890
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Exogenous stimulation-induced biosynthesis of volatile compounds: Aroma formation of oolong tea at postharvest stage

, , , ORCID Icon, , , & show all

References

  • Austin, A. T., and C. Ballaré. 2014. Plant interactions with other organisms: Molecules, ecology and evolution. The New Phytologist 204 (2):257–60.
  • Backus, E. A., M. S. Serrano, and C. M. Ranger. 2005. Mechanisms of hopperburn: An overview of insect taxonomy, behavior, and physiology. Annual Review of Entomology 50:125–51.
  • Balao, F., J. Herrera, S. Talavera, and S. Dotterl. 2011. Spatial and temporal patterns of floral scent emission in Dianthus inoxianus and electroantennographic responses of its hawkmoth pollinator. Phytochemistry 72 (7):601–9.
  • Baldermann, S., Z. Yang, T. Katsuno, V. A. Tu, N. Mase, Y. Nakamura, and N. Watanabe. 2014. Discrimination of green, oolong, and black teas by GC-MS analysis of characteristic volatile flavor compounds. American Journal of Analytical Chemistry 5 (9):620–32. doi: 10.4236/ajac.2014.59070.
  • Bezerra, R. H. S., L. Sousa-Souto, A. E. G. Santana, and B. G. Ambrogi. 2021. Indirect plant defenses: Volatile organic compounds and extrafloral nectar. Arthropod-Plant Interactions 15 (4):467–89. doi: 10.1007/s11829-021-09837-1.
  • Blande, J. D., M. Korjus, and J. K. Holopainen. 2010. Foliar methyl salicylate emissions indicate prolonged aphid infestation on silver birch and black alder. Tree Physiology 30 (3):404–16.
  • Cai, X. M. 2009. The emission of tea plant volatiles induced by three herbivore insect pests. Chinese Academy of Agricultural Sciences (in Chinese), 22–31.
  • Cai, X. M., X. L. Sun, W. X. Dong, G. C. Wang, and Z. M. Chen. 2014. Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. Chemoecology 24 (1):1–14. doi: 10.1007/s00049-013-0141-2.
  • Chen, C., F. Yu, X. Wen, S. Chen, K. Wang, F. Wang, J. Zhang, Y. Wu, P. He, Y. Tu, et al. 2022. Characterization of a new (Z)-3: (E)-2-hexenal isomerase from tea (Camellia sinensis) involved in the conversion of (Z)-3-hexenal to (E)-2-hexenal. Food Chemistry 383:132463. doi: 10.1016/j.foodchem.2022.132463.
  • Chen, S., L. Zhang, X. Cai, X. Li, L. Bian, Z. Luo, Z. Li, Z. Chen, and Z. Xin. 2020. (E)-Nerolidol is a volatile signal that induces defenses against insects and pathogens in tea plants. Horticulture Research 7 (1):52. doi: 10.1038/s41438-020-0275-7.
  • Chen, Y., X. Fu, X. Mei, Y. Zhou, S. Cheng, L. Zeng, F. Dong, and Z. Yang. 2017. Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves. Journal of Proteomics 157:10–7. doi: 10.1016/j.jprot.2017.01.017.
  • Cho, J. Y., M. Mizutani, B. I. Shimizu, T. Kinoshita, M. Ogura, K. Tokoro, M. L. Lin, and K. Sakata. 2007. Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea “Oriental Beauty. Bioscience, Biotechnology, and Biochemistry 71 (6):1476–86.
  • Muhlemann, J. K., A. Klempien, and N. Dudareva. 2014. Floral volatiles: From biosynthesis to function. Plant, Cell & Environment 37 (8):1936–49. doi: 10.1111/pce.12314.
  • D’Auria, J. C., E. Pichersky, A. Schaub, A. Hansel, and J. Gershenzon. 2007. Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. The Plant Journal: For Cell and Molecular Biology 49 (2):194–207.
  • Degenhardt, D. C., and D. E. Lincoln. 2006. Volatile emissions from an odorous plant in response to herbivory and methyl jasmonate exposure. Journal of Chemical Ecology 32 (4):725–43. doi: 10.1007/s10886-006-9030-2.
