939
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Research progress of anti-environmental factor stress mechanism and anti-stress tolerance way of Saccharomyces cerevisiae during the brewing process

ORCID Icon, , , , , & show all
Pages 12308-12323 | Published online: 18 Jul 2022

References

  • Abbott, D. A., E. Suir, G. H. Duong, E. D. Hulster, J. T. Pronk, and A. V. Maris. 2009. Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae. Applied and Environmental Microbiology 75 (8):2320–5. doi: 10.1128/AEM.00009-09.
  • Abe, F, and T. Hiraki. 2009. Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Biomembranes 1788 (3):743–52. doi: 10.1016/j.bbamem.2008.12.002.
  • Auesukaree, C., A. Damnernsawad, M. Kruatrachue, P. Pokethitiyook, C. Boonchird, Y. Kaneko, and S. Harashima. 2009. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. Journal of Applied Genetics 50 (3):301–10. doi: 10.1007/BF03195688.
  • Benjaphokee, S., D. Hasegawa, D. Yokota, T. Asvarak, C. Auesukaree, M. Sugiyama, Y. Kaneko, C. Boonchird, and S. Harashima. 2012. Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol. New Biotechnology 29 (3):379–86. doi: 10.1016/j.nbt.2011.07.002.
  • Bhattacharya, K., L. Weidenauer, T. M. Luengo, E. C. Pieters, R. C. Echeverria, L. Bernasconi, D. Wider, Y. Sadian, M. B. Koopman, M. Villemin, et al. 2020. The Hsp70-Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation. Nature Communications 11 (1):5975. doi: 10.1038/s41467-020-19783-w.
  • Binati, R. L., I. Larini, E. Salvetti, and S. Torriani. 2022. Glutathione production by non-Saccharomyces yeasts and its impact on winemaking: A review. Food Research International (Ottawa, Ont.) 156:111333. doi: 10.1016/j.foodres.2022.111333.
  • Campbell, K., J. Vowinckel, M. A. Keller, and M. Ralser. 2016. Methionine metabolism alters oxidative stress resistance via the pentose phosphate pathway. Antioxidants & Redox Signaling 24 (10):543–7. doi: 10.1089/ars.2015.6516.
  • Cardona, F., P. Carrasco, J. E. Pérez-Ortín, M. Olmo, and A. Aranda. 2007. A novel approach for the improvement of stress resistance in wine yeasts. International Journal of Food Microbiology 114 (1):83–91. doi: 10.1016/j.ijfoodmicro.2006.10.043.
  • Caspeta, L., Y. Chen, P. Ghiaci, A. Feizi, S. Buskov, B. M. Hallström, D. Petranovic, and J. Nielsen. 2014. Altered sterol composition renders yeast thermotolerant. Science (New York, N.Y.) 346 (6205):75–8. doi: 10.1126/science.1258137.
  • Chen, X., L. Feng, Y. Qin, and Y. L. Liu. 2019. Mutation breeding of low-yield volatile acid Saccharomyces cerevisiae by atmospheric and room temperature plasma. China Brewing 38 (11):43–8. doi: 10.11882/j.issn.0254-5071.2019.11.009.
  • Cheng, Y. F., Z. L. Du, H. Zhu, X. N. Guo, and H. X. Ping. 2016. Protective effects of arginine on Saccharomyces cerevisiae against ethanol stress. Scientific Reports 6:31311. doi: 10.1038/srep31311.
  • Chen, Y. R., K. M. Li, T. Liu, R. Y. Li, G. M. Fu, Y. Wan, and F. P. Zheng. 2020. Analysis of difference in microbial community and physicochemical indices between surface and central parts of Chinese special-flavor Baijiu Daqu. Frontiers in Microbiology 11:592421–31. doi: 10.3389/fmicb.2020.592421.
  • Chen, Y. Y., J. Y. Sheng, T. Jiang, J. Stevens, X. Y. Feng, and N. Wei. 2016. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. Biotechnology for Biofuels 9:9–26. doi: 10.1186/s13068-015-0418-5.
  • Chen, S, and Y. Xu. 2014. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation. Applied Biochemistry and Biotechnology 173 (7):1940–54. doi: 10.1007/s12010-014-0978-z.
  • Chen, Y. F., Y. Xu, S. J. Zhang, X. Q. Wang, C. H. Guo, X. W. Guo, D, and G. Xiao. 2012. Development of Saccharomyces cerevisiae producing higher levels of sulfur dioxide and glutathione to improve beer flavor stability. Applied Biochemistry and Biotechnology 166 (2):402–13. doi: 10.1007/s12010-011-9436-3.
