1,885
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Polysaccharide-based nano-delivery systems for encapsulation, delivery, and pH-responsive release of bioactive ingredients

, , , ORCID Icon, , & ORCID Icon show all

References

  • Aftab, N, and A. Vieira. 2010. Antioxidant activities of curcumin and combinations of this curcuminoid with other phytochemicals. Phytotherapy Research 24 (4):500–2. doi: 10.1002/ptr.2960.
  • Aguero, L., D. Zaldivar-Silva, L. Pena, and M. L. Dias. 2017. Alginate microparticles as oral colon drug delivery device: A review. Carbohydrate Polymers 168:32–43. doi: 10.1016/j.carbpol.2017.03.033.
  • Alishahi, A., A. Mirvaghefi, M. R. Tehrani, H. Farahmand, S. A. Shojaosadati, F. A. Dorkoosh, and M. Z. Elsabee. 2011. Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chemistry 126 (3):935–40. doi: 10.1016/j.foodchem.2010.11.086.
  • Alkanawati, M. S., R. da Costa Marques, V. Mailander, K. Landfester, and H. Therien-Aubin. 2020. Polysaccharide-Based pH-Responsive Nanocapsules Prepared with Bio-Orthogonal Chemistry and Their Use as Responsive Delivery Systems. Biomacromolecules 21 (7):2764–71. doi: 10.1021/acs.biomac.0c00492.
  • Alkhader, E., N. Billa, and C. J. Roberts. 2017. Mucoadhesive Chitosan-Pectinate Nanoparticles for the Delivery of Curcumin to the Colon. AAPS PharmSciTech 18 (4):1009–18. doi: 10.1208/s12249-016-0623-y.
  • Almetwally, A. A., M. El-Sakhawy, M. H. Elshakankery, and M. H. Kasem. 2017. Technology of nano-fibers: Production techniques and properties-Critical review. Journal of the Textile Association 78 (1):5–14. https://www.researchgate.net/publication/322774945.
  • Alves, M. J. D. S., W. D. C. Chacon, T. R. Gagliardi, A. C. Agudelo Henao, A. R. Monteiro, and G. Ayala Valencia. 2021. Food applications of starch nanomaterials: A review. Starch - Stärke 73 (11-12):2100046–12. doi: 10.1002/star.202100046.
  • Araiza-Calahorra, A., M. Akhtar, and A. Sarkar. 2018. Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility. Trends in Food Science & Technology 71:155–69. doi:10.1016/jtifs.2017.11.009.
  • Artiga-Artigas, M., C. Reichert, L. Salvia-Trujillo, B. Zeeb, O. Martín-Belloso, and J. Weiss. 2020. Protein/polysaccharide complexes to stabilize decane-in-water nanoemulsions. Food Biophysics 15 (3):335–45. doi: 10.1007/s11483-019-09622-x.
  • Ataide, J. A., D. C. Geraldes, E. F. Gérios, F. M. Bissaco, L. C. Cefali, L. Oliveira-Nascimento, and P. G. Mazzola. 2021. Freeze-dried chitosan nanoparticles to stabilize and deliver bromelain. Journal of Drug Delivery Science and Technology 61:102225. doi: 10.1016/j.jddst.2020.102225.
  • Azevedo, M. A., A. I. Bourbon, A. A. Vicente, and M. A. Cerqueira. 2014. Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. International Journal of Biological Macromolecules 71:141–6. doi: 10.1016/j.ijbiomac.2014.05.036.
  • Baek, J., M. Ramasamy, N. C. Willis, D. S. Kim, W. A. Anderson, and K. C. Tam. 2021. Encapsulation and controlled release of vitamin C in modified cellulose nanocrystal/chitosan nanocapsules. Current Research in Food Science 4:215–23. doi: 10.1016/j.crfs.2021.03.010.
