1,190
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Novel perspective on the regulation of food allergy by probiotic: The potential of its structural components

, , , , , , ORCID Icon & show all

References

  • Abdel-Gadir, A., E. Stephen-Victor, G. K. Gerber, M. N. Rivas, S. Wang, H. Harb, L. Wang, N. Li, E. Crestani, S. Spielman, et al. 2019. Microbiota therapy acts via a regulatory T cell MyD88/RORγt pathway to suppress food allergy. Nature Medicine 25 (7):1164–74. doi: 10.1038/s41591-019-0461-z.
  • Acosta, M. P., S. M. Ruzal, and S. M. Cordo. 2016. S-layer proteins from Lactobacillus sp inhibit bacterial infection by blockage of DC-SIGN cell receptor. International Journal of Biological Macromolecules 92:998–1005. doi: 10.1016/j.ijbiomac.2016.07.096.
  • Alessandri, G., M. C. Ossiprandi, J. MacSharry, D. van Sinderen, and M. Ventura. 2019. Bifidobacterial dialogue with its human host and consequent modulation of the immune system. Frontiers in Immunology 10:2348. doi: 10.3389/fimmu.2019.02348.
  • Anvari, S., J. Miller, C. Y. Yeh, and C. M. Davis. 2019. IgE-mediated food allergy. Clinical Reviews in Allergy & Immunology 57 (2):244–60. doi: 10.1007/s12016-018-8710-3.
  • Bao, R., L. A. Hesser, Z. He, X. Zhou, K. C. Nadeau, and C. R. Nagler. 2021. Fecal microbiome and metabolome differ in healthy and food-allergic twins. Journal of Clinical Investigation 131 (2):e141935. doi: 10.1172/JCI141935.
  • Bao, W., Y. Wang, Y. Fu, X. Jia, J. Li, N. Vangan, L. Bao, H. Hao, and Z. Wang. 2015. mTORC1 regulates flagellin-induced inflammatory response in macrophages. PLoS One 10 (5):e0125910. doi: 10.1371/journal.pone.0125910.
  • Bleau, C., A. Monges, K. Rashidan, J. P. Laverdure, M. Lacroix, M. R. Van Calsteren, M. Millette, R. Savard, and L. Lamontagne. 2010. Intermediate chains of exopolysaccharides from Lactobacillus rhamnosus RW-9595M increase IL-10 production by macrophages. Journal of Applied Microbiology 108 (2):666–75. doi: 10.1111/j.1365-2672.2009.04450.x.
  • Bunyavanich, S, and M. C. Berin. 2019. Food allergy and the microbiome: current understandings and future directions. The Journal of Allergy and Clinical Immunology 144 (6):1468–77. doi: 10.1016/j.jaci.2019.10.019.
  • Bunyavanich, S., N. Shen, A. Grishin, R. Wood, W. Burks, P. Dawson, S. M. Jones, D. Y. M. Leung, H. Sampson, S. Sicherer, et al. 2016. Early-life gut microbiome composition and milk allergy resolution. The Journal of Allergy and Clinical Immunology 138 (4):1122–30. doi: 10.1016/j.jaci.2016.03.041.
  • Canani, R. B., R. Nocerino, G. Terrin, A. Coruzzo, L. Cosenza, L. Leone, and R. Troncone. 2012. Effect of Lactobacillus GG on tolerance acquisition in infants with cow’s milk allergy: a randomized trial. The Journal of Allergy and Clinical Immunology 129 (2):580–2. doi: 10.1016/j.jaci.2011.10.004.
  • Canani, R. B., R. Nocerino, G. Terrin, T. Frediani, S. Lucarelli, L. Cosenza, A. Passariello, L. Leone, V. Granata, M. D. Costanzo, et al. 2013. Formula selection for management of children with cow’s milk allergy influences the rate of acquisition of tolerance: a prospective multicenter study. The Journal of Pediatrics 163 (3):771–7. doi: 10.1016/j.jpeds.2013.03.008.
  • Canani, R. B., N. Sangwan, A. T. Stefka, R. Nocerino, L. Paparo, R. Aitoro, A. Calignano, A. A. Khan, J. A. Gilbert, and C. R. Nagler. 2016. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. The ISME Journal 10 (3):742–50. doi: 10.1038/ismej.2015.151.
  • Claes, I. J. J., S. Lebeer, C. Shen, T. L. A. Verhoeven, E. Dilissen, G. De Hertogh, D. M. Bullens, J. L. Ceuppens, G. Van Assche, S. Vermeire, et al. 2010. Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis. Clinical and Experimental Immunology 162 (2):306–14. doi: 10.1111/j.1365-2249.2010.04228.x.
  • Clarke, T. B., K. M. Davis, E. S. Lysenko, A. Y. Zhou, Y. M. Yu, and J. N. Weiser. 2010. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nature Medicine 16 (2):228–31. doi: 10.1038/nm.2087.
  • De Filippis, F., L. Paparo, R. Nocerino, G. Della Gatta, L. Carucci, R. Russo, E. Pasolli, D. Ercolini, and R. B. Canani. 2021. Specific gut microbiome signatures and the associated pro-inflamatory functions are linked to pediatric allergy and acquisition of immune tolerance. Nature Communications 12 (1):5958. doi: 10.1038/s41467-021-26266-z.
