799
Views
2
CrossRef citations to date
0
Altmetric
Review

Polysaccharide-based nanosystems: a review

, , &

References

  • Abe, K., and H. Yano. 2012. Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 19 (6):1907–12. doi: 10.1007/s10570-012-9784-3.
  • Abral, H., A. S. Anugrah, F. Hafizulhaq, D. Handayani, E. Sugiarti, and A. N. Muslimin. 2018. Effect of nanofibers fraction on properties of the starch based biocomposite prepared in various ultrasonic powers. International Journal of Biological Macromolecules 116:1214–21. doi: 10.1016/j.ijbiomac.2018.05.067.
  • Ahmad, M., A. Gani, I. Hassan, Q. Huang, and H. Shabbir. 2020. Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. Scientific Reports 10 (1):3533. doi: 10.1038/s41598-020-60380-0.
  • Angellier, H., L. Choisnard, S. Molina-Boisseau, P. Ozil, and A. Dufresne. 2004. Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromolecules 5 (4):1545–51. doi: 10.1021/bm049914u.
  • Araldi da Silva, B., R. de Sousa Cunha, A. Valério, A. De Noni, Jr., D. Hotza, and S. Y. Gómez González. 2021. Electrospinning of cellulose using ionic liquids: An overview on processing and applications. European Polymer Journal 147:110283. doi: 10.1016/j.eurpolymj.2021.110283.
  • Ashrafizadeh, M., M. Delfi, F. Hashemi, A. Zabolian, H. Saleki, M. Bagherian, N. Azami, M. V. Farahani, S. O. Sharifzadeh, S. Hamzehlou, et al. 2021. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydrate Polymers 260 (February):117809. doi: 10.1016/j.carbpol.2021.117809.
  • Azfaralariff, A., F. F. Fazial, R. S. Sontanosamy, M. F. Nazar, and A. M. Lazim. 2020. Food-grade particle stabilized pickering emulsion using modified sago (Metroxylon sagu) starch nanocrystal. Journal of Food Engineering 280 (February):109974. doi: 10.1016/j.jfoodeng.2020.109974.
  • Bae, I. Y., Y. N. Joe, H. J. Rha, S. Lee, S. H. Yoo, and H. G. Lee. 2009. Effect of sulfation on the physicochemical and biological properties of citrus pectins. Food Hydrocolloids 23 (7):1980–3. doi: 10.1016/j.foodhyd.2009.02.013.
  • Balasubramani, K., N. Sivarajasekar, S. Muthusaravanan, K. Ram, M. Naushad, T. Ahamad, and G. Sharma. 2020. Efficient removal of antidepressant Flupentixol using graphene oxide/cellulose nanogel composite: Particle swarm algorithm based artificial neural network modelling and optimization. Journal of Molecular Liquids 319:114371. doi: 10.1016/j.molliq.2020.114371.
  • Barthel, S., and T. Heinze. 2006. Acylation and carbanilation of cellulose in ionic liquids. Green Chemistry 8 (3):301–6. doi: 10.1039/B513157J.
  • Bayat, S., N. Amiri, E. Pishavar, F. Kalalinia, J. Movaffagh, and M. Hashemi. 2019. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sciences 229 (May):57–66. doi: 10.1016/j.lfs.2019.05.028.
  • Bergel, B. F., L. Leite Araujo, A. L. dos Santos da Silva, and R. M. Campomanes Santana. 2020. Effects of silylated starch structure on hydrophobization and mechanical properties of thermoplastic starch foams made from potato starch. Carbohydrate Polymers 241 (December 2019):116274. doi: 10.1016/j.carbpol.2020.116274.
  • Bhuyan, M. M., H. Okabe, Y. Hidaka, N. C. Dafader, N. Rahman, and K. Hara. 2018. Synthesis of pectin-N, N-dimethyl acrylamide hydrogel by gamma radiation and application in drug delivery (in vitro). Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 55 (4):369–76. doi: 10.1080/10601325.2018.1442177.
  • Bi, S., D. Qin, S. Yuan, X. Cheng, and X. Chen. 2021. Homogeneous modification of chitin and chitosan based on an alkali/urea soluble system and their applications in biomedical engineering. Green Chemistry 23 (23):9318–33. doi: 10.1039/D1GC03205D.
  • Biliaderis, C. G., C. M. Page, L. Slade, and R. R. Sirett. 1985. Thermal behavior of amylose-lipid complexes. Carbohydrate Polymers 5 (5):367–89. doi: 10.1016/0144-8617(85)90044-X.
  • Binh, D., P. T. T. Hong, N. N. Duy, N. T. Duoc, and N. N. Dieu. 2012. A study on size effect of carboxymethyl starch nanogel crosslinked by electron beam radiation. Radiation Physics and Chemistry 81 (7):906–12. doi: 10.1016/j.radphyschem.2011.12.016.
  • Blanchard, L. A., and J. F. Brennecke. 2001. Recovery of organic products from ionic liquids using supercritical carbon dioxide. Industrial & Engineering Chemistry Research 40 (1):287–92. doi: 10.1021/ie000710d.
  • Blennow, A. 2018. Starch bioengineering. In Starch in food. Woodhead publishing series in food science, technology and nutrition, ed. M. Sjöö and L. Nilsson, 2nd ed., 179–222. Duxford: Elsevier. doi: 10.1016/B978-0-08-100868-3.00004-4.
  • Blennow, A., A. M. Bay-Smidt, P. Leonhardt, O. Bandsholm, and M. H. Madsen. 2003. Starch paste stickiness is a relevant native starch selection criterion for wet-end paper manufacturing. Starch - Stärke 55 (9):381–9. doi: 10.1002/star.200300169.
  • Burton, R. A., and G. B. Fincher. 2014. Plant cell wall engineering: Applications in biofuel production and improved human health. Current Opinion in Biotechnology 26 (November):79–84. doi: 10.1016/j.copbio.2013.10.007.
  • Cai, J., and L. Zhang. 2006. Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7 (1):183–9. doi: 10.1021/bm0505585.
  • Camarero Espinosa, S., T. Kuhnt, E. J. Foster, and C. Weder. 2013. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14 (4):1223–30. doi: 10.1021/bm400219u.
  • Cao, J., J. You, L. Zhang, and J. Zhou. 2018. Homogeneous synthesis and characterization of chitosan ethers prepared in aqueous alkali/urea solutions. Carbohydrate Polymers 185 (December 2017):138–44. doi: 10.1016/j.carbpol.2018.01.010.
  • Cao, Y., and H. Tan. 2002. Effects of cellulase on the modification of cellulose. Carbohydrate Research 337 (14):1291–6. doi: 10.1016/S0008-6215(02)00134-9.
  • Carciofi, M., A. Blennow, S. L. Jensen, S. S. Shaik, A. Henriksen, A. Buléon, P. B. Holm, and K. H. Hebelstrup. 2012. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules. BMC Plant Biology 12 (1):223. doi: 10.1186/1471-2229-12-223.
  • Carpita, N. C., and D. M. Gibeaut. 1993. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal: For Cell and Molecular Biology 3 (1):1–30. doi: 10.1111/j.1365-313X.1993.tb00007.x.