  • Dong, F., X. M. Fu, N. Watanabe, X. G. Su, and Z. Y. Yang. 2016. Recent advances in the emission and functions of plant vegetative volatiles. Molecules 21 (2):124. doi: 10.3390/molecules21020124.
  • Dong, F., Z. Yang, S. Baldermann, Y. Sato, T. Asai, and N. Watanabe. 2011. Herbivore-induced volatiles from tea (Camellia sinensis) plants and their involvement in intraplant communication and changes in endogenous nonvolatile metabolites. Journal of Agricultural and Food Chemistry 59 (24):13131–5. doi: 10.1021/jf203396a.
  • Dudareva, N., A. Klempien, J. K. Muhlemann, and I. Kaplan. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. The New Phytologist 198 (1):16–22.
  • Erb, M., N. Veyrat, C. A. M. Robert, H. Xu, M. Frey, J. Ton, and T. C. J. Turlings. 2015. Indole is an essential herbivore-induced volatile priming signal in maize. Nature Communications 6:6273. doi: 10.1038/ncomms7273.
  • Faiz, M. F., P. Hidayat, I. W. Winasa, and D. Guntoro. 2021. Effect of soybean leaf trichomes on the preference of various soybean pests on field. IOP Conference Series: Earth and Environmental Science 694 (1):012046. doi: 10.1088/1755-1315/694/1/012046.
  • Felton, G. W., and J. H. Tumlinson. 2008. Plant-insect dialogs: Complex interactions at the plant-insect interface. Current Opinion in Plant Biology 11 (4):457–63.
  • Feng, Z. H., Y. F. Li, M. Li, Y. J. Wang, L. Zhang, X. C. Wan, and X. G. Yang. 2019. Tea aroma formation from six model manufacturing processes. Food Chemistry 285:347–54.
  • Fineschi, S., and F. Loreto. 2012. Leaf volatile isoprenoids: An important defensive armament in forest tree species. iForest - Biogeosciences and Forestry 5 (1):13–7. doi: 10.3832/ifor0607-009.
  • Foggo, A., S. Higgins, J. J. Wargent, and R. A. Coleman. 2007. Tri-trophic consequences of UV-B exposure: Plants, herbivores and parasitoids. Oecologia 154 (3):505–12.
  • Frost, C. J., M. C. Mescher, C. Dervinis, J. M. Davis, J. E. Carlson, and C. M. De Moraes. 2008. Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. The New Phytologist 180 (3):722–33. doi: 10.1111/j.1469-8137.2008.02599.x.
  • Gaquerel, E., A. Weinhold, and I. Baldwin. 2009. Molecular interactions between the specialist herbivore manduca sexta (Lepidoptera, Sphigidae) and its natural host nicotiana attenuata. VIII. an unbiased GCxGC-ToFMS analysis of the plant’s elicited volatile emissions. Plant Physiology 149 (3):1408–23. doi: 10.1104/pp.108.130799.
  • Gil, M., R. Bottini, M. Pontin, F. J. Berli, M. V. Salomon, and P. Piccoli. 2014. Solar UV-B radiation modifies the proportion of volatile organic compounds in flowers of field-grown grapevine. Plant Growth Regulation 74 (2):193–7. doi: 10.1007/s10725-014-9911-2.
  • Goff, S. A., and H. J. Klee. 2006. Plant volatile compounds: Sensory cues for health and nutritional value? Science (New York, NY) 311 (5762):815–9. doi: 10.1126/science.1112614.
  • Gomi, K., D. Ogawa, S. Katou, H. Kamada, N. Nakajima, H. Saji, T. Soyano, M. Sasabe, Y. Machida, I. Mitsuhara, et al. 2005. A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant & Cell Physiology 46 (12):1902–14. doi: 10.1093/pcp/pci211.
  • Gouinguené, S., H. Alborn, and T. C. J. Turling. 2003. Induction of volatile emissions in Maize by different larval instars of spodoptera littoralis. Journal of Chemical Ecology 29 (1):145–62.
