotic resistance gene expression. Clinical Microbiology Reviews 20 (1):79–114. doi: 10.1128/CMR.00015-06.
  • Doyle, M. P., F. Busta, B. R. Cords, P. M. Davidson, J. Hawke, H. S. Hurd, R. E. Isaacson, K. Matthews, J. Maurer, J. Meng, et al. 2006. Antimicrobial resistance: Implications for the food system: An expert report, funded by the IFT foundation. Comprehensive Reviews in Food Science and Food Safety 5 (3):71–137.
  • Du, X. J., F. Wang, X. Lu, B. A. Rasco, and S. Wang. 2012. Biochemical and genetic characteristics of Cronobacter sakazakii biofilm formation. Research in Microbiology 163 (6–7):448–56. doi: 10.1016/j.resmic.2012.06.002.
  • Edelson-Mammel, S. G, and R. L. Buchanan. 2004. Thermal inactivation of Enterobacter sakazakii in rehydrated infant formula. Journal of Food Protection 67 (1):60–3. doi: 10.4315/0362-028x-67.1.60.
  • Edelson-Mammel, S. G., M. K. Porteous, and R. L. Buchanan. 2005. Survival of Enterobacter sakazakii in a dehydrated powdered infant formula. Journal of Food Protection 68 (9):1900–2. doi: 10.4315/0362-028x-68.9.1900.
  • Elguindi, J., H. A. Alwathnani, and C. Rensing. 2012. Rapid inactivation of Cronobacter sakazakii on copper alloys following periods of desiccation stress. World Journal of Microbiology & Biotechnology 28 (4):1837–41. doi: 10.1007/s11274-011-0972-3.
  • Esbelin, J., T. Santos, and M. Hébraud. 2018. Desiccation: An environmental and food industry stress that bacteria commonly face. Food Microbiology 69:82–8. doi: 10.1016/j.fm.2017.07.017.
  • Farmer, I. I. I., J. J. M. A. Asbury, F. W. Hickman, D. J. Brenner, and E. S. Group. 1980. Enterobacter sakazakii: A new species of “Enterobacteriaceae” isolated from clinical specimens. International Journal of Systematic and Evolutionary Microbiology 30 (3):569–84.
  • Feeney, A, and R. D. Sleator. 2011. An in silico analysis of osmotolerance in the emerging gastrointestinal pathogen Cronobacter sakazakii. Bioengineered Bugs 2 (5):260–70. doi: 10.4161/bbug.2.5.17238.
  • Feeney, A., K. A. Kropp, R. O’Connor, and R. D. Sleator. 2014. Cronobacter sakazakii: Stress survival and virulence potential in an opportunistic foodborne pathogen. Gut Microbes 5 (6):711–8. doi: 10.4161/19490976.2014.983774.
  • Fei, P., Y. Jiang, J. Feng, S. J. Forsythe, R. Li, Y. Zhou, and C. Man. 2017. Antibiotic and desiccation resistance of Cronobacter sakazakii and C. malonaticus isolates from powdered infant formula and processing environments. Frontiers in Microbiology 8:316. doi: 10.3389/fmicb.2017.00316.
  • Fernández-Gómez, P., M. López, M. Prieto, M. González-Raurich, and A. Alvarez-Ordóñez. 2020. The role of the general stress response regulator RpoS in Cronobacter sakazakii biofilm formation. Food Research International (Ottawa, Ont.) 136:109508. doi: 10.1016/j.foodres.2020.109508.
  • Finn, S., O. Condell, P. McClure, A. Amézquita, and S. Fanning. 2013. Mechanisms of survival, responses and sources of Salmonella in low-moisture environments. Frontiers in Microbiology 4 (331):331.
  • Flemming, H. C., J. Wingender, U. Szewzyk, P. Steinberg, S. A. Rice, and S. Kjelleberg. 2016. Biofilms: An emergent form of bacterial life. Nature Reviews. Microbiology 14 (9):563–75. doi: 10.1038/nrmicro.2016.94.