  • Chen, Z. J., X. C. Yang, J. Zhao, J. X. Hu, and W. M. Yuan. 2018. Breeding of Saccharomyces cerevisiae with high ethanol tolerance and its application in kiwi wine. Science and Technology of Food Industry 39 (2):141–5. doi: 10.13386/j.issn1002-0306.2018.02.027.
  • Chen, H. Q., X. S. Yu, M. M. Zhang, F. W. Bai, and X. Q. Zhao. 2017. Impact of zinc sulfate supplementation on global gene expression profiling of Saccharomyces cerevisiae in response to acetic acid stress. Microbiology China 44 (6):1312–21. doi: 10.13344/j.microbiol.china.160679.
  • Comuzzo, P., F. Battistutta, M. Vendrame, M. S. Paez, G. Luisi, and R. Zironi. 2015. Antioxidant properties of different products and additives in white wine. Food Chemistry 168:107–14. doi: 10.1016/j.foodchem.2014.07.028.
  • Cui, Y. Q., Z. M. Wu, W. C. Su, and H. M. Zhang. 2019. Effect of fermentation environment change on yeast growth and beer product. China Brewing 38 (11):16–9. doi: 10.11882/j.issn.0254-5071.2019.11.004.
  • Cunha, J. T., A. Romaní, C. E. Costa, I. Sá-Correia, and L. Domingues. 2019. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Applied Microbiology and Biotechnology 103 (1):159–75. doi: 10.1007/s00253-018-9478-3.
  • Deng, H., H. Du, and Y. Xu. 2020. Cooperative response of Pichia kudriavzevii and Saccharomyces cerevisiae to lactic acid stress in Baijiu fermentation. Journal of Agricultural and Food Chemistry 68 (17):4903–11. doi: 10.1021/acs.jafc.9b08052.
  • Duskova, M., D. Borovikova, P. Herynkova, A. Rapoport, and H. Sychrova. 2015. The role of glycerol transporters in yeast cells in various physiological and stress conditions. FEMS Microbiology Letters 362 (3):1–8. doi: 10.1093/femsle/fnu041.
  • Fang, T., H. Yan, G. Li, W. Chen, J. Liu, and L. Jiang. 2020. Chromatin remodeling complexes are involvesd in the regulation of ethanol production during static fermentation in budding yeast. Genomics 112 (2):1674–9. doi: 10.1016/j.ygeno.2019.10.005.
  • Furukawa, K., H. Obata, H. Kitano, H. Mizoguchi, and S. Hara. 2004. Effect of cellular inositol content on ethanol tolerance of Saccharomyces cerevisiae in sake brewing. Journal of Bioscience and Bioengineering 98 (2):107–13. doi: 10.1016/S1389-1723(04)70250-9.
  • García-Ríos, E., A. Querol, and J. M. Guillamón. 2016a. iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation. Journal of Proteomics 146:70–114. doi: 10.1016/j.jprot.2016.06.023.
  • García-Ríos, E., L. Ramos-Alonso, and J. M. Guillamón. 2016b. Correlation between low temperature adaptation and oxidative stress in Saccharomyces cerevisiae. Frontiers in Microbiology 7:1199–208. doi: 10.3389/fmicb.2016.01199.
  • Gibson, B. R., S. J. Lawrence, C. A. Boulton, W. G. Box, N. S. Graham, R. S. T. Linforth, and K. A. Smart. 2008. The oxidative stress response of a lager brewing yeast strain during industrial propagation and fermentation. FEMS Yeast Research 8 (4):574–85. doi: 10.1111/j.1567-1364.2008.00371.x.
  • Gibson, B. R., S. J. Lawrence, J. P. R. Leclaire, C. D. Powell, and K. A. Smart. 2007. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiology Reviews 31 (5):535–69. doi: 10.1111/j.1574-6976.2007.00076.x.
  • Gomar-alba, M., M. Á. Morcillo-Parra, and D. L. Del Olmo. 2015. Response of yeast cells to high glucose involves molecular and physiological differences when compared to other osmostress conditions. FEMS Yeast Research 15 (5):fov039–14. doi: 10.1093/femsyr/fov039.
  • González-Ramos, D., A. R. G. De Vries, S. S. Grijseels, M. C. van Berkum, S. Swinnen, M. van den Broek, E. Nevoigt, J. M. G. Daran, J. T. Pronk, and A. J. A. van Maris. 2016. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnology for Biofuels 9 (1):173–84. doi: 10.1186/s13068-016-0583-1.
  • Greetham, D., H. Takagi, and T. P. Phister. 2014. Presence of proline has a protective effect on weak acid stressed Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 105 (4):641–52. doi: 10.1007/s10482-014-0118-3.
  • Guo, Z. P, and L. Olsson. 2014. Physiological response of Saccharomyces cerevisiae to weak acids present in lignocellulosic hydrolysate. FEMS Yeast Research 14 (8):1234–48. doi: 10.1111/1567-1364.12221.