  • Gui, J. D., X. M. Fu, Y. Zhou, T. Katsuno, X. Mei, R. F. Deng, X. L. Xu, L. Y. Zhang, F. Dong, N. Watanabe, et al. 2015. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process? Journal of Agricultural and Food Chemistry 63 (31):6905–14. doi: 10.1021/acs.jafc.5b02741.
  • Guo, X. Y., C. T. Ho, X. C. Wan, H. Zhu, Q. Liu, and Z. Wen. 2021. Changes of volatile compounds and odor profiles in Wuyi rock tea during processing. Food Chemistry 341:128230. doi: 10.1016/j.foodchem.2020.128230.
  • Guo, Y. L. 2012. Oolong tea in China. International Journal of Tea Science (IJTS) 8 (2):23–34.
  • Hampel, D., A., Mosandl, and M. Wüst. 2005. Induction of de novo volatile terpene biosynthesis via cytosolic and plastidial pathways by methyl jasmonate in foliage of Vitis vinifera L. Journal of Agricultural and Food Chemistry 53 (7):2652–7. doi: 10.1021/jf040421q.
  • Hao, P., C. Liu, Y. Wang, R. Chen, M. Tang, B. Du, L. Zhu, and G. He. 2008. Herbivore-induced callose deposition on the sieve plates of rice: An important mechanism for host resistance. Plant Physiology 146 (4):1810–20. doi: 10.1104/pp.107.111484.
  • Ho, C. T., X. Zheng, and S. M. Li. 2015. Tea aroma formation. Food Science and Human Wellness 4 (1):9–27. doi: 10.1016/j.fshw.2015.04.001.
  • Holopainen, J. K, and J. Gershenzon. 2010. Multiple stress factors and the emission of plant VOCs. Trends in Plant Science 15 (3):176–84. doi:10.1016/j.tplants.2010.01.006. PMID: 20144557
  • Howe, G. A., and G. Jander. 2008. Plant immunity to insect herbivores. Annual Review of Plant Biology 59:41–66.
  • Howe, G. A., I. T. Major, and A. J. Koo. 2018. Modularity in jasmonate signaling for multistress resilience. Annual Review of Plant Biology 69:387–415.
  • Hu, C. J., D. Li, Y. X. Ma, W. Zhang, C. Lin, X. Q. Zheng, Y. R. Liang, and J. L. Lu. 2018. Formation mechanism of the oolong tea characteristic aroma during bruising and withering treatment. Food Chemistry 269:202–11.
  • Hua, Y., Y. Wang, L. B. Li, F. D. Li, Y. X. He, J. Q. Wu, and C. L. Wei. 2019. Transcriptomic and phytochemical analyses reveal root-mediated resource-based defense response to leaf herbivory by ectropis oblique in tea plant (Camellia sinensis). Journal of Agricultural and Food Chemistry 67 (19):5465–76.
  • Hui, P. Y. 2007. The research development on the feeding behavior of insects. Journal of Shandong Forestry Science and Technology 6 (5):97–101. (in Chinese).
  • Jang, J., Y. C. Yang, G. H. Zhang, H. Chen, J. L. Lu, Y. Y. Du, J. H. Ye, Q. Ye, D. Borthakur, X. Q. Zheng, et al. 2010. Effect of ultra-violet B on release of volatiles in tea leaf. International Journal of Food Properties 13 (3):608–17. doi: 10.1080/10942910902716976.
  • Jud, W., E. Vanzo, Z. R. Li, A. Ghirardo, I. Zimmer, T. D. Sharkey, A. Hansel, and J. P. Schnitzler. 2016. Effects of heat and drought stress on post-illumination bursts of volatile organic compounds in isoprene-emitting and non-emitting poplar. Plant, Cell & Environment 39 (6):1204–15.
  • Krasensky, J., and C. Jonak. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany 63 (4):1593–608.
  • Kumar, V., Y. Elazari, R. Ovadia, E. Bar, A. Nissim-Levi, N. Carmi, E. Lewinsohn, and M. Oren-Shamir. 2021. Phenylalanine treatment generates scent in flowers by increased production of phenylpropanoid-benzenoid volatiles. Postharvest Biology and Technology 181:111657. doi: 10.1016/j.postharvbio.2021.111657.