  • Frank, J. F, and R. Chmielewski. 2001. Influence of surface finish on the cleanability of stainless steel. Journal of Food Protection 64 (8):1178–82. doi: 10.4315/0362-028x-64.8.1178.
  • Gajdosova, J., K. Benedikovicova, N. Kamodyova, L. Tothova, E. Kaclikova, S. Stuchlik, J. Turna, and H. Drahovska. 2011. Analysis of the DNA region mediating increased thermotolerance at 58 C in Cronobacter spp. and other enterobacterial strains. Antonie Van Leeuwenhoek 100 (2):279–89. doi: 10.1007/s10482-011-9585-y.
  • Gao, J. X., P. Li, X. J. Du, Z. H. Han, R. Xue, B. Liang, and S. Wang. 2017. A negative regulator of Cellulose biosynthesis, bcsR, affects biofilm formation, and adhesion/invasion ability of Cronobacter sakazakii. Frontiers in Microbiology 8 (1839):1839.
  • Gjermansen, M., P. Ragas, C. Sternberg, S. Molin, T., and Tolker, Nielsen. ‐ 2005. Characterization of starvation‐induced dispersion in Pseudomonas putida biofilms. Environmental Microbiology 7 (6):894–904. doi: 10.1111/j.1462-2920.2005.00775.x.
  • Grimm, M., R. Stephan, C. Iversen, G. G. Manzardo, T. Rattei, K. Riedel, A. Ruepp, D. Frishman, and A. Lehner. 2008. Cellulose as an extracellular matrix component present in Enterobacter sakazakii biofilms. Journal of Food Protection 71 (1):13–8. doi: 10.4315/0362-028x-71.1.13.
  • Guillén, S., L. Nadal, I. Álvarez, P. Mañas, and G. Cebrián. 2021. Impact of the resistance responses to stress conditions encountered in food and food processing environments on the virulence and growth fitness of non-typhoidal Salmonellae. Foods 10 (3):617. doi: 10.3390/foods10030617.
  • Gupta, T. B., E. Mowat, G. Brightwell, and S. H. Flint. 2018. Biofilm formation and genetic characterization of New Zealand Cronobacter isolates. Journal of Food Safety 38 (2):e12430. doi: 10.1111/jfs.12430.
  • Gurtler, J. B, and L. R. Beuchat. 2007. Survival of Enterobacter sakazakii in powdered infant formula as affected by composition, water activity, and temperature. Journal of Food Protection 70 (7):1579–86. doi: 10.4315/0362-028X-70.7.1579.
  • Harouna, S., J. J. Carramiñana, F. Navarro, M. D. Pérez, M. Calvo, and L. Sánchez. 2015. Antibacterial activity of bovine milk lactoferrin on the emerging foodborne pathogen Cronobacter sakazakii: Effect of media and heat treatment. Food Control. 47:520–5. doi: 10.1016/j.foodcont.2014.07.061.
  • Hartmann, I., P. Carranza, A. Lehner, R. Stephan, L. Eberl, and K. Riedel. 2010. Genes involved in Cronobacter sakazakii biofilm formation. Applied and Environmental Microbiology 76 (7):2251–61. doi: 10.1128/AEM.00930-09.
  • Henry, M, and A. Fouladkhah. 2019. Outbreak history, biofilm formation, and preventive measures for control of Cronobacter sakazakii in infant formula and infant care settings. Microorganisms 7 (3):77. doi: 10.3390/microorganisms7030077.
  • Hsiao, W. L., W. L. Ho, and C. C. Chou. 2010. Sub-lethal heat treatment affects the tolerance of Cronobacter sakazakii BCRC 13988 to various organic acids, simulated gastric juice and bile solution. International Journal of Food Microbiology 144 (2):280–4. doi: 10.1016/j.ijfoodmicro.2010.10.006.
  • Hu, L., C. J. Grim, A. A. Franco, K. G. Jarvis, V. Sathyamoorthy, M. H. Kothary, B. A. McCardell, and B. D. Tall. 2015. Analysis of the cellulose synthase operon genes, bcsA, bcsB, and bcsC in Cronobacter species: Prevalence among species and their roles in biofilm formation and cell–cell aggregation. Food Microbiology 52:97–105. doi: 10.1016/j.fm.2015.07.007.