  • Heilmann, C. J., A. G. Sorgo, S. Mohammadi, G. J. Sosinska, C. G. de Koster, S. Brul, L. J. de Koning, and F. M. Klis. 2013. Surface stress induces a conserved cell wall stress response in the pathogenic fungus Candida albicans. Eukaryotic Cell 12 (2):254–64. doi: 10.1128/EC.00278-12.
  • Hirasawa, T., K. Yoshikawa, Y. Nakakura, K. Nagahisa, C. Furusawa, Y. Katakura, H. Shimizu, and S. Shioya. 2007. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Journal of Biotechnology 131 (1):34–44. doi: 10.1016/j.jbiotec.2007.05.010.
  • Hou, J., N. F. Lages, M. Oldiges, and G. N. Vemuri. 2009. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metabolic Engineering 11 (4-5):253–61. doi: 10.1016/j.ymben.2009.05.001.
  • Jie, Y., M.-Z. Ding, B.-Z. Li, Z. L. Liu, X. Wang, and Y.-J. Yuan. 2012. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol. Omics : a Journal of Integrative Biology 16 (7-8):374–86. doi: 10.1089/omi.2011.0127.
  • Jiménez-Martí, E., A. Zuzuarregui, I. Ridaura, N. Lozano, and M. D. Olmo. 2009. Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions. International Journal of Food Microbiology 130 (2):122–30. doi: 10.1016/j.ijfoodmicro.2009.01.017.
  • Jin, Q., L. Chen, Z. Li, X. X. Li, and J. M. Li. 2015. Effect of diammonium phosphate supplementation on the amino acid metabolism during fermentation and sensory properties of fresh spine grape (Vitis davidii Foex) wine. Food Science and Biotechnology 24 (6):2051–7. doi: 10.1007/s10068-015-0273-y.
  • Jing, H. J., H. H. Liu, L. Zhang, J. Gao, H. R. Song, and X. R. Tan. 2018. Ethanol induces autophagy regulated by mitochondrial ROS in Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology 28 (12):1982–91. doi: 10.4014/jmb.1806.06014.
  • Jin, X. F., H. R. Yang, T. E. Coldea, Y. C. Xu, and H. F. Zhao. 2021. Metabonomic analysis reveals enhanced growth and ethanol production of brewer’s yeast by wheat gluten hydrolysates and potassium supplementation. Lwt 145:111387. doi. doi: 10.1016/j.lwt.2021.111387.
  • Katsunori, Y., T. Tadamasa, F. Chikara, N. Keisuke, H. Takashi, and S. Hiroshi. 2010. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Research 1:32–44. doi: 10.1111/j.1567-1364.2008.00456.x.
  • Kim, S., M. Shin, W. Choi, and K. H. Kim. 2021. Comparative metabolite profiling of wild type and thermo-tolerant mutant of Saccharomyces cerevisiae. Process Biochemistry 111:62–8. doi: 10.1016/j.procbio.2021.10.006.
  • Kitichantaropas, Y., C. Boonchird, M. Sugiyama, Y. Kaneko, S. Harashima, and C. Auesukaree. 2016. Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation. AMB Express 6 (1):1–14. doi: 10.1186/s13568-016-0285-x.
  • Koichi, T., I. Yukari, O. Jun, and S. Jun. 2012. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Applied & Environmental Microbiology 78 (22):8161–3. doi: 10.1128/AEM.02356-12.
  • Kontogianni, V. G., C. G. Tsiafoulis, I. G. Roussis, and I. P. Gerothanassis. 2017. Selective 1D TOCSY NMR method for the determination of glutathione in white wine. Analytical Methods 9 (30):4464–70. doi: 10.1039/C7AY01463E.
  • Kumari, R, and K. Pramanik. 2012. Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production. Journal of Bioscience and Bioengineering 114 (6):622–9. doi: 10.1016/j.jbiosc.2012.07.007.
  • Leach, M. D, and L. E. Cowen. 2014. Membrane fluidity and temperature sensing are coupled via circuitry comprised of Ole1, Rsp5, and Hsf1 in Candida albicans. Eukaryotic Cell 13 (8):1077–84. doi: 10.1128/EC.00138-14.
  • Lee, C. H, and H. S. Yu. 2016. Role of mitochondria, ROS, and DNA damage in arsenic induced carcinogenesis. Frontiers in Bioscience (Scholar Edition) 8 (2):312–20. doi: 10.2741/s465.
  • Leger, A., M. Azouz, S. Lecomte, F. Dole, A. Hocquellet, S. Chaignepain, and C. Cabanne. 2021. PiP(2) favors an alpha-helical structure of non-recombinant Hsp12 of Saccharomyces cerevisiae. Protein Expression and Purification 181:105830. doi: 10.1016/j.pep.2021.105830.