  • Leitner, M., W. Boland, and A. Mithofer. 2005. Direct and indirect defences induced by piercing-sucking and chewing herbivores in Medicago truncatula. The New Phytologist 167 (2):597–606.
  • Lin, J., P. Zhang, Z. Q. Pan, H. R. Xu, Y. P. Luo, and X. C. Wang. 2013. Discrimination of oolong tea (Camellia sinensis) varieties based on feature extraction and selection from aromatic profiles analysed by HS-SPME/GC-MS. Food Chemistry 141 (1):259–65. doi: 10.1016/j.foodchem.2013.02.128.
  • Lin, S. Y., L. C. Lo, I. Z. Chen, and P. A. Chen. 2016. Effect of shaking process on correlations between catechins and volatiles in oolong tea. Journal of Food and Drug Analysis 24 (3):500–7.
  • Lin, S. Y., Y. L. Chen, C. L. Lee, C. Y. Cheng, and I. Z. Chen. 2013. Monitoring volatile compound profiles and chemical compositions during the process of manufacturing semi-fermented oolong tea. Journal of Pomology & Horticultural Science 88 (2):159–64.
  • Liu, Y. D., H. L. Jin, K. Y. Yang, C. Y. Kim, B. Baker, and S. Q. Zhang. 2003. Interaction between two mitogen-activated protein kinases during tobacco defense signaling. The Plant Journal: For Cell and Molecular Biology 34 (2):149–60.
  • Lou, Y. G., B. Ma, and J. A. Cheng. 2005. Attraction of the parasitoid anagrus nilaparvatae to rice volatiles induced by the rice brown planthopper Nilaparvata lugens. Journal of Chemical Ecology 31 (10):2357–72.
  • Ma, C., J. Li, W. Chen, W. Wang, D. Qi, S. Pang, and A. Miao. 2018. Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography–mass spectrometry combined with chemometrics. Food Research International (Ottawa, ON) 108:413–22. doi: 10.1016/j.foodres.2018.03.052.
  • Maeda, H., and N. Dudareva. 2012. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology 63 (1):73–105.
  • Maffei, M. E., A. Mithofer, and W. Boland. 2007. Before gene expression: Early events in plant-insect interaction. Trends in Plant Science 12 (7):310–6.
  • Maffei, M. E., A. Mithofer, G. I. Arimura, H. Uchtenhagen, S. Bossi, C. M. Bertea, L. S. Cucuzza, M. Novero, V. Volpe, S. Quadro, et al. 2006. Effects of feeding Spodoptera littoralis on lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide. Plant Physiology 140 (3):1022–35.
  • Maurya, A. K., R. C. Patel, and C. J. Frost. 2020. Acute toxicity of the plant volatile indole depends on herbivore specialization. Journal of Pest Science 93 (3):1107–17. doi: 10.1007/s10340-020-01218-6.
  • Mei, X., X. Liu, Y. Zhou, X. Wang, L. Zeng, X. Fu, J. Li, J. Tang, F. Dong, and Z. Yang. 2017. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda). Food Chemistry 237:356–63. doi: 10.1016/j.foodchem.2017.05.124.
  • Min, S. S., G. K. Dong, and H. L. Sun. 2005. Isolation and characterization of a jasmonic acid carboxyl methyltransferase gene from hot pepper (capsicum annuum L.). Journal of Plant Biology 48 (3):292–7.
  • Mithofer, A., G. Wanner, and W. Boland. 2005. Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiology 137 (3):1160–8. doi: 10.1104/pp.104.054460.
  • Mu, D., L. Cui, J. Ge, M. X. Wang, L. F. Liu, X. P. Yu, Q. H. Zhang, and B. Y. Han. 2012. Behavioral responses for evaluating the attractiveness of specific tea shoot volatiles to the tea green leafhopper, Empoaca vitis. Insect Science 19 (2):229–38. doi: 10.1111/j.1744-7917.2011.01476.x.
  • Nogués, I., and F. Loreto. 2012. Regulation of isoprene and monoterpene emission, 139–53. New York: Springer.