  • Hu, S., Y. Yu, and X. Xiao. 2018. Stress resistance, detection and disinfection of Cronobacter spp. in dairy products: A review. Food Control. 85:400–15. doi: 10.1016/j.foodcont.2017.10.014.
  • Hu, S., Y. Yu, X. Wu, X. Xia, X. Xiao, and H. Wu. 2017. Comparative proteomic analysis of Cronobacter sakazakii by iTRAQ provides insights into response to desiccation. Food Research International (Ottawa, Ont.) 100 (Pt 1):631–9. doi: 10.1016/j.foodres.2017.06.051.
  • Huang, Y. T., K. C. Cheng, R. C. Yu, and C. C. Chou. 2013. Effect of ethanol shock pretreatment on the tolerance of Cronobacter sakazakii BCRC 13988 exposed to subsequent lethal stresses. Foodborne Pathogens and Disease 10 (2):165–70. doi: 10.1089/fpd.2012.1291.
  • Huertas, J. P., A. Álvarez-Ordóñez, R. Morrissey, M. Ros-Chumillas, M. D. Esteban, J. Maté, A. Palop, and C. Hill. 2015. Heat resistance of Cronobacter sakazakii DPC 6529 and its behavior in reconstituted powdered infant formula. Food Research International 69:401–9. doi: 10.1016/j.foodres.2015.01.010.
  • Hurrell, E., E. Kucerova, M. Loughlin, J. Caubilla-Barron, and S. J. Forsythe. 2009. Biofilm formation on enteral feeding tubes by Cronobacter sakazakii, Salmonella serovars and other Enterobacteriaceae. International Journal of Food Microbiology 136 (2):227–31. doi: 10.1016/j.ijfoodmicro.2009.08.007.
  • Iversen, C, and S. Forsythe. 2003. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends in Food Science & Technology 14 (11):443–54. doi: 10.1016/S0924-2244(03)00155-9.
  • Iversen, C., M. Lane, and S. J. Forsythe. 2004. The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Letters in Applied Microbiology 38 (5):378–82. doi: 10.1111/j.1472-765X.2004.01507.x.
  • Jamal, M., W. Ahmad, S. Andleeb, F. Jalil, M. Imran, M. A. Nawaz, T. Hussain, M. Ali, M. Rafiq, and M. A. Kamil. 2018. Bacterial biofilm and associated infections. Journal of the Chinese Medical Association: JCMA 81 (1):7–11. doi: 10.1016/j.jcma.2017.07.012.
  • Jameelah, M., R. Dewanti-Hariyadi, and S. Nurjanah. 2018. Expression of rpo S, omp A and hfq genes of Cronobacter sakazakii strain Yrt2a during stress and viable but nonculturable state. Food Science and Biotechnology 27 (3):915–20. doi: 10.1007/s10068-018-0313-5.
  • Jang, H. I, and M. S. Rhee. 2009. Inhibitory effect of caprylic acid and mild heat on Cronobacter spp. (Enterobacter sakazakii) in reconstituted infant formula and determination of injury by flow cytometry. International Journal of Food Microbiology 133 (1-2):113–20. doi: 10.1016/j.ijfoodmicro.2009.05.009.
  • Jang, H., G. R. Gopinath, A. Eshwar, S. Srikumar, S. Nguyen, J. Gangiredla, I. R. Patel, S. B. Finkelstein, F. Negrete, J. Woo, et al. 2020. The secretion of toxins and other exoproteins of Cronobacter: Role in virulence, adaption, and persistence. Microorganisms 8 (2):229. doi: 10.3390/microorganisms8020229.
  • Jang, S. R, and W. S. Bang. 2011. Acid resistance of Cronobacter sakazakii. Korean Journal for Food Science of Animal Resources 31 (4):551–6. doi: 10.5851/kosfa.2011.31.4.551.