  • Bao, C., P. Jiang, J. Chai, Y. Jiang, D. Li, W. Bao, B. Liu, B. Liu, W. Norde, and Y. Li. 2019. The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Research International (Ottawa, Ont.) 120:130–40. doi: 10.1016/j.foodres.2019.02.024.
  • Barclay, T. G., C. M. Day, N. Petrovsky, and S. Garg. 2019. Review of polysaccharide particle-based functional drug delivery. Carbohydrate Polymers 221:94–112. doi: 10.1016/j.carbpol.2019.05.067.
  • Belščak-Cvitanović, A., V. Đorđević, S. Karlović, V. Pavlović, D. Komes, D. Ježek, B. Bugarski, and V. Nedović. 2015. Protein-reinforced and chitosan-pectin coated alginate microparticles for delivery of flavan-3-ol antioxidants and caffeine from green tea extract. Food Hydrocolloids. 51:361–74. doi: 10.1016/j.foodhyd.2015.05.039.
  • Bhushani, A, and C. Anandharamakrishnan. 2017. Food-grade nanoemulsions for protection and delivery of nutrients. In Nanoscience in Food and Agriculture 4:99–139.
  • Bravo-Osuna, I., C. Vauthier, A. Farabollini, G. F. Palmieri, and G. Ponchel. 2007. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials 28 (13):2233–43. doi: 10.1016/j.biomaterials.2007.01.005.
  • Carpenter, J., S. George, and V. K. Saharan. 2019. Curcumin encapsulation in multilayer oil-in-water emulsion: Synthesis using ultrasonication and studies on stability and antioxidant and release activities. Langmuir: The ACS Journal of Surfaces and Colloids 35 (33):10866–76. doi: 10.1021/acs.langmuir.9b01523.
  • Chang, C., T. Wang, Q. Hu, and Y. Luo. 2017. Caseinate-zein-polysaccharide complex nanoparticles as potential oral delivery vehicles for curcumin: Effect of polysaccharide type and chemical cross-linking. Food Hydrocolloids. 72:254–62. doi: 10.1016/j.foodhyd.2017.05.039.
  • Chen, S., Y. Han, L. Jian, W. Liao, Y. Zhang, and Y. Gao. 2020. Fabrication, characterization, physicochemical stability of zein-chitosan nanocomplex for co-encapsulating curcumin and resveratrol. Carbohydrate Polymers 236:116090. doi: 10.1016/j.carbpol.2020.116090.
  • Chen, S., Y. Han, C. Sun, L. Dai, S. Yang, Y. Wei, L. Mao, F. Yuan, and Y. Gao. 2018. Effect of molecular weight of hyaluronan on zein-based nanoparticles: Fabrication, structural characterization and delivery of curcumin. Carbohydrate Polymers 201:599–607. doi: 10.1016/j.carbpol.2018.08.116.
  • Chen, M. C., F. L. Mi, Z. X. Liao, C. W. Hsiao, K. Sonaje, M. F. Chung, L. W. Hsu, and H. W. Sung. 2013. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Advanced Drug Delivery Reviews 65 (6):865–79. doi: 10.1016/j.addr.2012.10.010.
  • Chin, S. F., S. N. A. Mohd Yazid, and S. C. Pang. 2014. Preparation and characterization of starch nanoparticles for controlled release of curcumin. International Journal of Polymer Science 2014:1–8. doi: 10.1155/2014/340121.
  • Chin, S. F., S. C. Pang, and S. H. Tay. 2011. Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydrate Polymers 86 (4):1817–9. doi: 10.1016/j.carbpol.2011.07.012.
  • Compart, J., X. Li, and J. Fettke. 2021. Starch-A complex and undeciphered biopolymer. Journal of Plant Physiology 258-259:153389. doi: 10.1016/j.jplph.2021.153389.
  • Devi, N., M. Sarmah, B. Khatun, and T. K. Maji. 2017. Encapsulation of active ingredients in polysaccharide-protein complex coacervates. Advances in Colloid and Interface Science 239:136–45. doi: 10.1016/j.cis.2016.05.009.