  • Orlova, I., A. Marshall-Colón, J. Schnepp, B. Wood, M. Varbanova, E. Fridman, J. J. Blakeslee, W. A. Peer, A. S. Murphy, D. Rhodes, et al. 2006. Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. The Plant Cell 18 (12):3458–75.
  • Paschold, A., R. Halitschke, and I. T. Baldwin. 2006. Using ‘mute’ plants to translate volatile signals. The Plant Journal 45 (2):275–91. doi: 10.1111/j.1365-313X.2005.02623.x.
  • Picazo-Aragonés, J., A. Terrab, and F. Balao. 2020. Plant volatile organic compounds evolution: Transcriptional regulation, epigenetics and polyploidy. International Journal of Molecular Sciences 21 (23):8956. doi: 10.3390/ijms21238956.
  • Pieterse, C., D. Does, C. Zamioudis, A. Leon-Reyes, and S. Wees. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28 (1):489–521.
  • Pirrello, J., J. Leclercq, F. Dessailly, M. Rio, P. Piyatrakul, K. Kuswanhadi, C. Tang, and P. Montoro. 2014. Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis. BMC Plant Biology 14 (341):341. (2 December 2014). doi: 10.1186/s12870-014-0341-0.
  • Podstolski, A., D. Havkin-Frenkel, J. Malinowski, J. W. Blount, G. Kourteva, and R. A. Dixon. 2002. Unusual 4-hydroxybenzaldehyde synthase activity from tissue cultures of the vanilla orchid Vanilla planifolia. Phytochemistry, 61 (6):611–20.
  • Pulido, P., C. Perello, and M. Rodriguez-Concepcion. 2012. New insights into plant isoprenoid metabolism. Molecular Plant 5 (5):964–7. doi: 10.1093/mp/sss088.
  • Qian, X., X. Q. Xu, K. J. Yu, B. Q. Zhu, Y. B. Lan, C. Q. Duan, and Q. H. Pan. 2016. Varietal dependence of GLVs accumulation and LOX-HPL pathway gene expression in four vitis vinifera wine grapes. International Journal of Molecular Sciences 17 (11):1924. doi: 10.3390/ijms17111924.
  • Qin, Q. J., X. Y. Shi, P. Liang, and X. W. Gao. 2005. Induction of phenylalanine ammonia-lyase and lipoxygenase in cotton seedings by mechanical wounding and aphid infestation. Progress in Natural Science-Materials International 15 (5):419–23.
  • Raguso, R. A. 2016. More lessons from linalool: Insights gained from a ubiquitous floral volatile. Current Opinion in Plant Biology 32:31–6. doi: 10.1016/j.pbi.2016.05.007.
  • Rodriguez-Saona, C., T. M. Poland, J. R. Miller, L. L. Stelinski, G. G. Grant, P. de Groot, L. Buchan, and L. MacDonald. 2006. Behavioral and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian ash, Fraxinus mandshurica. Chemoecology 16 (2):75–86. doi: 10.1007/s00049-005-0329-1.
  • Ruther, J. 2000. Retention index database for identification of general green leaf volatiles in plants by coupled capillary gas chromatography-mass spectrometry. Journal of Chromatography. A 890 (2):313–9. doi: 10.1016/s0021-9673(00)00618-x.
  • Santiago, R., J. Barros-Rios, and R. Malvar. 2013. Impact of cell wall composition on Maize resistance to pests and diseases. International Journal of Molecular Sciences 14 (4):6960–80.
  • Scala, A., S. Allmann, R. Mirabella, M. A. Haring, and R. C. Schuurink. 2013. Green leaf volatiles: A plant’s multifunctional weapon against herbivores and pathogens. International Journal of Molecular Sciences 14 (9):17781–811.
  • Schiest, F. P. 2010. The evolution of floral scent and insect chemical communication. Ecology Letters 13 (5):643–56.
  • Shabala, L., T. Ross, T. McMeekin, and S. Shabala. 2006. Non-invasive microelectrode ion fux measurements to study adaptive response of microorganism to the enviroment. FEMS Microbiology Reviews 30 (3):472–86. doi: 10.1111/j.1574-6976.2006.00019.x.