  • Jaradat, Z. W., W. Al Mousa, A. Elbetieha, A. Al Nabulsi, and B. D. Tall. 2014. Cronobacter spp.–opportunistic food-borne pathogens. A review of their virulence and environmental-adaptive traits. Journal of Medical Microbiology 63 (Pt 8):1023–37. doi: 10.1099/jmm.0.073742-0.
  • Jefferson, K. K. 2004. What drives bacteria to produce a biofilm? FEMS Microbiology Letters 236 (2):163–73. doi: 10.1111/j.1574-6968.2004.tb09643.x.
  • Jo, S. H., S. B. Baek, J. H. Ha, and S. D. Ha. 2010. Maturation and survival of Cronobacter biofilms on silicone, polycarbonate, and stainless steel after UV light and ethanol immersion treatments. Journal of Food Protection 73 (5):952–6. doi: 10.4315/0362-028X-73.5.952.
  • Johler, S., R. Stephan, I. Hartmann, K. A. Kuehner, and A. Lehner. 2010. Yellow pigmentation in Cronobacter sakazakii ES5: Genes involved and influence on persistence and growth under environmental stress. Applied and Environmental Microbiology 76 (4):1053–61. doi: 10.1128/AEM.01420-09.
  • Jolivet-Gougeon, A., S. David-Jobert, Z. Tamanai-Shacoori, C. Ménard, and M. Cormier. 2000. Osmotic stress-induced genetic rearrangements in Escherichia coli H10407 detected by randomly amplified polymorphic DNA analysis. Applied and Environmental Microbiology 66 (12):5484–7. doi: 10.1128/AEM.66.12.5484-5487.2000.
  • Jung, J. H., N. Y. Choi, and S. Y. Lee. 2013. Biofilm formation and exopolysaccharide (EPS) production by Cronobacter sakazakii depending on environmental conditions. Food Microbiology 34 (1):70–−80. doi: 10.1016/j.fm.2012.11.008.
  • Kandhai, M. C., M. W. Reij, L. G. Gorris, O. Guillaume-Gentil, and M. van Schothorst. 2004. Occurrence of Enterobacter sakazakii in food production environments and households. The Lancet 363 (9402):39–40. doi: 10.1016/S0140-6736(03)15169-0.
  • Katzif, S., D. Danavall, S. Bowers, J. T. Balthazar, and W. M. Shafer. 2003. The major cold shock gene, cspA, is involved in the susceptibility of Staphylococcus aureus to an antimicrobial peptide of human cathepsin G. Infection and Immunity 71 (8):4304–12. doi: 10.1128/IAI.71.8.4304-4312.2003.
  • Khatoon, Z., C. D. McTiernan, E. J. Suuronen, T. F. Mah, and E. I. Alarcon. 2018. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4 (12):e01067. doi: 10.1016/j.heliyon.2018.e01067.
  • Khelissa, S. O., M. Abdallah, C. Jama, C. Faille, and N. E. Chihib. 2017. Bacterial contamination and biofilm formation on abiotic surfaces and strategies to overcome their persistence. Journal of Material and Environvironmental Science 8 (9):3326–46.
  • Kim, H., J. Bang, L. R. Beuchat, and J. H. Ryu. 2008. Fate of Enterobacter sakazakii attached to or in biofilms on stainless steel upon exposure to various temperatures or relative humidities. Journal of Food Protection 71 (5):940–5. doi: 10.4315/0362-028X-71.5.940.
  • Kim, H., J. H. Ryu, and L. R. Beuchat. 2006. Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Applied and Environmental Microbiology 72 (9):5846–56. doi: 10.1128/AEM.00654-06.
  • Kim, S. H, and J. H. Park. 2007. Thermal resistance and inactivation of Enterobacter sakazakii isolates during rehydration of powdered infant formula. Journal of Microbiology and Biotechnology 17 (2):364–8.
  • Kim, S. J., Y. M. Bae, and S. Y. Lee. 2012. Stress response of acid-shocked Cronobacter sakazakii against subsequent acidic pH, mild heat, and organic acids. Food Science and Biotechnology 21 (1):205–10. doi: 10.1007/s10068-012-0026-0.