  • Lei, J., X. Zhao, X. Ge, and F. Bai. 2007. Ethanol tolerance and the variation of plasma membrane composition of yeast floc populations with different size distribution. Journal of Biotechnology 131 (3):270–5. doi: 10.1016/j.jbiotec.2007.07.937.
  • Liao, J. B., H. J. Lei, H. Huang, T. Jiang, and H. D. Xu. 2020. Effect of alkaline and branched chain amino acids on fermentation performance of yeast during beer high gravity brewing. China Brewing 39 (5):44–8. doi: 10.11882/j.issn.0254-5071.2020.05.009.
  • Li, K. M., Y. R. Chen, T. Liu, M. F. Deng, Z. W. Xu, G. M. Fu, Y. Wan, F. Chen, and F. P. Zheng. 2020. Analysis of spatial distribution of bacterial community associated with accumulation of volatile compounds in Jiupei during the brewing of special-flavor liquor. Lwt 130:109620–1. doi: 10.1016/j.lwt.2020.109620.
  • Li, J. Y., W. D. Huang, X. Q. Wang, T. Tan, Z. Z. Hua, and G. L. Yan. 2010. Improvement of alcoholic fermentation by calcium ions under enological conditions involves the increment of plasma membrane H+-ATPase activity. World Journal of Microbiology & Biotechnology 26 (7):1181–6. doi: 10.1007/s11274-009-0286-x.
  • Li, B., N. Liu, and X. D. Zhao. 2022. Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains. Biotechnology for Biofuels and Bioproducts 15 (1):28–38. doi: 10.1186/s13068-022-02127-9.
  • Liu, S. P., Q. L. Yang, J. Q. Mao, M. Bai, J. D. Zhou, X. Han, and J. Mao. 2020. Feedback inhibition of the prephenate dehydratase from Saccharomyces cerevisiae and its mutation in Huangjiu (Chinese rice wine) yeast. Lwt 133:110040–13. doi: 10.1016/j.lwt.2020.110040.
  • López-Malo, M., A. Querol, and J. M. Guillamon. 2013. Metabolomic comparison of Saccharomyces cerevisiae and the cryotolerant species S. bayanus var. uvarum and S. kudriavzevii during wine fermentation at low temperature. PLoS ONE. 8 (3):e60135–13. doi: 10.1371/journal.pone.0060135.
  • Lukienko, P. I., N. G. Mel’nichenko, I. V. Zverinskii, and S. V. Zabrodskaya. 2000. Antioxidant properties of thiamine. Bulletin of Experimental Biology and Medicine 130 (9):874–6. doi: 10.1023/A:1015318413076.
  • Lu, J., Q. M. Shan, P. Tang, L. Wang, T. Y. Meng, and Q. S. Liang. 2019. Screening of acid-tolerant yeast strains and their application in the production of Jiangxiang Baijiu. Liquor-Making Science and Technology 10:106–11. doi: 10.13746/j.njkj.2019204.
  • Lu, X. W., Q. Wu, and Y. Xu. 2015. Specific physiological characteristic of Saccharomyces cerevisiae in Chinese Maotai-flavor liquor making. Microbiology China 42 (11):2098–107. doi: 10.13344/j.microbiol.china.150026.
  • Ma, M, and Z. L. Liu. 2010. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 87 (3):829–37. doi: 10.1007/s00253-010-2594-3.
  • Mace, K., J. Krakowiak, H. El-Samad, and D. Pincus. 2020. Multi-kinase control of environmental stress responsive transcription. PloS One 15 (3):e0230246. doi: 10.1371/journal.pone.0230246.
  • Mahmud, S. A., T. Hirasawa, and H. Shimizu. 2010. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. Journal of Bioscience and Bioengineering 109 (3):262–6. doi: 10.1016/j.jbiosc.2009.08.500.
  • Marks, V. D., S. J. H. Sui, D. Erasmus, G. K. V. D. Merwe, J. Brumm, W. W. Wasserman, J. Bryan, and H. J. J. van Vuuren. 2008. Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Research 8 (1):35–52. doi: 10.1111/j.1567-1364.2007.00338.x.
  • Martins, D., D. Nguyen, and A. M. English. 2019. Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae. Scientific Reports 9 (1):9185. doi: 10.1038/s41598-019-45070-w.
  • Matheos, D. P., T. J. Kingsbury, U. S. Ahsan, and K. W. Cunningham. 1997. Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes & Development 11 (24):3445–58. doi: 10.1101/gad.11.24.3445.