  • Cerqueira, D. A., G. R. Filho, and C. d S. Meireles. 2007. Optimization of sugarcane bagasse cellulose acetylation. Carbohydrate Polymers 69 (3):579–82. doi: 10.1016/j.carbpol.2007.01.010.
  • Chamberlain, E. K., and M. A. Rao. 1999. Rheological properties of acid converted waxy maize starches in water and 90% DMSO/10% water. Carbohydrate Polymers 40 (4):251–60. doi: 10.1016/S0144-8617(99)00060-0.
  • Chang, P. R., R. Jian, J. Yu, and X. Ma. 2010a. Starch-based composites reinforced with novel chitin nanoparticles. Carbohydrate Polymers 80 (2):420–5. doi: 10.1016/j.carbpol.2009.11.041.
  • Chang, P. R., R. Jian, P. Zheng, J. Yu, and X. Ma. 2010b. Preparation and properties of glycerol plasticized-starch (GPS)/cellulose ­nanoparticle (CN) composites. Carbohydrate Polymers 79 (2):301–5. doi: 10.1016/j.carbpol.2009.08.007.
  • Cheetham, N. W. H., and L. Tao. 1998. Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydrate Polymers 36 (4):277–84. doi: 10.1016/S0144-8617(98)00007-1.
  • Chen, B., S. Wu, and Q. Ye. 2021. Fabrication and characterization of biodegradable KH560 crosslinked chitin hydrogels with high toughness and good biocompatibility. Carbohydrate Polymers 259 (November 2020):117707. doi: 10.1016/j.carbpol.2021.117707.
  • Chen, H., L. Chen, X. Dang, Z. Shan, R. Dai, and Y. Wang. 2019. The structure and properties of granular cold-water-soluble starch by a NaOH/urea aqueous solution. International Journal of Biological Macromolecules 141:732–7. doi: 10.1016/j.ijbiomac.2019.08.226.
  • Chen, H. m., Q. Huang, X. Fu, and F. x. Luo. 2014. Ultrasonic effect on the octenyl succinate starch synthesis and substitution patterns in starch granules. Food Hydrocolloids 35:636–43. doi: 10.1016/j.foodhyd.2013.08.009.
  • Chen, L., Q. Wang, K. Hirth, C. Baez, U. P. Agarwal, and J. Y. Zhu. 2015. Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22 (3):1753–62. doi: 10.1007/s10570-015-0615-1.
  • Chen, Q., H. Chen, L. Zhu, and J. Zheng. 2015. Fundamentals of double network hydrogels. Journal of Materials Chemistry B 3 (18):3654–76. doi: 10.1039/c5tb00123d.
  • Chi, H., K. Xu, X. Wu, Q. Chen, D. Xue, C. Song, W. Zhang, and P. Wang. 2008. Effect of acetylation on the properties of corn starch. Food Chemistry 106 (3):923–8. doi: 10.1016/j.foodchem.2007.07.002.
  • Dai, H., J. Wu, H. Zhang, Y. Chen, L. Ma, H. Huang, Y. Huang, and Y. Zhang. 2020. Recent advances on cellulose nanocrystals for Pickering emulsions: Development and challenge. Trends in Food Science & Technology 102 (2):16–29. doi: 10.1016/j.tifs.2020.05.016.
  • Daly, A. C., L. Riley, T. Segura, and J. A. Burdick. 2020. Hydrogel microparticles for biomedical applications. Nature Reviews. Materials 5 (1):20–43. doi: 10.1038/s41578-019-0148-6.
  • Debele, T. A., S. L. Mekuria, and H. C. Tsai. 2016. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. Materials Science & Engineering, C: Materials for Biological Applications 68:964–81. doi: 10.1016/j.msec.2016.05.121.
  • Debet, M. R., and M. J. Gidley. 2007. Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule “ghost” integrity. Journal of Agricultural and Food Chemistry 55 (12):4752–60. doi: 10.1021/jf070004o.
  • Divya, K., and M. S. Jisha. 2018. Chitosan nanoparticles preparation and applications. Environmental Chemistry Letters 16 (1):101–12. doi: 10.1007/s10311-017-0670-y.
  • Do, D. T., J. Singh, I. Oey, H. Singh, D. Toan, J. Singh, I. Oey, and H. Singh. 2019. Modulating effect of cotyledon cell microstructure on in vitro digestion of starch in legumes. Food Hydrocolloids 96 (February):112–22. doi: 10.1016/j.foodhyd.2019.04.063.
  • Doshi, J., and D. H. Reneker. 1993. Electrospinning process and applications of electrospun fibers. Conference Record - IAS Annual Meeting. IEEE Industry Applications Society, Vol. 3:1698–1703. doi: 10.1109/ias.1993.299067.
  • Dufresne, A. 2013. Nanocellulose: A new ageless bionanomaterial. Materials Today 16 (6):220–7. doi: 10.1016/j.mattod.2013.06.004.
  • El-Naggar, M. E., E. K. Radwan, S. T. El-Wakeel, H. Kafafy, T. A. Gad-Allah, A. S. El-Kalliny, and T. I. Shaheen. 2018. Synthesis, characterization and adsorption properties of microcrystalline cellulose based nanogel for dyes and heavy metals removal. International Journal of Biological Macromolecules 113:248–58. doi: 10.1016/j.ijbiomac.2018.02.126.
  • El-Sheikh, M. A. 2010. Carboxymethylation of maize starch at mild conditions. Carbohydrate Polymers 79 (4):875–81. doi: 10.1016/j.carbpol.2009.10.013.
  • Elazzouzi-Hafraoui, S., Y. Nishiyama, J. L. Putaux, L. Heux, F. Dubreuil, and C. Rochas. 2008. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9 (1):57–65. doi: 10.1021/bm700769p.
  • Englyst, K. N., S. Liu, and H. N. Englyst. 2007. Nutritional characterization and measurement of dietary carbohydrates. European Journal of Clinical Nutrition 61 (S1):S19–S39. doi: 10.1038/sj.ejcn.1602937.
  • Facchine, E. G., L. Bai, O. J. Rojas, and S. A. Khan. 2021. Associative structures formed from cellulose nanofibrils and nanochitins are pH-responsive and exhibit tunable rheology. Journal of Colloid and Interface Science 588:232–41. doi: 10.1016/j.jcis.2020.12.041.
  • Figueiredo, J. A., M. I. Ismael, C. M. S. Anjo, and A. P. Duarte. 2010. Cellulose and derivatives from wood and fibers as renewable sources of raw-materials. In Carbohydrates in sustainable development I, ed. A.P. Rauter, P. Vogel, and Y. Queneau, 117–28. Berlin, Heidelberg: Springer. doi: 10.1007/128_2010_88.
  • Forssell, P., A. Hamunen, K. Autio, P. Suortti, and K. Poutanen. 1995. Hypochlorite oxidation of barley and potato starch. Starch - Stärke 47 (10):371–7. doi: 10.1002/star.19950471002.
  • Fukaya, Y., K. Hayashi, M. Wada, and H. Ohno. 2008. Cellulose dissolution with polar ionic liquids under mild conditions: Required factors for anions. Green Chem 10 (1):44–6. doi: 10.1039/B713289A.