  • Kim, S., H. Hwang, K. P. Kim, H. Yoon, D. H. Kang, and S. Ryu. 2015. Hfq plays important roles in virulence and stress adaptation in Cronobacter sakazakii ATCC 29544. Infection and Immunity 83 (5):2089–98. doi: 10.1128/IAI.03161-14.
  • Koseki, S., N. Nakamura, and T. Shiina. 2015. Comparison of desiccation tolerance among Listeria monocytogenes, Escherichia coli O157: H7, Salmonella enterica, and Cronobacter sakazakii in powdered infant formula. Journal of Food Protection 78 (1):104–10. doi: 10.4315/0362-028X.JFP-14-249.
  • Kostakioti, M., M. Hadjifrangiskou, and S. J. Hultgren. 2013. Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the post antibiotic era. Cold Spring Harbor Perspectives in Medicine 3 (4):a010306–a010306. doi: 10.1101/cshperspect.a010306.
  • Kuo, L. S., B. J. Wang, Y. S. He, and Y. M. Weng. 2013. The effects of ultraviolet light irradiation and drying treatments on the survival of Cronobacter spp. (Enterobacter sakazakii) on the surfaces of stainless steel, Teflon and glass. Food Control. 30 (1):106–10. doi: 10.1016/j.foodcont.2012.06.015.
  • Lee, S. H. I., G. V. Barancelli, T. M. de Camargo, C. H. Corassin, R. E. Rosim, A. G. da Cruz, L. P. Cappato, and C. A. F. de Oliveira. 2017. Biofilm-producing ability of Listeria monocytogenes isolates from Brazilian cheese processing plants. Food Research International (Ottawa, Ont.) 91:88–91. doi: 10.1016/j.foodres.2016.11.039.
  • Lee, Y. D., J. H. Park, and H. Chang. 2012. Detection, antibiotic susceptibility and biofilm formation of Cronobacter spp. from various foods in Korea. Food Control. 24 (1-2):225–30. doi: 10.1016/j.foodcont.2011.09.023.
  • Lehner, A., B. D. Tall, S. Fanning, and S. Srikumar. 2018. Cronobacter spp.—Opportunistic foodborne pathogens: An update on evolution, osmotic adaptation and pathogenesis. Current Clinical Microbiology Reports 5 (2):97–105. doi: 10.1007/s40588-018-0089-7.
  • Lehner, A., K. Riedel, L. Eberl, P. Breeuwer, B. Diep, and R. Stephan. 2005. Biofilm formation, extracellular polysaccharide production, and cell-to-cell signaling in various Enterobacter sakazakii strains: Aspects promoting environmental persistence. Journal of Food Protection 68 (11):2287–94. doi: 10.4315/0362-028x-68.11.2287.
  • Li, C., H. Zeng, J. Zhang, W. He, N. Ling, M. Chen, S. Wu, T. Lei, H. Wu, Y. Ye, et al. 2019. Prevalence, antibiotic susceptibility, and molecular characterization of Cronobacter spp. isolated from edible mushrooms in China. Frontiers in Microbiology 10 (283):283.
  • Li, C., H. Zeng, J. Zhang, D. Luo, M. Chen, T. Lei, X. Yang, H. Wu, S. Cai, Y. Ye, et al. 2020. Cronobacter spp. isolated from aquatic products in China: Incidence, antibiotic resistance, molecular characteristic and CRISPR diversity. International Journal of Food Microbiology 335 (108857):108857.
  • Li, P. T., W. L. Hsiao, R. C. Yu, and C. C. Chou. 2013. Effect of heat shock on the fatty acid and protein profiles of Cronobacter sakazakii BCRC 13988 as well as its growth and survival in the presence of various carbon, nitrogen sources and disinfectants. Food Microbiology 36 (2):142–8. doi: 10.1016/j.fm.2013.04.018.
  • Lin, L. C, and L. R. Beuchat. 2007. Survival of Enterobacter sakazakii in infant cereal as affected by composition, water activity, and temperature. Food Microbiology 24 (7-8):767–77. doi: 10.1016/j.fm.2007.02.001.