  • Mejía-Barajas, A., R. Montoya-Pérez, R. Salgado-Garciglia, L. Aguilera-Aguirre, C. Cortés-Rojo, R. Mejía-Zepeda, M. Arellano-Plazas, and A. Saavedra-Molina. 2017. Oxidative stress and antioxidant response in a thermotolerant yeast. Brazilian Journal of Microbiology : [Publication of the Brazilian Society for Microbiology] 48 (2):326–32. doi: 10.1016/j.bjm.2016.11.005.
  • Mohamed, L. A., H. Tachikawa, X. D. Gao, and H. Nakanishi. 2015. Yeast cell-based analysis of human lactate dehydrogenase isoforms. Journal of Biochemistry 158 (6):467–76. doi: 10.1093/jb/mvv061.
  • Mollapour, M., A. Shepherd, and P. W. Piper. 2009. Presence of the Fps1p aquaglyceroporin channel is essential for Hog1p activation, but suppresses Slt2p (Mpk1) activation, with acetic acid stress of yeast. Microbiology (Reading, England) 155 (Pt 10):3304–11. doi: 10.1099/mic.0.030502-0.
  • Morano, K. A., C. M. Grant, and W. S. Moye-Rowley. 2012. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190 (4):1157–95. doi: 10.1534/genetics.111.128033.
  • Noguchi, C., D. Watanabe, Y. Zhou, T. Akao, and H. Shimoi. 2012. Association of constitutive hyperphosphorylation of Hsflp with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains. Applied and Environmental Microbiology 78 (2):385–95. doi: 10.1128/AEM.06341-11.
  • Noti, O., E. Vaudano, M. G. Giuffrida, C. Lamberti, L. Cavallarin, E. Garcia-Moruno, and E. Pessione. 2018. Enhanced arginine biosynthesis and lower proteolytic profile as indicators of Saccharomyces cerevisiae stress in stationary phase during fermentation of high sugar grape must: A proteomic evidence. Food Research International (Ottawa, Ont.) 105:1011–8. doi: 10.1016/j.foodres.2017.12.004.
  • Nozawa, M., T. Takahashi, S. Hara, and H. Mizoguchi. 2002. A role of Saccharomyces cerevisiae fatty acid activation protein 4 in palmitoyl-coa pool for growth in the presence of ethanol. Journal of Bioscience and Bioengineering 93 (3):288–95. doi: 10.1016/S1389-1723(02)80030-5.
  • Nugroho, R. H., K. Yoshikawa, F. Matsuda, and H. Shimizu. 2016. Positive effects of proline addition on the central metabolism of wild-type and lactic acid-producing Saccharomyces cerevisiae strains. Bioprocess and Biosystems Engineering 39 (11):1711–6. doi: 10.1007/s00449-016-1646-1.
  • Orij, R., S. Brul, and G. J. Smits. 2011. Intracelluar pH is a tightly controlled signal in yeast. Biochimica et Biophysica Acta 1810 (10):933–44. doi: 10.1016/j.bbagen.2011.03.011.
  • Pan, H. L., X. J. Li, L. H. Cao, S. X. Qiu, Y. K. Ou, and Y. T. Yao. 2020. Screening of high sugar tolerant yeast and its application in rice wine. Farm Products Processing 1:1–5. doi: 10.16693/j.cnki.1671-9646(X).2020.01.001.
  • Peng, B. Z., F. L. Li, L. Cui, and Y. D. Guo. 2015. Effects of fermentation temperature on key aroma compounds and sensory properties of apple wine. Journal of Food Science 80 (12):S2937–S43. doi: 10.1111/1750-3841.13111.
  • Qiu, Z., Z. Deng, H. Tan, S. Zhou, and L. Cao. 2015. Engineering the robustness of Saccharomyces cerevisiae by introducing bifunctional glutathione synthase gene. Journal of Industrial Microbiology & Biotechnology 42 (4):537–42. doi: 10.1007/s10295-014-1573-6.
  • Ribeiro, G. F., M. Côrte-Real, and B. Johansson. 2006. Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Molecular Biology of the Cell 17 (10):4584–91. doi: 10.1091/mbc.E06-05-0475.
  • Rikhvanov, E., I. Fedoseeva, N. Varakina, T. Rusaleva, and A. Fedyaeva. 2014. Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance. Biochemistry. Biokhimiia 79 (1):16–24. doi: 10.1134/S0006297914010039.
  • Rios, G., A. Ferrando, and R. Serrano. 1997. Mechanisms of salt tolerance conferred by overexpression of the HAL1 gene in Saccharomyces cerevisiae. Yeast 13 (6):515–28. doi: 10.1002/(SICI)1097-0061(199705)13:63.0.CO;2-X.