  • Gallant, D. J., B. Bouchet, and P. M. Baldwin. 1997. Microscopy of starch: Evidence of a new level of granule organization. Carbohydrate Polymers 32 (3–4):177–91. doi: 10.1016/S0144-8617(97)00008-8.
  • Gelders, G. G., H. Goesaert, and J. A. Delcour. 2006. Amylose-lipid complexes as controlled lipid release agents during starch gelatinization and pasting. Journal of Agricultural and Food Chemistry 54 (4):1493–9. doi: 10.1021/jf051743c.
  • Geng, X., O. H. Kwon, and J. Jang. 2005. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26 (27):5427–32. doi: 10.1016/j.biomaterials.2005.01.066.
  • Ghorbani, M., L. Roshangar, and J. Soleimani Rad. 2020. Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering. European Polymer Journal 130 (April):109697. doi: 10.1016/j.eurpolymj.2020.109697.
  • Gnanasambandam, R., and A. Proctor. 2000. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chemistry 68 (3):327–32. doi: 10.1016/S0308-8146(99)00191-0.
  • Gong, J. P., Y. Katsuyama, T. Kurokawa, and Y. Osada. 2003. Double-network hydrogels with extremely high mechanical strength. Advanced Materials 15 (14):1155–8. doi: 10.1002/adma.200304907.
  • González Moreno, A., S. Guzman-Puyol, E. Domínguez, J. J. Benítez, P. Segado, S. Lauciello, L. Ceseracciu, J. M. Porras-Vázquez, L. Leon-Reina, A. Heredia, et al. 2021. Pectin-cellulose nanocrystal biocomposites: Tuning of physical properties and biodegradability. International Journal of Biological Macromolecules 180:709–17. doi: 10.1016/j.ijbiomac.2021.03.126.
  • Gopalan Nair, K., and A. Dufresne. 2003. Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4 (3):657–65. doi: 10.1021/bm020127b.
  • Goussé, C., H. Chanzy, M. L. Cerrada, and E. Fleury. 2004. Surface silylation of cellulose microfibrils: Preparation and rheological properties. Polymer 45 (5):1569–75. doi: 10.1016/j.polymer.2003.12.028.
  • Gupta, B., M. Tummalapalli, B. L. Deopura, and M. S. Alam. 2013. Functionalization of pectin by periodate oxidation. Carbohydrate Polymers 98 (1):1160–5. doi: 10.1016/j.carbpol.2013.06.069.
  • Gupta, P., B. Singh, A. K. Agrawal, and P. K. Maji. 2018. Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Materials & Design 158:224–36. doi: 10.1016/j.matdes.2018.08.031.
  • Hadisi, Z., J. Nourmohammadi, and J. Mohammadi. 2015. Composite of porous starch-silk fibroin nanofiber-calcium phosphate for bone regeneration. Ceramics International 41 (9):10745–54. doi: 10.1016/j.ceramint.2015.05.010.
  • Han, J. A., and S. T. Lim. 2004. Structural changes of corn starches by heating and stirring in DMSO measured by SEC-MALLS-RI system. Carbohydrate Polymers 55 (3):265–72. doi: 10.1016/j.carbpol.2003.09.007.
  • Hao, L., J. Ding, N. Yuan, J. Xu, X. Zhou, S. Dai, and B. Chen. 2018. Visual and flexible temperature sensor based on a pectin-xanthan gum blend film. Organic Electronics 59 (December 2017):243–6. doi: 10.1016/j.orgel.2018.05.019.
  • Hasegawa, M., A. Isogai, S. Kuga, and F. Onabe. 1994. Preparation of cellulose-chitosan blend film using chloral/dimethylformamide. Polymer 35 (5):983–7. doi: 10.1016/0032-3861(94)90942-3.
  • Helm, R., R. A. Young, R. McPherson, and R. Klem. 1986. Molecular weight characterization of starch and modified starches as tricarbanilate derivatives. Carbohydrate Polymers 6 (6):443–62. doi: 10.1016/0144-8617(86)90003-2.
  • Hernández, J. M., M. Gaborieau, P. Castignolles, M. J. Gidley, A. M. Myers, and R. G. Gilbert. 2008. Mechanistic investigation of a starch-branching enzyme using hydrodynamic volume SEC analysis. Biomacromolecules 9 (3):954–65. doi: 10.1021/bm701213p.
  • Hu, X., Y. Du, Y. Tang, Q. Wang, T. Feng, J. Yang, and J. F. Kennedy. 2007. Solubility and property of chitin in NaOH/urea aqueous solution. Carbohydrate Polymers 70 (4):451–8. doi: 10.1016/j.carbpol.2007.05.002.
  • Huang, J., M. Frauenlob, Y. Shibata, L. Wang, T. Nakajima, T. Nonoyama, M. Tsuda, S. Tanaka, T. Kurokawa, J. P. Gong, et al. 2020. Chitin-based double-network hydrogel as potential superficial soft-tissue-repairing materials. Biomacromolecules 21 (10):4220–30. doi: 10.1021/acs.biomac.0c01003.
  • Huang, Y. B., and Y. Fu. 2013. Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chemistry 15 (5):1095–111. doi: 10.1039/c3gc40136g.
  • Huq, T., K. D. Vu, B. Riedl, J. Bouchard, J. Han, and M. Lacroix. 2016. Development of probiotic tablet using alginate, pectin, and cellulose nanocrystals as excipients. Cellulose 23 (3):1967–78. doi: 10.1007/s10570-016-0905-2.
  • Im, W., S. Lee, A. Rajabi Abhari, H. J. Youn, and H. L. Lee. 2018. Optimization of carboxymethylation reaction as a pretreatment for production of cellulose nanofibrils. Cellulose 25 (7):3873–83. doi: 10.1007/s10570-018-1853-9.
  • Isik, M., H. Sardon, and D. Mecerreyes. 2014. Ionic liquids and cellulose: Dissolution, chemical modification and preparation of new cellulosic materials. International Journal of Molecular Sciences 15 (7):11922–40. doi: 10.3390/ijms150711922.
  • Işıklan, N., and Ş. Tokmak. 2019. Development of thermo/pH-responsive chitosan coated pectin-graft-poly(N,N-diethyl acrylamide) microcarriers. Carbohydrate Polymers 218 (March):112–25. doi: 10.1016/j.carbpol.2019.04.068.
  • Janaswamy, S. 2014. Encapsulation altered starch digestion: Toward developing starch-based delivery systems. Carbohydrate Polymers 101 (1):600–5. doi: 10.1016/j.carbpol.2013.09.094.
  • Jayakumar, R., N. Nwe, S. Tokura, and H. Tamura. 2007. Sulfated chitin and chitosan as novel biomaterials. International Journal of Biological Macromolecules 40 (3):175–81. doi: 10.1016/j.ijbiomac.2006.06.021.
  • Jenkins, P. J., and A. M. Donald. 1995. The influence of amylose on starch granule structure. International Journal of Biological Macromolecules 17 (6):315–21. doi: 10.1016/0141-8130(96)81838-1.
  • Jensen, S., C. Rolin, and R. Ipsen. 2010. Stabilisation of acidified skimmed milk with HM pectin. Food Hydrocolloids 24 (4):291–9. doi: 10.1016/j.foodhyd.2009.10.004.