  • Dierings de Souza, E. J., D. H. Kringel, A. R. Guerra Dias, and E. da Rosa Zavareze. 2021. Polysaccharides as wall material for the encapsulation of essential oils by electrospun technique. Carbohydrate Polymers 265:118068. doi: 10.1016/j.carbpol.2021.118068.
  • Ding, X, and P. Yao. 2013. Soy protein/soy polysaccharide complex nanogels: Folic acid loading, protection, and controlled delivery. Langmuir: The ACS Journal of Surfaces and Colloids 29 (27):8636–44. doi: 10.1021/la401664y.
  • Eid, M., R. Sobhy, P. Zhou, X. Wei, D. Wu, and B. Li. 2020. β-cyclodextrin- soy soluble polysaccharide based core-shell bionanocomposites hydrogel for vitamin E swelling controlled delivery. Food Hydrocolloids. 104:105751. doi: 10.1016/j.foodhyd.2020.105751.
  • Esmaili, S. K., B. Ghanbarzadeh, A. Ayaseh, A. Pezeshki, and M. Hosseini. 2019. Design, fabrication and characterization of pectin-coated gelatin nanoparticles as potential nano-carrier system. Journal of Food Biochemistry 43 (2):e12729. doi: 10.1111/jfbc.12729.
  • Espinosa-Sandoval, L., C. Ochoa-Martinez, A. Ayala-Aponte, L. Pastrana, C. Goncalves, and M. A. Cerqueira. 2021. Polysaccharide-based multilayer nano-emulsions loaded with oregano oil: Production, characterization, and in vitro digestion assessment. Nanomaterials (Basel) 11 (4):878. doi: 10.3390/nano11040878.
  • Fan, L., Y. Lu, X. K. Ouyang, and J. Ling. 2021. Development and characterization of soybean protein isolate and fucoidan nanoparticles for curcumin encapsulation. International Journal of Biological Macromolecules 169:194–205. doi: 10.1016/j.ijbiomac.2020.12.086.
  • Fathi, M., Á. Martín, and D. J. McClements. 2014. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in Food Science & Technology 39 (1):18–39. doi: 10.1016/j.tifs.2014.06.007.
  • Feng, J., S. Wu, H. Wang, and S. Liu. 2016. Improved bioavailability of curcumin in ovalbumin-dextran nanogels prepared by Maillard reaction. Journal of Functional Foods 27:55–68. doi: 10.1016/j.jff.2016.09.002.
  • Fonseca, L. M., R. L. Crizel, F. T. da Silva, M. R. Fontes, E. da Rosa Zavareze, and A. R. Dias. 2021. Starch nanofibers as vehicles for folic acid supplementation: Thermal treatment, UVA irradiation and in vitro simulation of digestion. Journal of the Science of Food and Agriculture 101 (5):1935–43. doi: 10.1002/jsfa.10809.
  • Fonseca, L. M., J. P. de Oliveira, P. D. de Oliveira, E. da Rosa Zavareze, A. R. G. Dias, and L. T. Lim. 2019. Electrospinning of native and anionic corn starch fibers with different amylose contents. Food Research International 116:1318–26. doi: 10.1016/j.foodres.2018.10.021.
  • Fonseca, L. M., M. Radunz, H. C. Dos Santos Hackbart, F. T. da Silva, T. M. Camargo, G. P. Bruni, J. L. Monks, E. da Rosa Zavareze, and A. R. Dias. 2020. Electrospun potato starch nanofibers for thyme essential oil encapsulation: Antioxidant activity and thermal resistance. Journal of the Science of Food and Agriculture 100 (11):4263–71. doi: 10.1002/jsfa.10468.
  • Gan, C., Q. Liu, Y. Zhang, T. Shi, W.-S. He, and C. Jia. 2022. A novel phytosterols delivery system based on sodium caseinate-pectin soluble complexes: Improving stability and bioaccessibility. Food Hydrocolloids. 124:107295. doi: 10.1016/j.foodhyd.2021.107295.