  • De Marzi, M. C., M. Todone, M. B. Ganem, Q. Wang, R. A. Mariuzza, M. M. Fernandez, and E. L. Malchiodi. 2015. Peptidoglycan recognition protein-peptidoglycan complexes increase monocyte/macrophage activation and enhance the inflammatory response. Immunology 145 (3):429–42. doi: 10.1111/imm.12460.
  • Durack, J., N. E. Kimes, D. L. Lin, M. Rauch, M. McKean, K. McCauley, A. R. Panzer, J. S. Mar, M. D. Cabana, and S. V. Lynch. 2018. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nature Communications 9 (1):707. doi: 10.1038/s41467-018-03157-4.
  • Dzidic, M., T. R. Abrahamsson, A. Artacho, B. Bjorksten, M. C. Collado, A. Mira, and M. C. Jenmalm. 2017. Aberrant IgA responses to the gut microbiota during infancy precede asthma and allergy development. The Journal of Allergy and Clinical Immunology 139 (3):1017–25. e1014. doi: 10.1016/j.jaci.2016.06.047.
  • Faith, J. J., P. P. Ahern, V. K. Ridaura, J. Y. Cheng, and J. I. Gordon. 2014. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Science Translational Medicine 6 (220):220ra11. doi: 10.1126/scitranslmed.3008051.
  • Fazlollahi, M., Y. Chun, A. Grishin, R. A. Wood, A. W. Burks, P. Dawson, S. M. Jones, D. Y. M. Leung, H. A. Sampson, S. H. Sicherer, et al. 2018. Early-life gut microbiome and egg allergy. Allergy 73 (7):1515–24. doi: 10.1111/all.13389.
  • Feehley, T., C. H. Plunkett, R. Bao, S. M. C. Hong, E. Culleen, P. Belda-Ferre, E. Campbell, R. Aitoro, R. Nocerino, L. Paparo, et al. 2019. Healthy infants harbor intestinal bacteria that protect against food allergy. Nature Medicine 25 (3):448–53. doi: 10.1038/s41591-018-0324-z.
  • Fernandez, E. M., B. Pot, and C. Grangette. 2011. Beneficial effect of probiotics in IBD are peptidogycan and NOD2 the molecular key effectors? Gut Microbes 2 (5):280–6. doi: 10.4161/gmic.2.5.18255.
  • Macho Fernandez, E., E. M. Fernandez, V. Valenti, C. Rockel, C. Hermann, B. Pot, I. G. Boneca, and C. Grangette. 2011. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 60 (8):1050–9. doi: 10.1136/gut.2010.232918.
  • Fu, G., K. Zhao, H. Chen, Y. Wang, L. Nie, H. Wei, and C. Wan. 2019. Effect of 3 lactobacilli on immunoregulation and intestinal microbiota in a beta-lactoglobulin-induced allergic mouse model. Journal of Dairy Science 102 (3):1943–58. doi: 10.3168/jds.2018-15683.
  • Fu, L., M. Xie, C. Wang, Y. Qian, J. Huang, Z. Sun, H. Zhang, and Y. Wang. 2020. Lactobacillus casei Zhang alleviates shrimp tropomyosin-induced food allergy by switching antibody isotypes through the NF-kappa B-dependent immune tolerance. Molecular Nutrition & Food Research 64 (10):1900496. doi: 10.1002/mnfr.201900496.
  • Furusawa, Y., Y. Obata, S. Fukuda, T. A. Endo, G. Nakato, D. Takahashi, Y. Nakanishi, C. Uetake, K. Kato, T. Kato, et al. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504 (7480):446–50. doi: 10.1038/nature12721.
  • Gupta, R. S., C. M. Warren, B. M. Smith, J. Jiang, J. A. Blumenstock, M. M. Davis, R. P. Schleimer, and K. C. Nadeau. 2019. Prevalence and severity of food allergies among US adults. JAMA Network Open 2 (1):e185630. doi: 10.1001/jamanetworkopen.2018.5630.
  • Hamad, A, and W. Burks. 2017. Oral tolerance and allergy. Seminars in Immunology 30:28–35. doi: 10.1016/j.smim.2017.07.001.
  • Han, X., J. W. Krempski, and K. Nadeau. 2020. Advances and novel developments in mechanisms of allergic inflammation. Allergy 75 (12):3100–11. doi: 10.1111/all.14632.
  • Horiuchi, Y., S. Bae, I. Katayama, and K. Nishioka. 2004. Therapeutic effects of streptococcal preparation OK-432 on atopic dermatitis-like lesions in NC/Nga mice: possible shift from a Th2- to Th1-predominance. Journal of Dermatological Science 35 (3):187–97. doi: 10.1016/j.jdermsci.2004.06.006.
  • Horiuchi, Y., S. Bae, I. Katayama, T. Oshikawa, M. Okamoto, and M. Sato. 2006. Lipoteichoic acid-related molecule derived from the streptococcal preparation, OK-432, which suppresses atopic dermatitis-like lesions in NC/Nga mice. Archives of Dermatological Research 298 (4):163–73. doi: 10.1007/s00403-006-0674-0.
  • Hospenthal, M. K., T. R. D. Costa, and G. Waksman. 2017. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nature Reviews. Microbiology 15 (6):365–79. doi: 10.1038/nrmicro.2017.40.
  • Hsiao, K. ‐C., A. ‐L. Ponsonby, S. Ashley, C. Y. Y. Lee, L. Jindal, M. L. K. Tang, P. Loke, C. Axelrad, S. Pitkin, M. Robinson, The PPOIT Study Team, et al. 2022. Longitudinal antibody responses to peanut following probiotic and peanut oral immunotherapy in children with peanut allergy. Clinical & Experimental Allergy 52 (6):735–46. doi: 10.1111/cea.14146.