  • Jia, C., C. Chen, Y. Kuang, K. Fu, Y. Wang, Y. Yao, S. Kronthal, E. Hitz, J. Song, F. Xu, et al. 2018. From wood to textiles: Top-down assembly of aligned cellulose nanofibers. Advanced Materials 30 (30):1801347–8. doi: 10.1002/adma.201801347.
  • Jia, X., R. Xu, W. Shen, M. Xie, M. Abid, S. Jabbar, P. Wang, X. Zeng, and T. Wu. 2015. Stabilizing oil-in-water emulsion with amorphous cellulose. Food Hydrocolloids 43:275–82. doi: 10.1016/j.foodhyd.2014.05.024.
  • Jin, H., C. Zha, and L. Gu. 2007. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydrate Research 342 (6):851–8. doi: 10.1016/j.carres.2006.12.023.
  • Kai, D., M. P. Prabhakaran, B. Stahl, M. Eblenkamp, E. Wintermantel, and S. Ramakrishna. 2012. Mechanical properties and in vitro behavior of nanofiberhydrogel composites for tissue engineering applications. Nanotechnology 23 (9):095705. doi: 10.1088/0957-4484/23/9/095705.
  • Kakibe, T., S. Nakamura, K. Amakuni, and H. Kishi. 2019. Binary ionic liquid system for direct cellulose etherification. Australian Journal of Chemistry 72 (2):101–5. doi: 10.1071/CH18378.
  • Kazachenko, A. S., N. Y. Vasilyeva, Y. N. Malyar, A. S. Kazachenko, and E. A. Slyusareva. 2020. Synthesis of sulfated starch-casein complex. IOP Conference Series: Materials Science and Engineering 862 (6):062013. doi: 10.1088/1757-899X/862/6/062013.
  • Kemper, J., A. Burkholder, A. Jain, T. Mustufa, K. Wyrobek, C. Burdette, D. Song, A. Okamura, and G. Fichtinger. 2005. TU‐EE‐A1‐06: Transrectal fiducial carrier for radiographic image registration in prostate brachytherapy. Medical Physics 32 (6Part17):2108. doi: 10.1118/1.1998447.
  • Khan, A., K. D. Vu, G. Chauve, J. Bouchard, B. Riedl, and M. Lacroix. 2014. Optimization of microfluidization for the homogeneous distribution of cellulose nanocrystals (CNCs) in biopolymeric matrix. Cellulose 21 (5):3457–68. doi: 10.1007/s10570-014-0361-9.
  • Kim, D., K. Yoshikawa, and K. Y. Park. 2015. Characteristics of biochar obtained by hydrothermal carbonization of cellulose for renewable energy. Energies 8 (12):14040–8. doi: 10.3390/en81212412.
  • Kim, H. Y., J. H. Lee, J. Y. Kim, W. J. Lim, and S. T. Lim. 2012. Characterization of nanoparticles prepared by acid hydrolysis of various starches. Starch - Stärke 64 (5):367–73. doi: 10.1002/star.201100105.
  • Kittur, F. S., A. B. Vishu Kumar, L. R. Gowda, and R. N. Tharanathan. 2003. Chitosanolysis by a pectinase isozyme of Aspergillus niger - A non-specific activity. Carbohydrate Polymers 53 (2):191–6. doi: 10.1016/S0144-8617(03)00042-0.
  • Köhler, S., and T. Heinze. 2007. New solvents for cellulose: Dimethyl sulfoxide/ammonium fluorides. Macromolecular Bioscience 7 (3):307–14. doi: 10.1002/mabi.200600197.
  • Kou, T., and Q. Gao. 2018. New insight in crosslinking degree determination for crosslinked starch. Carbohydrate Research 458–459:13–8. doi: 10.1016/j.carres.2018.01.009.
  • Kou, T., and Q. Gao. 2019. A study on the thermal stability of amylose-amylopectin and amylopectin-amylopectin in cross-linked starches through iodine binding capacity. Food Hydrocolloids 88:86–91. doi: 10.1016/j.foodhyd.2018.09.028.
  • Kumar, A., S. Zhang, G. Wu, C. C. Wu, J. P. Chen, R. Baskaran, and Z. Liu. 2015. Cellulose binding domain assisted immobilization of lipase (GSlip-CBD) onto cellulosic nanogel: Characterization and application in organic medium. Colloids and Surfaces, B: Biointerfaces 136:1042–50. doi: 10.1016/j.colsurfb.2015.11.006.
  • Kumar, A., Y. Singh Negi, V. Choudhary, and N. Kant Bhardwaj. 2020. Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry 2 (1):1–8. doi: 10.12691/jmpc-2-1-1.
  • Kumar, P. T. S., S. Abhilash, K. Manzoor, S. V. Nair, H. Tamura, and R. Jayakumar. 2010. Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydrate Polymers 80 (3):761–7. doi: 10.1016/j.carbpol.2009.12.024.
  • Kurita, K., S. Mori, Y. Nishiyama, and M. Harata. 2002. N-alkylation of chitin and some characteristics of the novel derivatives. Polymer Bulletin 48 (2):159–66. doi: 10.1007/s00289-002-0015-1.
  • Kweon, D., and S. Lim. 2001. Substitution of corn starch with polycaprolactone via chlorination and water resistance of the substituted starch. Journal of Applied Polymer Science 81 (9):2197–202. doi: 10.1002/app.1656.
  • Le Corre, D., J. Bras, and A. Dufresne. 2010. Starch nanoparticles: A review. Biomacromolecules 11 (5):1139–53. doi: 10.1021/bm901428y.
  • Lehmann, A., and B. Volkert. 2011. Preparing esters from high-amylose starch using ionic liquids as catalysts. Carbohydrate Polymers 83 (4):1529–33. doi: 10.1016/j.carbpol.2010.10.002.
  • Lepetit, A., R. Drolet, B. Tolnai, D. Montplaisir, and R. Zerrouki. 2017. Alkylation of microfibrillated cellulose – A green and efficient method for use in fiber-reinforced composites. Polymer 126:48–55. doi: 10.1016/j.polymer.2017.08.024.
  • Li, B., D. Jia, Y. Zhou, Q. Hu, and W. Cai. 2006. In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field. Journal of Magnetism and Magnetic Materials 306 (2):223–7. doi: 10.1016/j.jmmm.2006.01.250.
  • Li, S., R. Ward, and Q. Gao. 2011. Effect of heat-moisture treatment on the formation and physicochemical properties of resistant starch from mung bean (Phaseolus radiatus) starch. Food Hydrocolloids 25 (7):1702–9. doi: 10.1016/j.foodhyd.2011.03.009.
  • Li, S., Q. Xiong, X. Lai, X. Li, M. Wan, J. Zhang, Y. Yan, M. Cao, L. Lu, J. Guan, et al. 2016. Molecular modification of polysaccharides and resulting bioactivities. Comprehensive Reviews in Food Science and Food Safety 15 (2):237–50. doi: 10.1111/1541-4337.12161.