  • Rodriguez-Naranjo, M. I., M. J. Torija, A. Mas, E. Cantos-Villar, and M. C. Garcia-Parrilla. 2012. Production of melatonin by Saccharomyces strains under growth and fermentation conditions. Journal of Pineal Research 53 (3):219–24. doi: 10.1111/j.1600-079X.2012.00990.x.
  • Rogers, C. M., D. Veatch, A. Covey, C. Staton, and M. L. Bochman. 2016. Terminal acidic shock inhibits sour beer bottle conditioning by Saccharomyces cerevisiae. Food Microbiology 57:151–8. doi: 10.1016/j.fm.2016.02.012.
  • Saini, P., A. Beniwal, A. Kokkiligadda, and S. Vij. 2018. Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochemistry 72 (9):1–12. doi: 10.1016/j.procbio.2018.07.001.
  • Salvadó, Z., L. Ramos-Alonso, J. Tronchoni, V. Penacho, E. García-Ríos, P. Morales, R. Gonzalez, and J. M. Guillamon. 2016. Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae. International Journal of Food Microbiology 236:38–46. doi: 10.1016/j.ijfoodmicro.2016.07.010.
  • Schade, B., G. Jansen, M. Whiteway, K. D. Entian, and D. Y. Thomas. 2004. Cold adaptation in budding yeast. Molecular Biology of the Cell 15 (12):5492–502. doi: 10.1091/mbc.E04-03-0167.
  • Shiradhone, A. B., S. S. Ingle, and G. B. Zore. 2018. Microenvironment responsive modulations in the fatty acid content, cell surface hydrophobicity, and adhesion of Candida albicans cells. Journal of Fungi 4 (2):47–23. doi: 10.3390/jof4020047.
  • Snoek, T., K. V. Verstrepen, and K. Voordeckers. 2016. How do yeast cells become tolerant to high ethanol concentrations? Current Genetics 62 (3):475–80. doi: 10.1007/s00294-015-0561-3.
  • Stanley, D., A. Bandara, S. Fraser, P. J. Chambers, and G. A. Stanley. 2010. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. Journal of Applied Microbiology 109 (1):13–24. doi: 10.1111/j.1364-5072.2009.04657.x.
  • Sun, Z., B. Zhou, M. Wang, Y. Wang, S. Xing, X. Guo, and D. Xiao. 2019. Construction of industrial brewing yeast for fermentation under high temperature and high gravity condition. Sheng wu Gong Cheng Xue Bao = Chinese Journal of Biotechnology 35 (3):522–34. doi: 10.13345/j.cjb.180310.
  • Swinnen, S., A. Goovaerts, K. Schaerlaekens, F. Dumortier, P. Verdyck, K. Souvereyns, G. Van Zeebroeck, M. R. Foulquié-Moreno, and J. M. Thevelein. 2015. Auxotrophic mutations reduce tolerance of Saccharomyces cerevisiae to very high levels of ethanol stress. Eukaryotic Cell 14 (9):884–97. doi: 10.1128/EC.00053-15.
  • Takagi, H., M. Takaoka, A. Kawaguchi, and Y. Kubo. 2005. Effect of L-Proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Applied and Environmental Microbiology 71 (12):8656–62. doi: 10.1128/AEM.71.12.8656-8662.2005.
  • Teixeira, M. C., L. R. Raposo, N. P. Mira, A. B. Lourenco, and I. Sa-Correia. 2009. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Applied and Environmental Microbiology 75 (18):5761–72. doi: 10.1128/AEM.00845-09.
  • Tian, T. T., D. H. Wu, C. T. Ng, H. Yang, J. Y. Sun, J. M. Liu, and J. Lu. 2020. A multiple-step strategy for screening Saccharomyces cerevisiae strains with improved acid tolerance and aroma profiles. Applied Microbiology and Biotechnology 104 (7):3097–107. doi: 10.1007/s00253-020-10451-z.
  • Torrellas, M., N. Rozes, A. Aranda, and E. Matallana. 2020. Basal catalase activity and high glutathione levels influence the performance of non-Saccharomyces active dry wine yeasts. Food Microbiology 92:103589. doi: 10.1016/j.fm.2020.103589.
  • Unrean, P., J. Gätgens, B. Klein, S. Noack, and V. Champreda. 2018. Elucidating cellular mechanisms of Saccharomyces cerevisiae tolerant to combined lignocellulosic-derived inhibitors using high-throughput phenotyping and multiomics analyses. FEMS Yeast Research 18 (8):23–41. doi: 10.1093/femsyr/foy106.
  • Vilela-Moura, A., D. Schuller, A. Mendes-Faia, D. S. Rui, S. R. Chaves, M. J. Sousa, and M. Corte-Real. 2011. The impact of acetate metabolism on yeast fermentative performance and wine quality: Reduction of volatile acidity of grape musts and wines. Applied Microbiology and Biotechnology 89 (2):271–80. doi: 10.1007/s00253-010-2898-3.