  • Hsiao, A. L., C. Ponsonby, S. Axelrad, M. L. K. Pitkin, P. S. Tang, and Team, K. C, PPOIT Study Team 2017. Long-term clinical and immunological effects of probiotic and peanut oral immunotherapy after treatment cessation: 4-year follow-up of a randomised, double-blind, placebo-controlled trial. The Lancet. Child & Adolescent Health 1 (2):97–105. doi: 10.1016/S2352-4642(17)30041-X.
  • Iliev, I. D., M. Tohno, D. Kurosaki, T. Shimosato, F. He, M. Hosoda, T. Saito, and H. Kitazawa. 2008. Immunostimulatory oligodeoxynucleotide containing TTTCGTTT motif from Lactobacillus rhamnosus GG DNA potentially suppresses OVA-specific IgE production in mice. Scandinavian Journal of Immunology 67 (4):370–6. doi: 10.1111/j.1365-3083.2008.02080.x.
  • Kant, R., W. M. de Vos, A. Palva, and R. Satokari. 2014. Immunostimulatory CpG motifs in the genomes of gut bacteria and their role in human health and disease. Journal of Medical Microbiology 63 (Pt 2):293–308. doi: 10.1099/jmm.0.064220-0.
  • Kashyap, D. R., M. Kuzma, D. A. Kowalczyk, D. Gupta, and R. Dziarski. 2017. Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism. Molecular Microbiology 105 (5):755–76. doi: 10.1111/mmi.13733.
  • Kashyap, D. R., M. Wang, L. Liu, G. J. Boons, D. Gupta, and R. Dziarski. 2011. Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nature Medicine 17 (6):676–83. doi: 10.1038/nm.2357.
  • Kim, E. H., J. H. Kim, R. Samivel, J. S. Bae, Y. J. Chung, P. S. Chung, S. E. Lee, and J. H. Mo. 2016. Intralymphatic treatment of flagellin-ovalbumin mixture reduced allergic inflammation in murine model of allergic rhinitis. Allergy 71 (5):629–39. doi: 10.1111/all.12839.
  • Kim, H., B. J. Jung, J. H. Jung, J. Y. Kim, S. K. Chung, and D. K. Chung. 2012. Lactobacillus plantarum lipoteichoic acid alleviates TNF-alpha-induced inflammation in the HT-29 intestinal epithelial cell line. Molecules and Cells 33 (5):479–86. doi: 10.1007/s10059-012-2266-5.
  • Kim, Y., Y. D. Lee, M. Kim, H. Kim, and D. K. Chung. 2019. Combination treatment with lipoteichoic acids isolated from Lactobacillus plantarum and Staphylococcus aureus alleviates atopic dermatitis via upregulation of CD55 and CD59. Immunology Letters 214:23–9. doi: 10.1016/j.imlet.2019.08.005.
  • Kim, Y., J. Y. Park, H. Kim, and D. K. Chung. 2020. Differential role of lipoteichoic acids isolated from Staphylococcus aureus and Lactobacillus plantarum on the aggravation and alleviation of atopic dermatitis. Microbial Pathogenesis 147:104360. doi: 10.1016/j.micpath.2020.104360.
  • Kirjavainen, P. V., S. J. Salminen, and E. Isolauri. 2003. Probiotic bacteria in the management of atopic disease: underscoring the importance of viability. Journal of Pediatric Gastroenterology and Nutrition 36 (2):223–7. doi: 10.1097/00005176-200302000-00012.
  • Kitzmuller, C., J. Kalser, S. Mutschlechner, M. Hauser, G. J. Zlabinger, F. Ferreira, and B. Bohle. 2018. Fusion proteins of flagellin and the major birch pollen allergen Bet v 1 show enhanced immunogenicity, reduced allergenicity, and intrinsic adjuvanticity. The Journal of Allergy and Clinical Immunology 141 (1):293–9.e6. doi: 10.1016/j.jaci.2017.02.044.
  • Kofoed, E. M, and R. E. Vance. 2011. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477 (7366):592–5. doi: 10.1038/nature10394.
  • Konstantinov, S. R., H. Smidt, W. M. de Vos, S. C. M. Bruijns, S. K. Singh, F. Valence, D. Molle, S. Lortal, E. Altermann, T. R. Klaenhammer, et al. 2008. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proceedings of the National Academy of Sciences of the United States of America 105 (49):19474–9. doi: 10.1073/pnas.0810305105.
  • Lebeer, S., I. Claes, H. L. P. Tytgat, T. L. A. Verhoeven, E. Marien, I. von Ossowski, J. Reunanen, A. Palva, W. M. Vos, S. C. Keersmaecker, et al. 2012. Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Applied and Environmental Microbiology 78 (1):185–93. doi: 10.1128/Aem.06192-11.
  • Lebeer, S., I. J. J. Claes, and J. Vanderleyden. 2012. Anti-inflammatory potential of probiotics: lipoteichoic acid makes a difference. Trends in Microbiology 20 (1):5–10. doi: 10.1016/j.tim.2011.09.004.