  • Li, X. M., Z. Z. Wu, B. Zhang, Y. Pan, R. Meng, and H. Q. Chen. 2019. Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Food Chemistry 293 (March):197–203. doi: 10.1016/j.foodchem.2019.04.096.
  • Li, Y., S. Yu, P. Chen, R. Rojas, A. Hajian, and L. Berglund. 2017. Cellulose nanofibers enable paraffin encapsulation and the formation of stable thermal regulation nanocomposites. Nano Energy. 34:541–8. doi: 10.1016/j.nanoen.2017.03.010.
  • Liang, T., J. Hou, M. Qu, M. Zhao, and I. Raj. 2020. High-viscosity α-starch nanogel particles to enhance oil recovery. RSC Advances 10 (14):8275–85. doi: 10.1039/c9ra06938k.
  • Liao, J., H. Dai, and H. Huang. 2021. Construction of hydrogels based on the homogeneous carboxymethylated chitin from Hericium erinaceus residue: Role of carboxymethylation degree. Carbohydrate Polymers 262 (March):117953. doi: 10.1016/j.carbpol.2021.117953.
  • Lin, Y., X. Liu, Z. Xing, Y. Geng, J. Wilson, D. Wu, and H. Kong. 2017. Preparation and characterization of magnetic Fe3O4–chitosan nanoparticles for cellulase immobilization. Cellulose 24 (12):5541–50. doi: 10.1007/s10570-017-1520-6.
  • Liu, F., Y. Liu, Z. Sun, D. Wang, H. Wu, L. Du, and D. Wang. 2020. Preparation and antibacterial properties of ε-polylysine-containing gelatin/chitosan nanofiber films. International Journal of Biological Macromolecules 164:3376–87. doi: 10.1016/j.ijbiomac.2020.08.152.
  • Liu, J., M. Bacher, T. Rosenau, S. Willför, and A. Mihranyan. 2018. Potentially immunogenic contaminants in wood-based and bacterial nanocellulose: Assessment of endotoxin and (1,3)-β-d-glucan levels. Biomacromolecules 19 (1):150–7. doi: 10.1021/acs.biomac.7b01334.
  • Liu, S., T. Z. Z. Yuan, X. Wang, M. Reimer, C. Isaak, and Y. Ai. 2019. Behaviors of starches evaluated at high heating temperatures using a new model of Rapid Visco Analyzer ‒ RVA 4800. Food Hydrocolloids 94 (1):217–28. doi: 10.1016/j.foodhyd.2019.03.015.
  • Liu, W., Y. Li, M. Chen, F. Xu, and F. Zhong. 2018. Stabilizing oil-in-water emulsion with amorphous and granular octenyl succinic anhydride modified starches. Journal of Agricultural and Food Chemistry 66 (35):9301–8. doi: 10.1021/acs.jafc.8b02733.
  • Liu, W. C., P. J. Halley, and R. G. Gilbert. 2010. Mechanism of degradation of starch, a highly branched polymer, during extrusion. Macromolecules 43 (6):2855–64. doi: 10.1021/ma100067x.
  • Liu, Y., Z. Liu, W. Pan, and Q. Wu. 2008. Absorption behaviors and structure changes of chitin in alkali solution. Carbohydrate Polymers 72 (2):235–9. doi: 10.1016/j.carbpol.2007.08.004.
  • Lu, X., Y. Wang, Y. Li, and Q. Huang. 2018. Assembly of Pickering emulsions using milled starch particles with different amylose/amylopectin ratios. Food Hydrocolloids 84:47–57. doi: 10.1016/j.foodhyd.2018.05.045.
  • Lv, S., D. M. Dudek, Y. Cao, M. M. Balamurali, J. Gosline, and H. Li. 2010. Designed biomaterials to mimic the mechanical properties of muscles. Nature 465 (7294):69–73. doi: 10.1038/nature09024.
  • Lv, Y., J. Wu, J. Zhang, Y. Niu, C. Y. Liu, J. He, and J. Zhang. 2012. Rheological properties of cellulose/ionic liquid/dimethylsulfoxide (DMSO) solutions. Polymer 53 (12):2524–31. doi: 10.1016/j.polymer.2012.03.037.
  • Ma, Z., M. Kotaki, and S. Ramakrishna. 2005. Electrospun cellulose nanofiber as affinity membrane. Journal of Membrane Science 265 (1-2):115–23. doi: 10.1016/j.memsci.2005.04.044.
  • Maniglia, B. C., and D. R. Tapia-Blácido. 2019. Structural modification of fiber and starch in turmeric residue by chemical and mechanical treatment for production of biodegradable films. International Journal of Biological Macromolecules 126:507–16. doi: 10.1016/j.ijbiomac.2018.12.206.
  • Mei, J. Q., D. N. Zhou, Z. Y. Jin, X. M. Xu, and H. Q. Chen. 2015. Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch. Food Chemistry 187:378–84. doi: 10.1016/j.foodchem.2015.04.076.
  • Mihindukulasuriya, S. D. F., and L. T. Lim. 2014. Nanotechnology development in food packaging: A review. Trends in Food Science & Technology 40 (2):149–67. doi: 10.1016/j.tifs.2014.09.009.
  • Minzanova, S. T., V. F. Mironov, A. B. Vyshtakalyuk, O. V. Tsepaeva, L. G. Mironova, A. Z. Mindubaev, I. R. Nizameev, K. V. Kholin, and V. A. Milyukov. 2015. Complexation of pectin with macro- and microelements. Antianemic activity of Na, Fe and Na, Ca, Fe complexes. Carbohydrate Polymers 134:524–33. doi: 10.1016/j.carbpol.2015.07.034.
  • Mohnen, D. 2008. Pectin structure and biosynthesis. Current Opinion in Plant Biology 11 (3):266–77. doi: 10.1016/j.pbi.2008.03.006.
  • Morris, G. A., T. J. Foster, and S. E. Harding. 2000. The effect of the degree of esterification on the hydrodynamic properties of citrus pectin. Food Hydrocolloids 14 (3):227–35. doi: 10.1016/S0268-005X(00)00007-2.
  • Muthukumaran, C., B. R. Kanmani, G. Sharmila, N. Manoj Kumar, and M. Shanmugaprakash. 2018. Carboxymethylation of pectin: Optimization, characterization and in-vitro drug release studies. Carbohydrate Polymers 194 (January):311–8. doi: 10.1016/j.carbpol.2018.04.042.
  • Nair, K. G., A. Dufresne, A. Gandini, and M. N. Belgacem. 2003. Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of Chemical Modification of chitin whiskers. Biomacromolecules 4 (6):1835–42. doi: 10.1021/bm030058g.
  • Nakayama, A., A. Kakugo, J. P. Gong, Y. Osada, M. Takai, T. Erata, and S. Kawano. 2004. High mechanical strength double-network hydrogel with bacterial cellulose. Advanced Functional Materials 14 (11):1124–8. doi: 10.1002/adfm.200305197.
  • Ni, C., W. Lu, J. Zhang, L. Peng, D. Xie, and J. Ni. 2021. Blue-light emitting aminated pectin for detecting Cu2+ ion. International Journal of Biological Macromolecules 176:272–81. doi: 10.1016/j.ijbiomac.2021.02.084.