  • Ling, N., S. Forsythe, Q. Wu, Y. Ding, J. Zhang, and H. Zeng. 2020. Insights into Cronobacter sakazakii biofilm formation and control strategies in the food industry. Engineering 6 (4):393–405. doi: 10.1016/j.eng.2020.02.007.
  • Ling, N., C. Li, J. Zhang, Q. Wu, H. Zeng, W. He, Y. Ye, J. Wang, Y. Ding, M. Chen, et al. 2018. Prevalence and molecular and antimicrobial characteristics of Cronobacter spp. isolated from raw vegetables in China. Frontiers in Microbiology 9:1149. doi: 10.3389/fmicb.2018.01149.
  • Losio, M. N., E. Pavoni, G. Finazzi, C. Agostoni, P. Daminelli, E. Dalzini, G. Varisco, and S. Cinotti. 2018. Preparation of powdered infant formula: Could product’s safety be improved? Journal of Pediatric Gastroenterology and Nutrition 67 (4):543–6. doi: 10.1097/MPG.0000000000002100.
  • Lou, X., H. Yu, X. Wang, J. Qi, W. Zhang, H. Wang, G. Si, S. Song, C. Huang, T. Liu, et al. 2019. Potential reservoirs and routes of Cronobacter transmission during cereal growing, processing and consumption. Food Microbiology 79:90–5. doi: 10.1016/j.fm.2018.12.004.
  • Maerani, M., R. Dewanti-Hariyadi, and S. Nurjanah. 2020. Expression of stress regulator and virulence genes of Cronobacter sakazakii strain Yrt2a as a response to acid stress. Food Science and Biotechnology 29 (9):1273–9. doi: 10.1007/s10068-020-00763-1.
  • McMahon, M. A. S., J. Xu, J. E. Moore, I. S. Blair, and D. A. McDowell. 2007. Environmental stress and antibiotic resistance in food-related pathogens. Applied and Environmental Microbiology 73 (1):211–7. doi: 10.1128/AEM.00578-06.
  • Nazarowec, White, M. A, and J. M. Farber. 1997. Thermal resistance of Enterobacter sakazakii in reconstituted dried‐infant formula. Letters in Applied Microbiology 24 (1):9–13. doi: 10.1046/j.1472-765x.1997.00328.x.
  • Niu, H., Y. Qi, Y. Liu, X. Wang, and Q. Dong. 2022. Heat shock in Cronobacter sakazakii induces direct protection and cross-protection against simulated gastric fluid stress. Food Microbiology 103:103948. doi: 10.1016/j.fm.2021.103948.
  • Obasi, A., S. C. Nwachukwu, and E. Ugoji. 2018. First detection of augmentin and colistin resistant Cronobacter sakazakii from a pharmaceutical wastewater in South-Western Nigeria. American Journal of Chemical and Biochemical Engineering 2 (1):1. doi: 10.11648/j.ajcbe.20180201.11.
  • Ogrodzki, P, and S. J. Forsythe. 2017. DNA-sequence based typing of the Cronobacter genus using MLST, CRISPR-cas array and capsular profiling. Frontiers in Microbiology 8 (1875):1875.
  • Oh, S. W., P. C. Chen, and D. H. Kang. 2007. Biofilm formation by Enterobacter sakazakii grown in artificial broth and infant milk formula on plastic surface. Journal of Rapid Methods and Automation in Microbiology 15 (4):311–9. doi: 10.1111/j.1745-4581.2007.00103.x.
  • Ohlsson, T., and N. Bengtsson. (Eds.). 2003. Minimal Processing Technologies in the Food Industry. Woodhead Publishing.
  • Orieskova, M., M. Kajsik, T. Szemes, O. Holy, S. Forsythe, J. Turna, and H. Drahovska. 2016. Contribution of the thermotolerance genomic island to increased thermal tolerance in Cronobacter strains. Antonie Van Leeuwenhoek 109 (3):405–14. doi: 10.1007/s10482-016-0645-1.
  • Osaili, T, and S. Forsythe. 2009. Desiccation resistance and persistence of Cronobacter species in infant formula. International Journal of Food Microbiology 136 (2):214–20. doi: 10.1016/j.ijfoodmicro.2009.08.006.