  • Lee, S. E., Y. I. Koh, M. K. Kim, Y. R. Kim, S. Y. Kim, J. H. Nam, Y. D. Choi, S. J. Bae, Y. J. Ko, H. J. Ryu, et al. 2008. Inhibition of airway allergic disease by co-administration of flagellin with allergen. Journal of Clinical Immunology 28 (2):157–65. doi: 10.1007/s10875-007-9138-3.
  • Li, D., A. Li, X. Ji, L. Yao, X. Gao, and X. Qi. 2014. Effect of whole peptidoglycan from lactobacilli on the imbalance of Th1/Th2 and Treg/Th17 in lymphocyte of bovine β-Lactoglobulin-sensitized mice in vitro. Microbiology China 41:1334–41.
  • Li, A. L., X. C. Meng, C. C. Duan, G. C. Huo, Q. L. Zheng, and D. Li. 2013. Suppressive effects of oral administration of heat-killed Lactobacillus acidophilus on T helper-17 immune responses in a bovine beta-lactoglobulin-sensitized mice model. Biological and Pharmaceutical Bulletin 36 (2):202–7. doi: 10.1248/bpb.b12-00437.
  • Li, N., Y. Yu, X. Chen, S. Gao, Q. Zhang, and C. Xu. 2020. Bifidobacterium breve M-16V alters the gut microbiota to alleviate OVA-induced food allergy through IL-33/ST2 signal pathway. Journal of Cellular Physiology 235 (12):9464–73. doi: 10.1002/jcp.29751.
  • Liu, E. G., X. Yin, A. Swaminathan, and S. C. Eisenbarth. 2020. Antigen-presenting cells in food tolerance and allergy. Frontiers in Immunology 11:616020. doi: 10.3389/fimmu.2020.616020.
  • Liu, H., J. Wang, T. He, S. Becker, G. Zhang, D. Li, and X. Ma. 2018. Butyrate: a double-edged sword for health? Advances in Nutrition (Bethesda, Md.) 9 (1):21–9. doi: 10.1093/advances/nmx009.
  • Liu, Q., Z. Yu, F. Tian, J. Zhao, H. Zhang, Q. Zhai, and W. Chen. 2020. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microbial Cell Factories 19 (1):23. doi: 10.1186/s12934-020-1289-4.
  • Lu, W., L. Qian, Z. Fang, H. Wang, J. Zhu, Y. K. Lee, J. Zhao, H. Zhang, and W. Chen. 2022. Probiotic strains alleviated OVA-induced food allergy in mice by regulating the gut microbiota and improving the level of indoleacrylic acid in fecal samples. Food & Function 13 (6):3704–19. doi: 10.1039/d1fo03520g.
  • Luo, M., M. Gan, X. Yu, X. Wu, and F. Xu. 2020. Study on the regulatory effects and mechanisms of action of bifidobacterial exopolysaccharides on anaphylaxes in mice. International Journal of Biological Macromolecules 165 (Pt A):1447–54. doi: 10.1016/j.ijbiomac.2020.09.224.
  • Luo, X. Q., J. Liu, L. H. Mo, G. Yang, F. Ma, Y. Ning, P. C. Yang, and D. B. Liu. 2021. Flagellin alleviates airway allergic response by stabilizing eosinophils through modulating oxidative stress. Journal of Innate Immunity 13 (6):333–44. doi: 10.1159/000515463.
  • Lv, X., Q. Chang, Q. Wang, Q. R. Jin, H. Z. Liu, S. B. Yang, P. C. Yang, and G. Yang. 2022. Flagellin maintains eosinophils in the intestine. Cytokine 150:155769. doi: 10.1016/j.cyto.2021.155769.
  • Maeda, K., M. J. Caldez, and S. Akira. 2019. Innate immunity in allergy. Allergy 74 (9):1660–74. doi: 10.1111/all.13788.
  • Matsui, K, and A. Nishikawa. 2002. Lipoteichoic acid from Staphylococcus aureus induces Th2-prone dermatitis in mice sensitized percutaneously with an allergen. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 32 (5):783–8. doi: 10.1046/j.1365-2222.2002.01357.x.
  • Matsui, K, and A. Nishikawa. 2003. Lipoteichoic acid from Staphylococcus aureus enhances allergen-specific immunoglobulin E production in mice. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 33 (6):842–8. doi: 10.1046/j.1365-2222.2003.01666.x.
  • Mayorga, C., F. Palomares, J. A. Canas, N. Perez-Sanchez, R. Nunez, M. J. Torres, and F. Gomez. 2021. New insights in therapy for food allergy. Foods 10 (5):1037. doi: 10.3390/foods10051037.
  • Meng, J., X. Zhu, S. M. Gao, Q. X. Zhang, Z. Sun, and R. R. Lu. 2014. Characterization of surface layer proteins and its role in probiotic properties of three Lactobacillus strains. International Journal of Biological Macromolecules 65:110–4. doi: 10.1016/j.ijbiomac.2014.01.024.
  • Mizuno, H., L. Arce, K. Tomotsune, L. Albarracin, R. Funabashi, D. Vera, M. A. Islam, M. G. Vizoso-Pinto, H. Takahashi, Y. Sasaki, et al. 2020. Lipoteichoic acid is involved in the ability of the immunobiotic strain Lactobacillus plantarum CRL1506 to modulate the intestinal antiviral innate immunity triggered by TLR3 activation. Frontiers in Immunology 11:571. doi: 10.3389/fimmu.2020.00571.