  • Nishi, N., A. Ebina, S.-i. Nishimura, A. Tsutsumi, O. Hasegawa, and S. Tokura. 1986. Highly phosphorylated derivatives of chitin, partially deacetylated chitin and chitosan as new functional polymers: Preparation and characterization. International Journal of Biological Macromolecules 8 (5):311–7. doi: 10.1016/0141-8130(86)90046-2.
  • Özel, N., and M. Elibol. 2021. A review on the potential uses of deep eutectic solvents in chitin and chitosan related processes. Carbohydrate Polymers 262:117942. doi: 10.1016/j.carbpol.2021.117942.
  • Paiva, A., R. Craveiro, I. Aroso, M. Martins, R. L. Reis, and A. R. C. Duarte. 2014. Natural deep eutectic solvents - Solvents for the 21st century. ACS Sustainable Chemistry & Engineering 2 (5):1063–71. doi: 10.1021/sc500096j.
  • Pang, B., H. Liu, F. Rehfeldt, and K. Zhang. 2021. High internal phase Pickering emulsions stabilized by dialdehyde amylopectin/chitosan complex nanoparticles. Carbohydrate Polymers 258 (September 2020):117655. doi: 10.1016/j.carbpol.2021.117655.
  • Paquin, P., J. Arul, M. R. Kasaai, G. Charlet, P. Paquin, and J. Arul. 2003. Fragmentation of chitosan by microfluidization process. Innovative Food Science & Emerging Technologies 4 (4):403–13. doi: 10.1016/S1466-8564Ž03.00047-X.
  • Park, J., and W. Lu. 2007. Orientation of core-shell nanoparticles in an electric field. Applied Physics Letters 91 (5):053113. doi: 10.1063/1.2767191.
  • Pasquina-Lemonche, L., J. Burns, R. D. Turner, S. Kumar, R. Tank, N. Mullin, J. S. Wilson, B. Chakrabarti, P. A. Bullough, S. J. Foster, et al. 2020. The architecture of the Gram-positive bacterial cell wall. Nature 582 (7811):294–7. doi: 10.1038/s41586-020-2236-6.
  • Pérez, S, and E. Bertoft. 2010. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch- Stärke 62 (8):389–420. doi:10.1002/star.201000013.
  • Pullawan, T., A. N. Wilkinson, and S. J. Eichhorn. 2012. Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites. Biomacromolecules 13 (8):2528–36. doi: 10.1021/bm300746r.
  • Qiu, C., Y. Qin, S. Zhang, L. Xiong, and Q. Sun. 2016. A comparative study of size-controlled worm-like amylopectin nanoparticles and spherical amylose nanoparticles: Their characteristics and the adsorption properties of polyphenols. Food Chemistry 213:579–87. doi: 10.1016/j.foodchem.2016.07.023.
  • Rajisha, K. R., H. J. Maria, L. A. Pothan, Z. Ahmad, and S. Thomas. 2014. Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites. International Journal of Biological Macromolecules 67:147–53. doi: 10.1016/j.ijbiomac.2014.03.013.
  • Reichembach, L. H., and C. Lúcia de Oliveira Petkowicz. 2021. Pectins from alternative sources and uses beyond sweets and jellies: An overview. Food Hydrocolloids 118 (April):106824. doi: 10.1016/j.foodhyd.2021.106824.
  • Ribeiro, E. F., T. T. de Barros-Alexandrino, O. B. G. Assis, A. C. Junior, A. Quiles, I. Hernando, and V. R. Nicoletti. 2020. Chitosan and crosslinked chitosan nanoparticles: Synthesis, characterization and their role as Pickering emulsifiers. Carbohydrate Polymers 250:116878. doi: 10.1016/j.carbpol.2020.116878.
  • Richter, A., and D. Klemm. 2003. Regioselective sulfation of trimethylsilyl cellulose using different SO3-complexes. Cellulose 10 (2):133–8. doi: 10.1023/A:1024025127408.
  • Roghani-Mamaqani, H., V. Haddadi-Asl, and M. Salami-Kalajahi. 2012. In situ controlled radical polymerization: A review on synthesis of well-defined nanocomposites. Polymer Reviews 52 (2):142–88. doi:10.1080/15583724.2012.668153.
  • Rol, F., C. Sillard, M. Bardet, J. R. Yarava, L. Emsley, C. Gablin, D. Léonard, N. Belgacem, and J. Bras. 2020. Cellulose phosphorylation comparison and analysis of phosphorate position on cellulose fibers. Carbohydrate Polymers 229 (September 2019):115294. doi: 10.1016/j.carbpol.2019.115294.
  • Sadhu, S. 2013. Cellulase production by bacteria: A review. British Microbiology Research Journal 3 (3):235–58. doi: 10.9734/BMRJ/2013/2367.
  • Sagnelli, D., K. Hooshmand, G. Kemmer, J. Kirkensgaard, K. Mortensen, C. Giosafatto, M. Holse, K. Hebelstrup, J. Bao, W. Stelte, et al. 2017. Cross-linked amylose bio-plastic: A transgenic-based compostable plastic alternative. International Journal of Molecular Sciences 18 (10):2075. doi: 10.3390/ijms18102075.
  • Saito, T., and A. Isogai. 2006. Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 289 (1–3):219–25. doi: 10.1016/j.colsurfa.2006.04.038.
  • Schmidt, U. S., L. Koch, C. Rentschler, T. Kurz, H. U. Endreß, and H. P. Schuchmann. 2015. Effect of molecular weight reduction, acetylation and esterification on the emulsification properties of citrus pectin. Food Biophysics 10 (2):217–27. doi: 10.1007/s11483-014-9380-1.
  • Schmitz, C. S., K. N. De Simas, K. Santos, J. J. João, R. D. De Mello Castanho Amboni, and E. R. Amante. 2006. Cassava starch functional properties by etherification - Hydroxypropylation. International Journal of Food Science and Technology 41 (6):681–7. doi: 10.1111/j.1365-2621.2005.01136.x.
  • Shaik, S. S., T. Obata, K. H. Hebelstrup, K. Schwahn, A. R. Fernie, R. V. Mateiu, and A. Blennow. 2016. Starch granule re-structuring by starch branching enzyme and glucan water dikinase modulation affects caryopsis physiology and metabolism. PLoS One 11 (2):e0149613. doi: 10.1371/journal.pone.0149613.
  • Shannon, J. C., D. L. Garwood, and C. D. Boyer. 2009. Genetics and physiology of starch development. In Starch, ed. J. BeMiller and R. Whistler, 3rd ed., 23–82. San Diego: Elsevier. doi: 10.1016/B978-0-12-746275-2.00003-3.
  • Silva Filho, E. C., L. C. B. Lima, F. C. Silva, K. S. Sousa, M. G. Fonseca, and S. A. A. Santana. 2013. Immobilization of ethylene sulfide in aminated cellulose for removal of the divalent cations. Carbohydrate Polymers 92 (2):1203–10. doi: 10.1016/j.carbpol.2012.10.031.
  • Simi, C. K., and T. Emilia Abraham. 2007. Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery. Bioprocess and Biosystems Engineering 30 (3):173–80. doi: 10.1007/s00449-007-0112-5.