  • Park, S. H, and D. H. Kang. 2014. Fate of biofilm cells of Cronobacter sakazakii under modified atmosphere conditions. LWT – Food Science and Technology 57 (2):782–−4. doi: 10.1016/j.lwt.2014.01.038.
  • Ponomareva, A. L., L. S. Buzoleva, and E. A. Bogatyrenko. 2018. Abiotic environmental factors affecting the formation of microbial biofilms. Biology Bulletin 45 (5):490–6. doi: 10.1134/S106235901805014X.
  • Rickard, A. H., S. Lindsay, G. B. Lockwood, and P. Gilbert. 2004. Induction of the mar operon by miscellaneous groceries. Journal of Applied Microbiology 97 (5):1063–8. doi: 10.1111/j.1365-2672.2004.02401.x.
  • Riedel, K, and A. Lehner. 2007. Identification of proteins involved in osmotic stress response in Enterobacter sakazakii by proteomics. Proteomics 7 (8):1217–31. doi: 10.1002/pmic.200600536.
  • Schmid, M., C. Iversen, I. Gontia, R. Stephan, A. Hofmann, A. Hartmann, B. Jha, L. Eberl, K. Riedel, and A. Lehner. 2009. Evidence for a plant-associated natural habitat for Cronobacter spp. Research in Microbiology 160 (8):608–14. doi: 10.1016/j.resmic.2009.08.013.
  • Shaker, R. R., T. M. Osaili, A. S. Abu Al, Hasan, M. M. Ayyash, and S. J. Forsythe. 2008. Effect of desiccation, starvation, heat, and cold stresses on the thermal resistance of Enterobacter sakazakii in rehydrated infant milk formula. Journal of Food Science 73 (7):M354–359. doi: 10.1111/j.1750-3841.2008.00880.x.
  • Sharma, G, and A. Prakash. 2021. Combined use of Fourier transform infrared and Raman spectroscopy to study planktonic and biofilm cells of Cronobacter sakazakii. Journal of Microbiology. Biotechnology and Food Sciences 2021:310–4.
  • Singh, N., G. Goel, and M. Raghav. 2015. Insights into virulence factors determining the pathogenicity of Cronobacter sakazakii. Virulence 6 (5):433–40. doi: 10.1080/21505594.2015.1036217.
  • Singh, N., A. Patil, A. A. Prabhune, M. Raghav, and G. Goel. 2017. Diverse profiles of N-acyl-homoserine lactones in biofilm forming strains of Cronobacter sakazakii. Virulence 8 (3):275–81. doi: 10.1080/21505594.2016.1226713.
  • Singh, N., A. Patil, A. A. Prabhune, and G. Goel. 2016. Inhibition of quorum-sensing-mediated biofilm formation in Cronobacter sakazakii strains. Microbiology 162 (9):1708–14. doi: 10.1099/mic.0.000342.
  • Srikumar, S., Y. Cao, Q. Yan, K. Van Hoorde, S. Nguyen, S. Cooney, G. R. Gopinath, B. D. Tall, S. K. Sivasankaran, A. Lehner, et al. 2019. RNA sequencing-based transcriptional overview of xerotolerance in Cronobacter sakazakii SP291. Applied and Environmental Microbiology 85 (3): e01993-18. doi: 10.1128/AEM.01993-18.
  • Vatanyoopaisarn. 2000. S. Formation of biofilms on stainless steel by Pseudomonas fluorescens and Listeria monocytogenes. Doctoral diss., University of Nottingham.
  • Walsh, D., C. Molloy, C. Iversen, J. Carroll, C. Cagney, S. Fanning, and G. Duffy. 2011. Survival characteristics of environmental and clinically derived strains of Cronobacter sakazakii in infant milk formula (IMF) and ingredients. Journal of Applied Microbiology 110 (3):697–703. doi: 10.1111/j.1365-2672.2010.04921.x.