  • Mohamadzadeh, M., E. A. Pfeiler, J. B. Brown, M. Zadeh, M. Gramarossa, E. Managlia, P. Bere, B. Sarraj, M. W. Khan, K. C. Pakanati, et al. 2011. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proceedings of the National Academy of Sciences 108 (supplement_1):4623–30. doi: 10.1073/pnas.1005066107.
  • Montamat, G., C. Leonard, A. Poli, L. Klimek, and M. Ollert. 2021. CpG adjuvant in allergen-apecific immunotherapy: finding the sweet spot for the induction of immune tolerance. Frontiers in Immunology 12:590054. doi: 10.3389/fimmu.2021.590054.
  • Motherway, M. O., A. Houston, G. O’Callaghan, J. Reunanen, F. O’Brien, T. O’Driscoll, P. G. Casey, W. M. de Vos, D. van Sinderen, and F. Shanahan. 2019. A bifidobacterial pilus-associated protein promotes colonic epithelial proliferation. Molecular Microbiology 111 (1):287–301. doi: 10.1111/mmi.14155.
  • Nie, Y., F. Luo, and Q. L. Lin. 2018. Dietary nutrition and gut microflora: a promising target for treating diseases. Trends in Food Science & Technology 75:72–80. doi: 10.1016/j.tifs.2018.03.002.
  • Noah, T. K., K. A. Knoop, K. G. McDonald, J. K. Gustafsson, L. Waggoner, S. Vanoni, M. Batie, K. Arora, A. P. Naren, Y. H. Wang, et al. 2019. IL-13-induced intestinal secretory epithelial cell antigen passages are required for IgE-mediated food-induced anaphylaxis. The Journal of Allergy and Clinical Immunology 144 (4):1058–73.e3. doi: 10.1016/j.jaci.2019.04.030.
  • Noh, S. Y., S. S. Kang, C. H. Yun, and S. H. Han. 2015. Lipoteichoic acid from Lactobacillus plantarum inhibits Pam2CSK4-induced IL-8 production in human intestinal epithelial cells. Molecular Immunology 64 (1):183–9. doi: 10.1016/j.molimm.2014.11.014.
  • Pohar, J., C. Yamamoto, R. Fukui, M. M. Cajnko, K. Miyake, R. Jerala, and M. Bencina. 2017. Selectivity of human TLR9 for double CpG motifs and implications for the recognition of genomic DNA. Journal of Immunology (Baltimore, Md.: 1950) 198 (5):2093–104. doi: 10.4049/jimmunol.1600757.
  • Pourjafar, H., F. Ansari, A. Sadeghi, S. A. Samakkhah, and S. M. Jafari. 2022. Functional and health-promoting properties of probiotics’ exopolysaccharides; isolation, characterization, and applications in the food industry. Critical Reviews in Food Science and Nutrition 1–32. doi: 10.1080/10408398.2022.2047883.
  • Psallidas, I., V. Backer, P. Kuna, R. Palmer, S. Necander, M. Aurell, K. Korsback, Z. Taib, M. Hashemi, P. Gustafson, et al. 2021. A phase 2a, double-blind, placebo-controlled randomized trial of inhaled TLR9 agonist AZD1419 in asthma. American Journal of Respiratory and Critical Care Medicine 203 (3):296–306. doi: 10.1164/rccm.202001-0133OC.
  • Rad, A. H., L. A. Maleki, H. S. Kafil, and A. Abbasi. 2021. Postbiotics: a novel strategy in food allergy treatment. Critical Reviews in Food Science and Nutrition 61 (3):492–9. doi: 10.1080/10408398.2020.1738333.
  • Rajoka, M. S. R., Y. Wu, H. M. Mehwish, M. Bansal, and L. Zhao. 2020. Lactobacillus exopolysaccharides: new perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health. Trends in Food Science & Technology 103:36–48. doi: 10.1016/j.tifs.2020.06.003.
  • Ren, Q., Y. Tang, L. Zhang, Y. Xu, N. Liu, and H. Ren. 2020. Exopolysaccharide produced by Lactobacillus casei promotes the differentiation of CD4(+) T Cells into Th17 cells in BALB/c mouse peyer’s patches in vivo and in vitro. Journal of Agricultural and Food Chemistry 68 (9):2664–72. doi: 10.1021/acs.jafc.9b07987.
  • Renz, H, and C. Skevaki. 2021. Early life microbial exposures and allergy risks: opportunities for prevention. Nature Reviews. Immunology 21 (3):177–91. doi: 10.1038/s41577-020-00420-y.
  • Sabahi, S., A. Homayouni Rad, L. Aghebati-Maleki, N. Sangtarash, M. A. Ozma, A. Karimi, H. Hosseini, and A. Abbasi. 2022. Postbiotics as the new frontier in food and pharmaceutical research. Critical Reviews in Food Science and Nutrition :1–28. doi:10.1080/10408398.2022.2056727. PMID: 35348016
  • Sabatel, C., C. Radermecker, L. Fievez, G. Paulissen, S. Chakarov, C. Fernandes, S. Olivier, M. Toussaint, D. Pirottin, X. Xiao, et al. 2017. Exposure to bacterial CpG DNA protects from airway allergic inflammation by expanding regulatory lung interstitial macrophages. Immunity 46 (3):457–73. doi: 10.1016/j.immuni.2017.02.016.
  • Salminen, S., M. C. Collado, A. Endo, C. Hill, S. Lebeer, E. M. M. Quigley, M. E. Sanders, R. Shamir, J. R. Swann, H. Szajewska, et al. 2021. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews. Gastroenterology & Hepatology 18 (9):649–67. doi: 10.1038/s41575-021-00440-6.