  • Gharehbeglou, P., S. M. Jafari, H. Hamishekar, A. Homayouni, and H. Mirzaei. 2019. Pectin-whey protein complexes vs. small molecule surfactants for stabilization of double nano-emulsions as novel bioactive delivery systems. Journal of Food Engineering 245:139–48. doi: 10.1016/j.jfoodeng.2018.10.016.
  • Ghasemi, S., S. M. Jafari, E. Assadpour, and M. Khomeiri. 2018. Nanoencapsulation of d-limonene within nanocarriers produced by pectin-whey protein complexes. Food Hydrocolloids. 77:152–62. doi: 10.1016/j.foodhyd.2017.09.030.
  • Guo, Y., D. Qiao, S. Zhao, B. Zhang, and F. Xie. 2021. Starch-based materials encapsulating food ingredients: Recent advances in fabrication methods and applications. Carbohydrate Polymers 270:118358. doi: 10.1016/j.carbpol.2021.118358.
  • Hao, J., B. Guo, S. Yu, W. Zhang, D. Zhang, J. Wang, and Y. Wang. 2017. Encapsulation of the flavonoid quercetin with chitosan-coated nano-liposomes. LWT - Food Science and Technology 85:37–44. doi: 10.1016/j.lwt.2017.06.048.
  • Hasani, S., S. M. Ojagh, and M. Ghorbani. 2018. Nanoencapsulation of lemon essential oil in Chitosan-Hicap system. Part 1: Study on its physical and structural characteristics. International Journal of Biological Macromolecules 115:143–51. doi: 10.1016/j.ijbiomac.2018.04.038.
  • Hemamalini, T., and Giri Dev, V. R. 2018. Comprehensive review on electrospinning of starch polymer for biomedical applications. International Journal of Biological Macromolecules 106:712–8. doi: 10.1016/j.ijbiomac.2017.08.079.
  • Huang, Y.-C, and T.-H. Kuo. 2016. O-carboxymethyl chitosan/fucoidan nanoparticles increase cellular curcumin uptake. Food Hydrocolloids. 53:261–9. doi: 10.1016/j.foodhyd.2015.02.006.
  • Huang, Y., J. Lin, X. Tang, Z. Wang, and S. Yu. 2021. Grape seed proanthocyanidin-loaded gel-like W/O/W emulsion stabilized by genipin-crosslinked alkaline soluble polysaccharides-whey protein isolate conjugates: Fabrication, stability, and in vitro digestion. International Journal of Biological Macromolecules 186:759–69. doi: 10.1016/j.ijbiomac.2021.07.062.
  • Jain, R., S. Shetty, and K. S. Yadav. 2020. Unfolding the electrospinning potential of biopolymers for preparation of nanofibers. Journal of Drug Delivery Science and Technology 57:101604. doi: 10.1016/j.jddst.2020.101604.
  • Jiang, B., L. Hu, C. Gao, and J. Shen. 2006. Crosslinked polysaccharide nanocapsules: Preparation and drug release properties. Acta Biomaterialia 2 (1):9–18. doi: 10.1016/j.actbio.2005.08.006.
  • Kabanov, A. V, and S. V. Vinogradov. 2009. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angewandte Chemie (International ed. in English) 48 (30):5418–29. doi: 10.1002/anie.200900441.
  • Kharat, M., G. D. Zhang, and D. J. McClements. 2018. Stability of curcumin in oil-in-water emulsions: Impact of emulsifier type and concentration on chemical degradation. Food Research International (Ottawa, Ont.) 111:178–86. doi: 10.1016/j.foodres.2018.05.021.
  • Khayata, N., W. Abdelwahed, M. F. Chehna, C. Charcosset, and H. Fessi. 2012. Preparation of vitamin E loaded nanocapsules by the nanoprecipitation method: From laboratory scale to large scale using a membrane contactor. International Journal of Pharmaceutics 423 (2):419–27. doi: 10.1016/j.ijpharm.2011.12.016.