  • Wan, C., M. Zhang, Q. Fang, L. Xiong, X. Zhao, T. Hasunuma, F. W. Bai, and A. Kondo. 2015. The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc. Metallomics: Integrated Biometal Science 7 (2):322–32. doi: 10.1039/c4mt00275j.
  • Wang, S. Q., T. Wang, J. F. Liu, L. Deng, and F. Wang. 2018a. Overexpression of Ecm22 improves ergosterol biosynthesis in Saccharomyces cerevisiaee. Letters in Applied Microbiology 67 (5):484–90. doi: 10.1111/lam.13061.
  • Wang, Z. M., J. J. Wang, L. Li, Y. F. Zheng, and Q. Li. 2020. Protective effects of exogenous trehalose on brewer′s yeast under heat stress. Journal of Food Science and Biotechnology 39 (8):43–50. doi: 10.3969/j.issn.1673-1689.2020.08.006.
  • Wang, M. Y., W. W. Yu, L. Zhang, X. L. Liang, and Y. D. Li. 2018b. The Identification of a novel gene and its effect on stress tolerance in Saccharomyces cerevisiae Chinese rice wine strain. Chinese Journal of Cell Biology 40 (8):34–1342. doi: 10.11844/cjcb.2018.08.0063.
  • Wang, G., T. Zhang, W. Sun, H. Wang, F. Yin, Z. Wang, D. Zuo, M. Sun, Z. Zhou, B. Lin, et al. 2017. Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma. Free Radical Biology & Medicine 106:24–37. doi: 10.1016/j.freeradbiomed.2017.02.015.
  • Wang, P.-M., D.-Q. Zheng, X.-Q. Chi, O. Li, C.-D. Qian, T.-Z. Liu, X.-Y. Zhang, F.-G. Du, P.-Y. Sun, A.-M. Qu, et al. 2014. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. Bioresource Technology 152 (1):371–6. doi: 10.1016/j.biortech.2013.11.033.
  • Watanabe, M., K. Tamura, J. P. Magbanua, K. Takano, K. Kitamoto, H. Kitagaki, T. Akao, and H. Shimoi. 2007. Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11. Journal of Bioscience and Bioengineering 104 (3):163–70. doi: 10.1263/jbb.104.163.
  • Watanabe, M., D. Watanabe, T. Akao, and H. Shimoi. 2009. Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing. Journal of Bioscience and Bioengineering 107 (5):516–8. doi: 10.1016/j.jbiosc.2009.01.006.
  • Wong, C. M., Y. P. Ching, Y. Zhou, H. F. Kung, and D. Y. Jin. 2003. Transcriptional regulation of yeast peroxiredoxin gene TSA2 through Hap1p, Rox1p, and Hap2/3/5p. Free Radical Biology & Medicine 34 (5):585–97. doi: 10.1016/S0891-5849(02)01354-0.
  • Wu, S. S., L. Bai, Z. L. Zheng, L. L. Zhang, Q. Liu, and H. Zhao. 2015b. Effects of low-temperature adaptation on fermentation characteristics of Saccharomyces cerevisiae. China Brewing 34 (5):56–9. doi: 10.11882/j.issn.0254-5071.2015.05.013.
  • Wu, J., X. Chen, L. Cai, L. Tang, and L. Liu. 2015a. Transcription factors Asg1p and Hal1p regulated pH homeostasis in Candida glabrata. Frontiers in Microbiology 6:843–54. doi: 10.3389/fmicb.2015.00843.
  • Wu, Z. F., J. J. Wang, C. T. Niu, C. F. Liu, F. Y. Zheng, and Q. Li. 2022. Transcriptomic and metabolomic analysis reveals genes related to stress tolerance in high gravity brewing. World Journal of Microbiology & Biotechnology 38 (4):59–66. doi: 10.1007/s11274-021-03115-1.
  • Wu, X., L. Zhang, X. Jin, Y. Fang, K. Zhang, L. Qi, and D. Q. Zheng. 2016. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains. Biotechnology Letters 38 (7):1097–106. doi: 10.1007/s10529-016-2085-4.
  • Wu, C. J., J. L. Zhang, G. X. Zhu, R. Yao, X. L. Chen, and L. M. Liu. 2019. CgHog1-mediated CgRds2 phosphorylation alters glycerophospholipid composition to coordinate osmotic stress in Candida glabrata. Applied and Environmental Microbiology 85 (6):22–8. doi: 10.1128/AEM.02822-18.