  • Singh, B., D. K. Sharma, and A. Gupta. 2008. In vitro release dynamics of thiram fungicide from starch and poly(methacrylic acid)-based hydrogels. Journal of Hazardous Materials 154 (1–3):278–86. doi: 10.1016/j.jhazmat.2007.10.024.
  • Soykeabkaew, N., N. Laosat, A. Ngaokla, N. Yodsuwan, and T. Tunkasiri. 2012. Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites. Composites Science and Technology 72 (7):845–52. doi: 10.1016/j.compscitech.2012.02.015.
  • Stevenson, D., A. Biswas, J. Jane, and G. Inglett. 2007. Changes in structure and properties of starch of four botanical sources dispersed in the ionic liquid, 1-butyl-3-methylimidazolium chloride. Carbohydrate Polymers 67 (1):21–31. doi: 10.1016/j.carbpol.2006.04.010.
  • Sun, Q., G. Li, L. Dai, N. Ji, and L. Xiong. 2014. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation. Food Chemistry 162:223–8. doi: 10.1016/j.foodchem.2014.04.068.
  • Sundarram, A., T. Pandurangappa, and K. Murthy. 2014. α-amylase production and applications: A review. Journal of Applied & Environmental Microbiology 2 (4):166–75. doi: 10.12691/jaem-2-4-10.
  • Tan, Y., K. Xu, C. Liu, Y. Li, C. Lu, and P. Wang. 2012. Fabrication of starch-based nanospheres to stabilize pickering emulsion. Carbohydrate Polymers 88 (4):1358–63. doi: 10.1016/j.carbpol.2012.02.018.
  • Terbojevich, M., C. Carraro, A. Cosani, and E. Marsano. 1988. Solution studies of the chitin-lithium chloride-N,N-di-methylacetamide system. Carbohydrate Research 180 (1):73–86. doi: 10.1016/0008-6215(88)80065-X.
  • Theron, J., J. A. Walker, and T. E. Cloete. 2008. Nanotechnology and water treatment: Applications and emerging opportunities. Critical Reviews in Microbiology 34 (1):43–69. doi: 10.1080/10408410701710442.
  • Thote, A. J., and R. B. Gupta. 2005. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Nanomedicine: Nanotechnology, Biology, and Medicine 1 (1):85–90. doi: 10.1016/j.nano.2004.12.001.
  • Tseng, H., K. Takechi, and K. I. Furuhata. 1997. Chlorination of chitin with sulfuryl chloride under homogeneous conditions. Carbohydrate Polymers 33 (1):13–8. doi: 10.1016/S0144-8617(97)00035-0.
  • Vaca-garcia, C., S. Thiebaud, M. E. Borredon, and G. Gozzelino. 1998. Cellulose esterification with fatty acids and acetic anhydride in lithium chloride/N,N-dimethylacetamide medium. Journal of the American Oil Chemists’ Society 75 (2):315–9. doi: 10.1007/s11746-998-0047-2.
  • Vallons, K. J. R., and E. K. Arendt. 2009. Effects of high pressure and temperature on the structural and rheological properties of sorghum starch. Innovative Food Science & Emerging Technologies 10 (4):449–56. doi: 10.1016/j.ifset.2009.06.008.
  • Vasconcelos, N. F., J. P. A. Feitosa, F. M. P. da Gama, J. P. S. Morais, F. K. Andrade, M. de Souza Filho, S. M. de, and M. d F. Rosa. 2017. Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features. Carbohydrate Polymers 155:425–31. doi: 10.1016/j.carbpol.2016.08.090.
  • Villay, A., F. Lakkis de Filippis, L. Picton, D. Le Cerf, C. Vial, and P. Michaud. 2012. Comparison of polysaccharide degradations by dynamic high-pressure homogenization. Food Hydrocolloids 27 (2):278–86. doi: 10.1016/j.foodhyd.2011.10.003.
  • Walther, A., J. V. I. Timonen, I. Díez, A. Laukkanen, and O. Ikkala. 2011. Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Advanced Materials (Deerfield Beach, FL) 23 (26):2924–8. doi: 10.1002/adma.201100580.
  • Mohy Eldin, M. S., E. A. Soliman, A. I. Hashem, and T. M. Tamer. 2012. Antimicrobial activity of novel aminated chitosan derivatives for biomedical applications. Advances in Polymer Technology 31 (4):414–28. doi:10.1002/adv.20264.
  • Wang, K., J. Hasjim, A. C. Wu, R. J. Henry, and R. G. Gilbert. 2014. Variation in amylose fine structure of starches from different botanical sources. Journal of Agricultural and Food Chemistry 62 (19):4443–53. doi: 10.1021/jf5011676.
  • Wang, W. T., J. Zhu, X. L. Wang, Y. Huang, and Y. Z. Wang. 2010. Dissolution behavior of chitin in ionic liquids. Journal of Macromolecular Science, Part B: Physics 49 (3):528–41. doi: 10.1080/00222341003595634.
  • Wang, X., H. Chen, Z. Luo, and X. Fu. 2016. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties. Carbohydrate Polymers 138:192–200. doi: 10.1016/j.carbpol.2015.11.006.
  • Wang, Y., C. Fan, H. Hu, Y. Li, D. Sun, Y. Wang, and L. Peng. 2016 Sep-Oct. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnology Advances 34 (5):997–1017. doi:10.1016/j.biotechadv.2016.06.001. PMCID:27269671
  • Wang, Y., L. Yu, R. Wang, Y. Wang, and X. Zhang. 2020. A novel cellulose hydrogel coating with nanoscale Fe0 for Cr(VI) adsorption and reduction. The Science of the Total Environment 726:138625. doi: 10.1016/j.scitotenv.2020.138625.
  • Watanabe, T., N. Kodaira, H. Ikeda, and K. Kurita. 2012. Synthesis and some properties of silylated chitins as key intermediates for chemical modifications. Polymer Bulletin 68 (7):1845–55. doi: 10.1007/s00289-011-0654-1.
  • Wilkins, M. R., W. W. Widmer, K. Grohmann, and R. G. Cameron. 2007. Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresource Technology 98 (8):1596–601. doi: 10.1016/j.biortech.2006.06.022.
  • Witt, T., M. J. Gidley, and R. G. Gilbert. 2010. Starch digestion mechanistic information from the time evolution of molecular Size distributions. Journal of Agricultural and Food Chemistry 58 (14):8444–52. doi: 10.1021/jf101063m.
  • Wu, L., H. Zhou, H. J. Sun, Y. Zhao, X. Yang, S. Z. D. Cheng, and G. Yang. 2013. Thermoresponsive bacterial cellulose whisker/poly(NIPAM-co-BMA) nanogel complexes: Synthesis, characterization, and biological evaluation. Biomacromolecules 14 (4):1078–84. doi: 10.1021/bm3019664.
  • Wu, L., X. Wang, C. Xu, F. Gao, L. Gao, G. Lv, and L. Yin. 2019. Preparation and characterization of high-viscosity montmorillonite. Clays and Clay Minerals 67 (4):306–14. doi: 10.1007/s42860-019-00024-1.