  • Shabala, S. 2006. Non-invasive microelectrode ion flux measurements in plant stress physiology. Plant Electrophysiology – Theory and Methods:35–71.
  • Shahnejat-Bushehri, S., B. Nobmann, A. D. Allu, and S. Balazadeh. 2016. JUB1 suppresses Pseudomonas syringae-induced defense responses through accumulation of DELLA proteins. Plant Signaling & Behavior 11 (6):e1181245. doi: 10.1080/15592324.2016.1181245.
  • Sugimoto, K., K. Matsui, Y. Iijima, Y. Akakabe, S. Muramoto, R. Ozawa, M. Uefune, R. Sasaki, K. M. Alamgir, S. Akitake, et al. 2014. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proceedings of the National Academy of Sciences 111 (19):7144–9. doi: 10.1073/pnas.1320660111.
  • Sun, H., J. K. Yang, K. Q. Zhang, H. Sun, J. K. Yang, and K. Q. Zhang. 2015. Enzymatic properties and antibacterial activity of chitinase from Chaetomiun sp. YMF1.00843. Journal of Northwest A & F University- Natural Science Edition 45 (5):168–73.
  • Suzuki, T., N. Yamazaki, Y. Sada, I. Oguni, and Y. Moriyasu. 2003. Tissue distribution and intracellular localization of catechins in tea leaves. Bioscience, Biotechnology, and Biochemistry 67 (12):2683–6. doi: 10.1271/bbb.67.2683.
  • Tamogami, S., R. Rakwal, and G. K. Agrawal. 2008. Interplant communication: Airborne methyl jasmonate is essential converted into JA and JA-lle activating jasmonate signaling pathway and VOCs emission. Biochemical and Biophysical Research Communications 376 (4):723–7. doi: 10.1016/j.bbrc.2008.09.069.
  • Tseng, T. S., M. H. Hsiao, P. A. Chen, S. Y. Lin, S. W. Chiu, and D. J. Yao. 2021. Utilization of a gas-sensing system to discriminate smell and to monitor fermentation during the manufacture of oolong tea leaves. Micromachines 12 (1):93. doi: 10.3390/mi12010093.
  • Uemura, T., and G. I. Arimura. 2019. Current opinions about herbivore-associated molecular patterns and plant intracellular signaling. Plant Signaling & Behavior 14 (9):e1633887.
  • Vlot, A. C., P.-P. Liu, R. K. Cameron, S.-W. Park, Y. Yang, D. Kumar, F. Zhou, T. Padukkavidana, C. Gustafsson, E. Pichersky, et al. 2008. Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. The Plant Journal: For Cell and Molecular Biology 56 (3):445–56.
  • Vranová, E., D. Coman, and W. Gruissem. 2013. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annual Review of Plant Biology 64:665–700. doi:10.1146/annurev-arplant-050312-120116. PMID: 23451776
  • Wang, J., L. Tong, X. Y. Ju, and Z. J. Luo. 2021. Progress on the induced defense of tea plants (Camellia sinensis) in response to the attack of tea green leafhopper (Empoasca onukii) and its mechanism. Journal of Fujian Agriculture and Forestry University. Natural Science Edition 50 (2):145–54.
  • Wang, J., N. Zhang, M. Zhao, T. Jing, J. Jin, B. Wu, X. Wan, W. Schwab, and C. Song. 2020. Carotenoid cleavage dioxygenase 4 catalyzes the formation of carotenoid derived volatile β-ionone during tea (Camellia sinensis) withering. Journal of Agricultural and Food Chemistry 68 (6):1684–90. doi: 10.1021/acs.jafc.9b07578.
  • Wang, L. F., J. Y. Lee, J. O. Chung, J. H. Baik, S. So, and S. K. Park. 2008. Discrimination of teas with different degrees of fermentation by SPME-GC analysis of the characteristic volatile flavour compounds. Food Chemistry 109 (1):196–206.
  • Wang, X., G. Zhou, C. Xiang, M. Du, J. Cheng, S. Liu, and Y. Lou. 2008. β-Glucosidase treatment and infestation by the rice brown planthopper Nilaparvata lugens elicit similar signaling pathways in rice plants. Chinese Science Bulletin 53 (1):53–7. doi: 10.1007/s11434-008-0048-4.