  • Xin, Y., M. Yang, H. Yin, and J. Yang. 2020. Improvement of ethanol tolerance by inactive protoplast fusion in Saccharomyces cerevisiae. BioMed Research International 2020:1–10. doi: 10.1155/2020/1979318.
  • Yang, K., X. J. Dai, M. T. Fan, and G. Q. Zhang. 2021. Influences of acid and ethanol stresses on Oenococcus oeni SD‐2a and its proteomic and transcriptional responses. Journal of the Science of Food and Agriculture 101 (7):2892–900. doi: 10.1002/jsfa.10921.
  • Yang, Y. J., X. N. Lin, Y. J. Xia, G. Q. Wang, J. S. Yu, J. Hu, and L. Z. Ai. 2018a. Effects of different nutrition additives on ethanol tolerance and fermentation performance of Chinese rice wine yeast. Food and Fermentation Industries 44 (1):37–43. doi: 10.13995/j.cnki.11-1802/ts.015331.
  • Yang, G., J. J. Wang, J. Li, Y. F. Zheng, C. F. Liu, Y. X. Li, C. T. Niu, and Q. Li. 2019. Effects of FKS family genes on the ability of Saccharomyces cerevisiae stress resistance. Journal of Food Science and Biotechnology 38 (10):126–34. doi: 10.3969/j.issn.1673-1689.2019.10.018.
  • Yang, Y., Y. Xia, X. Lin, G. Wang, H. Zhang, Z. Xiong, H. Y. Yu, J. S. Yu, and L. Z. Ai. 2018b. Improvement of flavor profiles in Chinese rice wine by creating fermenting yeast with superior ethanol tolerance and fermentation activity. Food Research International 108:83–13. doi: 10.1016/j.foodres.2018.03.036.
  • Yan, D., X. Lin, Y. Qi, H. Liu, X. Chen, L. Liu, and J. Chen. 2016. Crz1p regulates pH homeostasis in Candida glabrata by altering membrane lipid composition. Applied and Environmental Microbiology 82 (23):6920–9. doi: 10.1128/AEM.02186-16.
  • Yan, J., L. Z. Zhang, X. Y. Xiong, H. K. Gong, and L. L. Chen. 2020. Microbial protoplast fusion breeding technology and its application in fermented food production. Journal of Food Safety and Quality 11 (22):8455–62. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.22.055.
  • Ye, M. Q., T. L. Yue, Y. H. Yuan, and L. Wang. 2013. Production of yeast hybrids for improvement of cider by protoplast electrofusion. Biochemical Engineering Journal 81:162–9. doi: 10.1016/j.bej.2013.10.016.
  • Yu, Z. M., H. F. Zhao, M. M. Zhao, H. J. Lei, and H. P. Li. 2012. Metabolic flux and nodes control analysisof brewer’s yeasts under different fermentation temperature during beer brewing. Applied Biochemistry and Biotechnology 168 (7):1938–52. doi: 10.1007/s12010-012-9909-z.
  • Zhang, M., L. Galdieri, and A. Vancura. 2013. The yeast AMPK homolog SNF1 regulates acetyl coenzyme, a homeostasis and histone acetylation. Molecular and Cellular Biology 33 (23):4701–17. doi: 10.1128/MCB.00198-13.
  • Zhang, H. D., X. W. Guo, and D. G. Xiao. 2020. Effect of acetic acid bacteria on alcohol fermentation and metabolism of high ester-producing Saccharomyces cerevisiae. Food and Fermentation Industries 46 (1):36–42. doi: 10.13995/j.cnki.11-1802/ts.022251.
  • Zhang, M., J. Shi, and L. Jiang. 2015. Modulation of mitochondrial membrane integrity and ROS formation by high temperature in Saccharomyces cerevisiae. Electronic Journal of Biotechnology 18 (3):202–9. doi: 10.1016/j.ejbt.2015.03.008.
  • Zhang, X. R., Y. X. Zhang, and H. Li. 2020. Regulation of trehalose, a typical stress protectant, on central metabolisms, cell growth and division of Saccharomyces cerevisiae CEN.PK113-7D. Food Microbiology 89:103459. doi: 10.1016/j.fm.2020.103459.
  • Zheng, D.-Q., X.-C. Wu, P.-M. Wang, X.-Q. Chi, X.-L. Tao, P. Li, X.-H. Jiang, and Y.-H. Zhao. 2011. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. Journal of Industrial Microbiology & Biotechnology 38 (3):415–22. doi: 10.1007/s10295-010-0784-8.
  • Zhuang, S. W., K. Smart, and C. Powell. 2017. Impact of extracellular osmolality on Saccharomyces yeast populations during brewing fermentations. Journal of the American Society of Brewing Chemists 75 (3):244–54. doi: 10.1094/ASBCJ-2017-3505-01.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.