  • Kong, L, and G. R. Ziegler. 2014. Fabrication of pure starch fibers by electrospinning. Food Hydrocolloids. 36:20–5. doi: 10.1016/j.foodhyd.2013.08.021.
  • Kumar, A., K. M. Rao, and S. S. Han. 2018. Application of xanthan gum as polysaccharide in tissue engineering: A review. Carbohydrate Polymers 180:128–44. doi: 10.1016/j.carbpol.2017.10.009.
  • Lam, M., R. Shen, P. Paulsen, and M. Corredig. 2007. Pectin stabilization of soy protein isolates at low pH. Food Research International 40 (1):101–10. doi: 10.1016/j.foodres.2006.08.004.
  • Lancuški, A., G. Vasilyev, J.-L. Putaux, and E. Zussman. 2015. Rheological properties and electrospinnability of high-amylose starch in formic acid. Biomacromolecules 16 (8):2529–36. doi: 10.1021/acs.biomac.5b00817.
  • Liang, R., C. F. Shoemaker, X. Yang, F. Zhong, and Q. Huang. 2013. Stability and bioaccessibility of beta-carotene in nanoemulsions stabilized by modified starches. Journal of Agricultural and Food Chemistry 61 (6):1249–57. doi: 10.1021/jf303967f.
  • Li, Z., H. Jiang, C. Xu, and L. Gu. 2015. A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocolloids. 43:153–64. doi: 10.1016/j.foodhyd.2014.05.010.
  • Li, Q., J. Shi, X. Du, D. J. McClements, X. Chen, M. Duan, L. Liu, J. Li, Y. Shao, and Y. Cheng. 2021. Polysaccharide conjugates from Chin brick tea (Camellia sinensis) improve the physicochemical stability and bioaccessibility of beta-carotene in oil-in-water nanoemulsions. Food Chemistry 357:129714. doi: 10.1016/j.foodchem.2021.129714.
  • Liu, C., Z. Zhang, Q. Kong, R. Zhang, and X. Yang. 2019. Enhancing the antitumor activity of tea polyphenols encapsulated in biodegradable nanogels by macromolecular self-assembly. RSC Advances 9 (18):10004–16. doi: 10.1039/c8ra07783e.
  • Li, H., T. Wang, Y. Hu, J. Wu, and P. Van der Meeren. 2022. Designing delivery systems for functional ingredients by protein/polysaccharide interactions. Trends in Food Science & Technology 119:272–87. doi: 10.1016/j.tifs.2021.12.007
  • Li, X. M., Z. Z. Wu, B. Zhang, Y. Pan, R. Meng, and H. Q. Chen. 2019. Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Food Chemistry 293:197–203. doi: 10.1016/j.foodchem.2019.04.096.
  • Li, H., Y. Yuan, J. Zhu, T. Wang, D. Wang, and Y. Xu. 2020. Zein/soluble soybean polysaccharide composite nanoparticles for encapsulation and oral delivery of lutein. Food Hydrocolloids. 103:105715. doi: 10.1016/j.foodhyd.2020.105715.
  • Long, L-x., X-b Yuan, J. Chang, Z-h Zhang, M-q Gu, T-t Song, Y. Xing, X-y Yuan, S-c Jiang, and J. Sheng. 2012. Self-assembly of polylactic acid and cholesterol-modified dextran into hollow nanocapsules. Carbohydrate Polymers 87 (4):2630–7. doi: 10.1016/j.carbpol.2011.11.032.
  • Ma, Z., J. Yao, Y. Wang, J. Jia, F. Liu, and X. Liu. 2022. Polysaccharide-based delivery system for curcumin: Fabrication and characterization of carboxymethylated corn fiber gum/chitosan biopolymer particles. Food Hydrocolloids. 125:107367. doi: 10.1016/j.foodhyd.2021.107367.