  • Wu, M., X. Zhang, Y. Zhao, C. Yang, S. Jing, Q. Wu, A. Brozena, J. T. Miller, N. J. Libretto, T. Wu, et al. 2022. A high-performance hydroxide exchange membrane enabled by Cu2+-crosslinked chitosan. Nature Nanotechnology 17 (6):629–36. doi: 10.1038/s41565-022-01112-5.
  • Wu, X., H. Sun, Z. Qin, P. Che, X. Yi, Q. Yu, H. Zhang, X. Sun, F. Yao, J. Li, et al. 2020. Fully physically crosslinked pectin-based hydrogel with high stretchability and toughness for biomedical application. International Journal of Biological Macromolecules 149:707–16. doi: 10.1016/j.ijbiomac.2020.01.297.
  • Wu, Y., Z. Fu, D. Yin, Q. Xu, F. Liu, C. Lu, and L. Mao. 2010. Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chemistry 12 (4):696–70. doi: 10.1039/b917807d.
  • Xiao, J., Y. Li, and Q. Huang. 2016. Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends. Trends in Food Science & Technology 55:48–60. doi:10.1016/j.tifs.2016.05.010.
  • Xu, J., D. Sagnelli, M. Faisal, A. Perzon, V. Taresco, M. Mais, C. V. L. Giosafatto, K. H. Hebelstrup, P. Ulvskov, B. Jørgensen, et al. 2021. Amylose/cellulose nanofiber composites for all-natural, fully biodegradable and flexible bioplastics. Carbohydrate Polymers 253:117277. doi: 10.1016/j.carbpol.2020.117277.
  • Yadav, M., P. Goswami, K. Paritosh, M. Kumar, N. Pareek, and V. Vivekanand. 2019. Seafood waste: A source for preparation of commercially employable chitin/chitosan materials. Bioresources and Bioprocessing 6 (1):1–20. doi: 10.1186/s40643-019-0243-y.
  • Yan, L., H. Tao, and P. R. Bangal. 2009. Synthesis and flocculation behavior of cationic cellulose prepared in a NaOH/urea aqueous solution. CLEAN - Soil, Air, Water 37 (1):39–44. doi: 10.1002/clen.200800127.
  • Yan, X., L. Kou, H. Wei, L. Ren, and J. Zhou. 2020. Effect of fatty acid addition on properties of amylose nanoparticles prepared via complexing and precipitation. Industrial Crops and Products 145 (January):112097. doi: 10.1016/j.indcrop.2020.112097.
  • Yan, Z., Y. Pei, J. Fan, S. Wang, and J. Wang. 2013. Selective electrodes for [PF 6] - and [BF 4] - anions based on the associates formed by ionic liquid and cationic dyes. Materials Science & Engineering, C: Materials for Biological Applications 33 (1):356–61. doi: 10.1016/j.msec.2012.08.050.
  • Yang, Z., H. Peng, W. Wang, and T. Liu. 2010. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science 116 (5):2658–67. doi: 10.1002/app.23948.
  • Ye, F., M. Miao, S. W. Cui, B. Jiang, Z. Jin, and X. Li. 2018. Characterisations of oil-in-water Pickering emulsion stabilized hydrophobic phytoglycogen nanoparticles. Food Hydrocolloids 76:78–87. doi: 10.1016/j.foodhyd.2017.05.003.
  • Yoshifuji, A., Y. Noishiki, M. Wada, L. Heux, and S. Kuga. 2006. Esterification of β-chitin via intercalation by carboxylic anhydrides. Biomacromolecules 7 (10):2878–81. doi: 10.1021/bm060516w.
  • Yu, N., H. Peng, L. Qiu, R. Wang, C. Jiang, T. Cai, Y. Sun, Y. Li, and H. Xiong. 2019. New pectin-induced green fabrication of Ag@AgCl/ZnO nanocomposites for visible-light triggered antibacterial activity. International Journal of Biological Macromolecules 141:207–17. doi: 10.1016/j.ijbiomac.2019.08.257.
  • Yue, L., S. Wang, V. Wulf, and I. Willner. 2019. Stiffness-switchable DNA-based constitutional dynamic network hydrogels for self-healing and matrix-guided controlled chemical processes. Nature Communications 10 (1):4774. doi: 10.1038/s41467-019-12697-2.
  • Zarayneh, S., A. A. Sepahi, M. Jonoobi, and H. Rasouli. 2018. Comparative antibacterial effects of cellulose nanofiber, chitosan nanofiber, chitosan/cellulose combination and chitosan alone against bacterial contamination of Iranian banknotes. International Journal of Biological Macromolecules 118 (Pt A):1045–54. doi: 10.1016/j.ijbiomac.2018.06.160.
  • Zeng, J.-B., Y.-S. He, S.-L. Li, and Y.-Z. Wang. 2012. Chitin whiskers: An overview. Biomacromolecules 13 (1):1–11. doi: 10.1021/bm201564a.
  • Zeronian, S. H., and M. K. Inglesby. 1995. Bleaching of cellulose by hydrogen peroxide. Cellulose 2 (4):265–72. doi: 10.1007/BF00811817.
  • Zhang, J., P. Wu, Y. Zhao, S. Xue, X. Zhu, J. Tong, S. Zheng, Y. Chen, X. Shi, H. Deng, et al. 2019. A simple mechanical agitation method to fabricate chitin nanogels directly from chitin solution and subsequent surface modification. Journal of Materials Chemistry B 7 (13):2226–32. doi: 10.1039/c8tb03158d.
  • Zhang, W., J. Song, Q. He, H. Wang, W. Lyu, H. Feng, W. Xiong, W. Guo, J. Wu, L. Chen, et al. 2020. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal. Journal of Hazardous Materials 384 (October 2019):121445. doi: 10.1016/j.jhazmat.2019.121445.
  • Zhang, Z., J. Tan, W. Gu, H. Zhao, J. Zheng, B. Zhang, and G. Ji. 2020. Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chemical Engineering Journal 395 (February):125190. doi: 10.1016/j.cej.2020.125190.
  • Zhao, D., Y. Zhu, W. Cheng, G. Xu, Q. Wang, S. Liu, J. Li, C. Chen, H. Yu, L. Hu, et al. 2020. A dynamic gel with reversible and tunable topological networks and performances. Matter 2 (2):390–403. doi: 10.1016/j.matt.2019.10.020.
  • Zhao, H., G. A. Baker, Z. Song, O. Olubajo, T. Crittle, and D. Peters. 2008. Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chemistry 10 (6):696–70. doi: 10.1039/b801489b.
  • Zhou, S., and G. Huang. 2021. Preparation, structure and activity of polysaccharide phosphate esters. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 144 (August):112332. doi: 10.1016/j.biopha.2021.112332.
  • Zhu, J., Z. Wang, H. Ni, X. Liu, J. Ma, and J. Du. 2016. A long-chain alkylation of dialdehyde starch to improve its thermal stability and hydrophobicity. Journal of Chemistry 2016:1–7. doi: 10.1155/2016/6095023.
  • Ziegler-Borowska, M. 2019. Magnetic nanoparticles coated with aminated starch for HSA immobilization-simple and fast polymer surface functionalization. International Journal of Biological Macromolecules 136:106–14. doi: 10.1016/j.ijbiomac.2019.06.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.