  • Wan-Ling, H., C. H. Chang, and C. C. Chou. 2010. Heat shock effects on the viability of Cronobacter sakazakii during the dehydration, fermentation, and storage of lactic cultured milk products. Food Microbiology 27 (2):280–5. doi: 10.1016/j.fm.2009.10.011.
  • Wesche, A. M., J. B. Gurtler, B. P. Marks, and E. T. Ryser. 2009. Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. Journal of Food Protection 72 (5):1121–38. doi: 10.4315/0362-028x-72.5.1121.
  • Williams, T. L., S. R. Monday, S. Edelson-Mammel, R. Buchanan, and S. M. Musser. 2005. A top-down proteomics approach for differentiating thermal resistant strains of Enterobacter sakazakii. Proteomics 5 (16):4161–9. doi: 10.1002/pmic.200401263.
  • Xu, X., C. Li, Q. Wu, J. Zhang, J. Huang, and G. Yang. 2015. Prevalence, molecular characterization, and antibiotic susceptibility of Cronobacter spp. in Chinese ready-to-eat foods. International Journal of Food Microbiology 204:17–23. doi: 10.1016/j.ijfoodmicro.2015.03.003.
  • Xu, Z., Z. Liu, T. Soteyome, J. Hua, L. Zhang, L. Yuan, Y. Ye, Z. Cai, L. Yang, L. Chen, et al. 2021. Impact of pmrA on Cronobacter sakazakii planktonic and biofilm cells: A comprehensive transcriptomic study. Food Microbiology 98:103785. doi: 10.1016/j.fm.2021.103785.
  • Yan, Q., K. A. Power, S. Cooney, E. Fox, G. R. Gopinath, C. J. Grim, B. D. Tall, M. P. McCusker, and S. Fanning. 2013. Complete genome sequence and phenotype microarray analysis of Cronobacter sakazakii SP291: A persistent isolate cultured from a powdered infant formula production facility. Frontiers in Microbiology 4:256. doi: 10.3389/fmicb.2013.00256.
  • Yang, J., Y. He, J. Jiang, W. Chen, Q. Gao, L. Pan, and C. Shi. 2016. Comparative proteomic analysis by iTRAQ-2DLC-MS/MS provides insight into the key proteins involved in Cronobacter spp. biofilm formation. Food Control. 63:93–100. doi: 10.1016/j.foodcont.2015.11.029.
  • Ye, Y., N. Ling, J. Gao, X. Zhang, M. Zhang, L. Tong, H. Zeng, J. Zhang, J, and Q. Wu. 2018. Roles of outer membrane protein W (OmpW) on survival, morphology, and biofilm formation under NaCl stresses in Cronobacter sakazakii. Journal of Dairy Science 101 (5):3844–50. doi: 10.3168/jds.2017-13791.
  • Ye, Y., N. Ling, R. Jiao, Q. Wu, Y. Han, and J. Gao. 2015a. Effects of culture conditions on the biofilm formation of Cronobacter sakazakii strains and distribution of genes involved in biofilm formation. LWT – Food Science and Technology 62 (1):1–6. doi: 10.1016/j.lwt.2015.01.035.
  • Ye, Y., N. Ling, R. Jiao, Q. Wu, Y. Han, and J. Gao. 2015b. Effects of Ca2+ and Mg2+ on the biofilm formation of Cronobacter sakazakii strains from powdered infant formula. Journal of Food Safety 35 (3):416–21. doi: 10.1111/jfs.12190.
  • Zaitseva, Y. V., A. A. Popova, and I. A. Khmel. 2014. Quorum sensing regulation in bacteria of the family Enterobacteriaceae. Russian Journal of Genetics 50 (4):323–40. doi: 10.1134/S1022795414030120.
  • Zogaj, X., W. Bokranz, M. Nimtz, and U. Römling. 2003. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infection and Immunity 71 (7):4151–8. doi: 10.1128/IAI.71.7.4151-4158.2003.
  • Zogaj, X., M. Nimtz, M. Rohde, W. Bokranz, and U. Römling. 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Molecular Microbiology 39 (6):1452–63. doi: 10.1046/j.1365-2958.2001.02337.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.