  • McClements, D. J. 2015. Nanoscale nutrient delivery systems for food applications: Improving bioactive dispersibility, stability, and bioavailability. Journal of Food Science 80 (7):N1602–N1611. doi: 10.1111/1750-3841.12919.
  • McClements, D. J. 2020. Nano-enabled personalized nutrition: Developing multicomponent-bioactive colloidal delivery systems. Advances in Colloid and Interface Science 282:102211. doi: 10.1016/j.cis.2020.102211.
  • Mei, X., Y. Chang, J. Shen, Y. Zhang, and C. Xue. 2020. Expression and characterization of a novel alginate-binding protein: A promising tool for investigating alginate. Carbohydrate Polymers 246:116645. doi: 10.1016/j.carbpol.2020.116645.
  • Mendes, A. C., C. Gorzelanny, N. Halter, S. W. Schneider, and I. S. Chronakis. 2016. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. International Journal of Pharmaceutics 510 (1):48–56. doi: 10.1016/j.ijpharm.2016.06.016.
  • Mesbahi, G., J. Jamalian, and A. Farahnaky. 2005. A comparative study on functional properties of beet and citrus pectins in food systems. Food Hydrocolloids. 19 (4):731–8. doi: 10.1016/j.foodhyd.2004.08.002.
  • Mohamed, S. A. A., M. El-Sakhawy, and M. A. El-Sakhawy. 2020. Polysaccharides, protein and lipid -based natural edible films in food packaging: A review. Carbohydrate Polymers 238 (116178):116178. doi: 10.1016/j.carbpol.2020. 116178.
  • Mungure, T. E., S. Roohinejad, A. E.-D. Bekhit, R. Greiner, and K. Mallikarjunan. 2018. Potential application of pectin for the stabilization of nanoemulsions. Current Opinion in Food Science 19:72–6. doi: 10.1016/j.cofs.2018.01.011.
  • Natrajan, D., S. Srinivasan, K. Sundar, and A. Ravindran. 2015. Formulation of essential oil-loaded chitosan-alginate nanocapsules. Journal of Food and Drug Analysis 23 (3):560–8. doi: 10.1016/j.jfda.2015.01.001.
  • Neamtu, I., A. G. Rusu, A. Diaconu, L. E. Nita, and A. P. Chiriac. 2017. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Delivery 24 (1):539–57. doi: 10.1080/10717544.2016.1276232.
  • Nooshkam, M, and M. Varidi. 2020. Maillard conjugate-based delivery systems for the encapsulation, protection, and controlled release of nutraceuticals and food bioactive ingredients: A review. Food Hydrocolloids. 100:105389. doi: 10.1016/j.foodhyd.2019.105389.
  • Ozturk, B., S. Argin, M. Ozilgen, and D. J. McClements. 2015. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. Food Chemistry 188:256–63. doi: 10.1016/j.foodchem.2015.05.005.
  • Papagiannopoulos, A, and A. Sklapani. 2021. Xanthan-based polysaccharide/protein nanoparticles: Preparation, characterization, encapsulation and stabilization of curcumin. Carbohydrate Polymer Technologies and Applications 2:100075. doi: 10.1016/j.carpta.2021.100075.
  • Petri, D. F. S. 2015. Xanthan gum: A versatile biopolymer for biomedical and technological applications. Journal of Applied Polymer Science 132 (23):n/a–n/a. doi: 10.1002/app.42035.
  • Pinheiro, A. C., A. I. Bourbon, M. A. Cerqueira, E. Maricato, C. Nunes, M. A. Coimbra, and A. A. Vicente. 2015. Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydrate Polymers 115:1–9. doi: 10.1016/j.carbpol.2014.07.016.