  • Sampath, V., E. M. Abrams, B. Adlou, C. Akdis, M. Akdis, H. A. Brough, S. Chan, P. Chatchatee, R. S. Chinthrajah, R. R. Cocco, et al. 2021. Food allergy across the globe. The Journal of Allergy and Clinical Immunology 148 (6):1347–64. doi: 10.1016/j.jaci.2021.10.018.
  • Sampson, H. A., L. O’Mahony, A. W. Burks, M. Plaut, G. Lack, and C. A. Akdis. 2018. Mechanisms of food allergy. The Journal of Allergy and Clinical Immunology 141 (1):11–9. doi: 10.1016/j.jaci.2017.11.005.
  • Schiavi, E., M. Gleinser, E. Molloy, D. Groeger, R. Frei, R. Ferstl, N. Rodriguez-Perez, M. Ziegler, R. Grant, T. F. Moriarty, et al. 2016. The surface-associated exopolysaccharide of bifidobacterium longum 35624 plays an essential role in dampening host proinflammatory responses and repressing local T(H)17 responses. Applied and Environmental Microbiology 82 (24):7185–96. doi: 10.1128/Aem.02238-16.
  • Schiavi, E., S. Plattner, N. Rodriguez-Perez, W. Barcik, R. Frei, R. Ferstl, M. Kurnik-Lucka, D. Groeger, R. Grant, J. Roper, et al. 2018. Exopolysaccharide from Bifidobacterium longum subsp longum 35624 (TM) modulates murine allergic airway responses. Beneficial Microbes 9 (5):761–73. doi: 10.3920/Bm2017.0180.
  • Schlee, M., J. Wehkamp, A. Altenhoefer, T. A. Oelschlaeger, E. F. Stange, and K. Fellermann. 2007. Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infection and Immunity 75 (5):2399–407. doi: 10.1128/iai.01563-06.
  • Schulke, S., M. Burggraf, Z. Waibler, A. Wangorsch, S. Wolfheimer, U. Kalinke, S. Vieths, M. Toda, and S. Scheurer. 2011. A fusion protein of flagellin and ovalbumin suppresses the T(H)2 response and prevents murine intestinal allergy. The Journal of Allergy and Clinical Immunology 128 (6):1340–8.e12. doi: 10.1016/j.jaci.2011.07.036.
  • Schwarzer, M., P. Hermanova, D. Srutkova, J. Golias, T. Hudcovic, C. Zwicker, M. Sinkora, J. Akgün, U. Wiedermann, L. Tuckova, et al. 2019. Germ-free mice exhibit mast cells with impaired functionality and gut homing and do not develop food allergy. Frontiers in Immunology 10:205. doi: 10.3389/fimmu.2019.00205.
  • Sestito, S., E. D’Auria, M. E. Baldassarre, S. Salvatore, V. Tallarico, E. Stefanelli, F. Tarsitano, D. Concolino, and L. Pensabene. 2020. The role of prebiotics and probiotics in prevention of allergic diseases in infants. Frontiers in Pediatrics 8:583946. doi: 10.3389/fped.2020.583946.
  • Sharma, V., I. von Ossowski, and V. Krishnan. 2021. Exploiting pilus-mediated bacteria-host interactions for health benefits. Molecular Aspects of Medicine 81:100998. doi: 10.1016/j.mam.2021.100998.
  • Shim, J. U., S. E. Lee, W. Hwang, C. Lee, J. W. Park, J. H. Sohn, J. H. Nam, Y. Kim, J. H. Rhee, S. H. Im, et al. 2016. Flagellin suppresses experimental asthma by generating regulatory dendritic cells and T cells. The Journal of Allergy and Clinical Immunology 137 (2):426–35. doi: 10.1016/j.jaci.2015.07.010.
  • Sicherer, S. H, and H. A. Sampson. 2014. Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. The Journal of Allergy and Clinical Immunology 133 (2):291–307. doi: 10.1016/j.jaci.2013.11.020.
  • Sicherer, S. H, and H. A. Sampson. 2018. Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. The Journal of Allergy and Clinical Immunology 141 (1):41–58. doi: 10.1016/j.jaci.2017.11.003.
  • Song, W. S., Y. J. Jeon, B. Namgung, M. Hong, and S. I. Yoon. 2017. A conserved TLR5 binding and activation hot spot on flagellin. Scientific Reports 7:40878. doi: 10.1038/srep40878.
  • Stefka, A. T., T. Feehley, P. Tripathi, J. Qiu, K. McCoy, S. K. Mazmanian, M. Y. Tjota, G. Y. Seo, S. Cao, B. R. Theriault, et al. 2014. Commensal bacteria protect against food allergen sensitization. Proceedings of the National Academy of Sciences of the United States of America 111 (36):13145–50. doi: 10.1073/pnas.1412008111.
  • Stephen-Victor, E., E. Crestani, and T. A. Chatila. 2020. Dietary and microbial determinants in food allergy. Immunity 53 (2):277–89. doi: 10.1016/j.immuni.2020.07.025.
  • Swartzendruber, J. A., R. W. Incrocci, S. A. Wolf, A. Jung, and K. L. Knight. 2019. Bacillus subtilis exopolysaccharide prevents allergic eosinophilia. Allergy 74 (4):819–21. doi: 10.1111/all.13674.