  • Watanabe, T., S. Seo, and S. Sakai. 2001. Wound-induced expression of a gene for 1-aminocyclopropane-1-carboxylate synthase and ethylene production are regulated by both reactive oxygen species and jasmonic acid in Cucurbita maxima. Plant Physiology and Biochemistry 39 (2):121–7. doi: 10.1016/S0981-9428(00)01224-9.
  • Wu, J., C. Hettenhausen, S. Meldau, and I. T. Baldwin. 2007. Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of nicotiana attenuata. The Plant Cell 19 (3):1096–122.
  • Yang, Z. Y., S. Baldermannn, and N. Watanabe. 2013. Recent studies of the volatile compounds in tea. Food Research International 2 (53):585–99.
  • Yang, Z.-W., X.-N. Duan, S. Jin, X.-W. Li, Z.-M. Chen, B.-Z. Ren, and X.-L. Sun. 2013. Regurgitant derived from the tea geometrid Ectropis obliqua suppress wound-induced polyphenol oxidases activity in tea plant. Journal of Chemical Ecology 39 (6):744–51. doi: 10.1007/s10886-013-0296-x.
  • You, M. K., S. I. Oh, S. H. Ok, S. K. Cho, H. Y. Shin, J. U. Jeung, and J. S. Shin. 2007. Identification of putative MAPK kinases in Oryza minuta and O-sativa responsive to biotic stresses. Molecules and Cells 23 (1):108–14.
  • Zeng, L. T., N. Watanabe, and Z. Y. Yang. 2019. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition 59 (14):2321–34.
  • Zeng, L. T., X. C. Zhou, X. G. Su, and Z. Y. Yang. 2020. Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends in Food Science & Technology 106:242–53. doi: 10.1016/j.tifs.2020.10.001.
  • Zeng, L. T., Y. Zhou, X. M. Fu, Y. Y. Liao, Y. F. Yuan, Y. X. Jia, F. Dong, and Z. Y. Yang. 2018. Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. Journal of Agricultural and Food Chemistry 66 (15):3899–909.
  • Zeng, L., Y. Q. Fu, J. S. Huang, J. R. Wang, S. Jin, J. F. Yin, and Y. Q. Xu. 2022. Comparative analysis of volatile compounds in Tieguanyin with different types based on HS-SPME-GC-MS. Foods 11 (11):1530. doi: 10.3390/foods11111530.
  • Zeng, L., Y. Zhou, J. Gui, X. Fu, X. Mei, Y. Zhen, T. Ye, B. Du, F. Dong, N. Watanabe, et al. 2016. Formation of volatile tea constituent indole during the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry 64 (24):5011–9.
  • Zhang, L., Q. Q. Cao, D. Granato, Y. Q. Xu, and C. T. Ho. 2020. Association between chemistry and taste of tea: A review. Trends in Food Science & Technology 101:139–49. doi: 10.1016/j.tifs.2020.05.015.
  • Zhang, X., Y. Zhang, Y.-H. Wang, and S.-K. Shen. 2018. Transcriptome analysis of cinnamomum chago: A revelation of candidate genes for abiotic stress response and terpenoid and fatty acid biosyntheses. Frontiers in Genetics 9 (5):505.
  • Zhou, M. L, and J. Memelink. 2016. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnology Advances 34 (4):441–9.
  • Zhou, S. Q, and G. Jander. 2022. Molecular ecology of plant volatiles in interactions with insect herbivores. Journal of Experimental Botany 73 (2):449–62.
  • Zhou, Y., L. T. Zeng, X. L. Hou, Y. Y. Liao, and Z. Y. Yang. 2020. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany 71 (6):2172–85. doi: 10.1093/jxb/erz570.
  • Zhou, Y., L. T. Zeng, X. Y. Liu, J. D. Gui, X. Mei, X. M. Fu, F. Dong, J. C. Tang, L. Y. Zhang, and Z. Y. Yang. 2017. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Food Chemistry 231:78–86.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.