  • Takahashi, N., H. Kitazawa, N. Iwabuchi, J. Z. Xiao, K. Miyaji, K. Iwatsuki, and T. Saito. 2006. Oral administration of an immunostimulatory DNA sequence from Bifidobacterium longum improves Th1/Th2 balance in a murine model. Bioscience, Biotechnology, and Biochemistry 70 (8):2013–7. doi: 10.1271/bbb.60260.
  • Takahashi, N., H. Kitazawa, T. Shimosato, N. Iwabuchi, J. Z. Xiao, K. Iwatsuki, S. Kokubo, and T. Saito. 2006. An immunostimulatory DNA sequence from a probiotic strain of Bifidobacterium longum inhibits IgE production in vitro. FEMS Immunology and Medical Microbiology 46 (3):461–9. doi: 10.1111/j.1574-695X.2006.00064.x.
  • Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11 (4):443–51. doi: 10.1016/S1074-7613(00)80119-3.
  • Tan, J., C. McKenzie, P. J. Vuillermin, G. Goverse, C. G. Vinuesa, R. E. Mebius, L. Macia, and C. R. Mackay. 2016. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Reports 15 (12):2809–24. doi: 10.1016/j.celrep.2016.05.047.
  • Tan, W., J. H. Zheng, T. M. N. Duong, Y. I. Koh, S. E. Lee, and J. H. Rhee. 2019. A fusion protein of Derp2 allergen and flagellin suppresses experimental allergic asthma. Allergy, Asthma & Immunology Research 11 (2):254–66. doi: 10.4168/aair.2019.11.2.254.
  • Tang, M. L. K., A. L. Ponsonby, F. Orsini, D. Tey, M. Robinson, E. L. Su, P. Licciardi, W. Burks, and S. Donath. 2015. Administration of a probiotic with peanut oral immunotherapy: a randomized trial. Journal of Allergy and Clinical Immunology 135 (3):737–44. e738. doi: 10.1016/j.jaci.2014.11.034.
  • Tang, R., Z. X. Wang, C. M. Ji, P. S. C. Leung, E. Woo, C. Chang, M. Wang, B. Liu, J. F. Wei, and J. L. Sun. 2019. Regional differences in food allergies. Clinical Reviews in Allergy & Immunology 57 (1):98–110. doi: 10.1007/s12016-018-8725-9.
  • Taylor, R. C., P. Richmond, and J. W. Upham. 2006. Toll-like receptor 2 ligands inhibit TH2 responses to mite allergen. Journal of Allergy and Clinical Immunology 117 (5):1148–54. doi: 10.1016/j.jaci.2006.02.014.
  • Thio, C. L. P., A. C. P. Lai, P. Y. Chi, G. Webster, and Y. J. Chang. 2019. Toll-like receptor 9-dependent interferon production prevents group 2 innate lymphoid cell-driven airway hyperreactivity. The Journal of Allergy and Clinical Immunology 144 (3):682–97. doi: 10.1016/j.jaci.2019.03.008.
  • Tobita, K., H. Yanaka, and H. Otani. 2009. Heat-treated Lactobacillus crispatus KT strains reduce allergic symptoms in mice. Journal of Agricultural and Food Chemistry 57 (12):5586–90. doi: 10.1021/jf900703q.
  • Tordesillas, L, and M. C. Berin. 2018. Mechanisms of oral tolerance. Clinical Reviews in Allergy & Immunology 55 (2):107–17. doi: 10.1007/s12016-018-8680-5.
  • Tordesillas, L., M. C. Berin, and H. A. Sampson. 2017. Immunology of food allergy. Immunity 47 (1):32–50. doi: 10.1016/j.immuni.2017.07.004.
  • Turroni, F., F. Serafini, E. Foroni, S. Duranti, M. O. Motherway, V. Taverniti, M. Mangifesta, C. Milani, A. Viappiani, T. Roversi, et al. 2013. Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions. Proceedings of the National Academy of Sciences of the United States of America 110 (27):11151–6. doi: 10.1073/pnas.1303897110.
  • Van Maele, L., C. Carnoy, D. Cayet, S. Ivanov, R. Porte, E. Deruy, J. A. Chabalgoity, J. C. Renauld, G. Eberl, A. G. Benecke, et al. 2014. Activation of type 3 innate lymphoid cells and interleukin 22 secretion in the lungs during streptococcus pneumoniae infection. The Journal of Infectious Diseases 210 (3):493–503. doi: 10.1093/infdis/jiu106.
  • Vijayan, A., M. Rumbo, C. Carnoy, and J. C. Sirard. 2018. Compartmentalized antimicrobial defenses in response to flagellin. Trends in Microbiology 26 (5):423–35. doi: 10.1016/j.tim.2017.10.008.
  • Wang, F., Y. Li, C. Yang, Y. Mu, Y. Wang, W. Zhang, Y. Yang, C. Chen, S. Song, Z. Shen, et al. 2019. Mannan-binding lectin suppresses peptidoglycan-induced TLR2 activation and inflammatory responses. Mediators of Inflammation 2019:1349784. doi: 10.1155/2019/1349784.
  • Wang, J., L. Qi, L. Mei, Z. Wu, and H. Wang. 2016. C. butyricum lipoteichoic acid inhibits the inflammatory response and apoptosis in HT-29 cells induced by S. aureus lipoteichoic acid. International Journal of Biological Macromolecules 88:81–7. doi: 10.1016/j.ijbiomac.2016.03.054.
  • Wang, S., S. Ahmadi, R. Nagpal, S. Jain, S. P. Mishra, K. Kavanagh, X. Zhu, Z. Wang, D. A. McClain, S. B. Kritchevsky, et al. 2020. Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: from C. elegans to mice. GeroScience 42 (1):333–52. doi: 10.1007/s11357-019-00137-4.
  • Wang, Z., J. Zhong, X. Meng, J. Gao, H. Li, J. Sun, X. Li, and H. Chen. 2021. The gut microbiome-immune axis as a target for nutrition-mediated modulation of food allergy. Trends in Food Science & Technology 114:116–32. doi: 10.1016/j.tifs.2021.05.021.
  • Wolf, A. J, and D. M. Underhill. 2018. Peptidoglycan recognition by the innate immune system. Nature Reviews. Immunology 18 (4):243–54. doi: 10.1038/nri.2017.136.
  • Xu, Y., H. Dong, C. Ge, Y. Gao, H. Liu, W. Li, and C. Zhang. 2016. CBLB502 administration protects gut mucosal tissue in ulcerative colitis by inhibiting inflammation. Annals of Translational Medicine 4 (16):301– doi: 10.21037/atm.2016.08.25.
  • Yang, J., H. Kuang, N. Li, A. M. Hamdy, and J. Song. 2022. The modulation and mechanism of probiotic-derived polysaccharide capsules on the immune response in allergic diseases. Critical Reviews in Food Science and Nutrition :1–13. doi:10.1080/10408398.2022.2062294. PMID: 35400262
  • Yang, T., C. Li, W. Xue, L. Huang, and Z. Wang. 2021. Natural immunomodulating substances used for alleviating food allergy. Critical Reviews in Food Science and Nutrition :1–19. doi:10.1080/10408398.2021.1975257. PMID: 34494479
  • Yang, X., H. Wang, D. Zhao, J. Wang, X. Liu, X. Yuan, M. Zhang, G. Li, P. Ran, P. Yang, et al. 2020. Dust mite-derived Enterobacterial fimbriae H protein enforces the allergen specific immunotherapy in asthma mice. Allergologia et Immunopathologia 48 (6):654–65. doi: 10.1016/j.aller.2020.03.012.
  • Yin, M., X. Yan, W. Weng, Y. Yang, R. Gao, M. Liu, C. Pan, Q. Zhu, H. Li, Q. Wei, et al. 2018. Micro integral membrane protein (MIMP), a newly discovered anti-inflammatory protein of Lactobacillus plantarum, enhances the gut barrier and modulates microbiota and inflammatory cytokines. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 45 (2):474–90. doi: 10.1159/000487027.
  • Yoshioka, M., N. Fukuishi, S. Iriguchi, K. Ohsaki, H. Yamanobe, A. Inukai, D. Kurihara, N. Imajo, Y. Yasui, N. Matsui, et al. 2007. Lipoteichoic acid downregulates FC epsilon RI expression on human mast cells through Toll-like receptor 2. The Journal of Allergy and Clinical Immunology 120 (2):452–61. doi: 10.1016/j.jaci.2007.03.027.
  • Yu, R., F. Zuo, H. Ma, and S. Chen. 2019. Exopolysaccharide-producing Bifidobacterium adolescentis strains with similar adhesion property induce differential regulation of inflammatory immune response in Treg/Th17 axis of DSS-colitis mice. Nutrients 11 (4):782. doi: 10.3390/nu11040782.
  • Yu, W., D. M. H. Freeland, and K. C. Nadeau. 2016. Food allergy: immune mechanisms, diagnosis and immunotherapy. Nature Reviews. Immunology 16 (12):751–65. doi: 10.1038/nri.2016.111.
  • Zhang, M., X. Hao, T. Aziz, J. Zhang, and Z. Yang. 2020. Exopolysaccharides from Lactobacillus plantarum YW11 improve immune response and ameliorate inflammatory bowel disease symptoms. Acta Biochimica Polonica 67 (4):485–93. doi: 10.18388/abp.2020_5171.
  • Zhang, Y., X. Shi, S. Hao, Q. Lu, L. Zhang, X. Han, and W. Lu. 2018. Inhibition of Shigella sonnei-induced epithelial barrier disruption by surface-layer associated proteins of lactobacilli from Chinese fermented food. Journal of Dairy Science 101 (3):1834–42. doi: 10.3168/jds.2017-13417.
  • Zhong, Y., J. Huang, W. Tang, B. Chen, and W. Cai. 2012. Effects of probiotics, probiotic DNA and the CpG oligodeoxynucleotides on ovalbumin-sensitized Brown-Norway rats via TLR9/NF-kappa B pathway. FEMS Immunology and Medical Microbiology 66 (1):71–82. doi: 10.1111/j.1574-695X.2012.00991.x.
  • Zhou, J, and G. M. Deng. 2021. The role of bacterial DNA containing CpG motifs in diseases. Journal of Leukocyte Biology 109 (5):991–8. doi: 10.1002/Jlb.3mr1220-748rrrrr.
  • Zhou, X., D. Zhang, W. Qi, T. Hong, T. Xiong, T. Wu, F. Geng, M. Xie, and S. Nie. 2021. Exopolysaccharides from Lactobacillus plantarum NCU116 facilitate intestinal homeostasis by modulating intestinal epithelial regeneration and microbiota. Journal of Agricultural and Food Chemistry 69 (28):7863–73. doi: 10.1021/acs.jafc.1c01898.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.