  • Prezotti, F. G., F. I. Boni, N. N. Ferreira, D. S. Silva, A. Almeida, T. Vasconcelos, B. Sarmento, M. P. D. Gremiao, and B. S. F. Cury. 2020. Oral nanoparticles based on gellan gum/pectin for colon-targeted delivery of resveratrol. Drug Development and Industrial Pharmacy 46 (2):236–45. doi: 10.1080/03639045.2020.1716374.
  • Priyan Shanura Fernando, I., K. N. Kim, D. Kim, and Y. J. Jeon. 2019. Algal polysaccharides: Potential bioactive substances for cosmeceutical applications. Critical Reviews in Biotechnology 39 (1):99–15. doi: 10.1080/07388551.2018.1503995.
  • Qian, C., E. A. Decker, H. Xiao, and D. J. McClements. 2011. Comparison of biopolymer emulsifier performance in formation and stabilization of orange oil-in-water emulsions. Journal of the American Oil Chemists’ Society 88 (1):47–55. doi: 10.1007/s11746-010-1658-y.
  • Qiu, C., Y. Hu, Z. Jin, D. J. McClements, Y. Qin, X. Xu, and J. Wang. 2019. A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends in Food Science & Technology 92:138–51. doi: 10.1016/j.tifs.2019.08.007.
  • Raei, M., F. Shahidi, M. Farhoodi, S. M. Jafari, and A. Rafe. 2017. Application of whey protein-pectin nano-complex carriers for loading of lactoferrin. International Journal of Biological Macromolecules 105 (Pt 1):281–91. doi: 10.1016/j.ijbiomac.2017.07.037.
  • Rajput, R., J. Narkhede, and J. B. Naik. 2020. Nanogels as nanocarriers for drug delivery: A review. Admet and DMPK 8 (1):1–15. doi: 10.5599/admet.724.
  • Ramalingam, M, and S. Ramakrishna. 2017. Introduction to nanofiber composites. Nanofiber Composites for Biomedical Applications 3–29.
  • Rashidi, L. 2021. Different nano-delivery systems for delivery of nutraceuticals. Food Bioscience 43:101258. doi: 10.1016/j.fbio.2021.101258.
  • Rehman, A., T. Ahmad, R. M. Aadil, M. J. Spotti, A. M. Bakry, I. M. Khan, L. Zhao, T. Riaz, and Q. Tong. 2019. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends in Food Science & Technology 90:35–46. doi: 10.1016/j.tifs.2019.05.015.
  • Remanan, M. K, and F. Zhu. 2021. Encapsulation of rutin using quinoa and maize starch nanoparticles. Food Chemistry 353:128534. doi: 10.1016/j.foodchem.2020.128534.
  • Rezaei, A., M. Fathi, and S. M. Jafari. 2019. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids. 88:146–62. doi: 10.1016/j.foodhyd.2018.10.003.
  • Richa, R, and A. Roy Choudhury. 2020. Exploration of polysaccharide based nanoemulsions for stabilization and entrapment of curcumin. International Journal of Biological Macromolecules 156:1287–96. doi: 10.1016/j.ijbiomac.2019.11.167.
  • Rostamabadi, H., S. R. Falsafi, and S. M. Jafari. 2019. Starch-based nanocarriers as cutting-edge natural cargos for nutraceutical delivery. Trends in Food Science & Technology 88:397–415. doi: 10.1016/j.tifs.2019.04.004.
  • Rostami, M., M. Ghorbani, M. Aman Mohammadi, M. Delavar, M. Tabibiazar, and S. Ramezani. 2019. Development of resveratrol loaded chitosan-gellan nanofiber as a novel gastrointestinal delivery system. International Journal of Biological Macromolecules 135:698–705. doi: 10.1016/j.ijbiomac. 2019.05.187.
  • Roy, M. C., M. Alam, A. Saeid, B. C. Das, M. B. Mia, M. A. Rahman, J. B. Eun, and M. Ahmed. 2018. Extraction and characterization of pectin from pomelo peel and its impact on nutritional properties of carrot jam during storage. Journal of Food Processing and Preservation 42 (1):e13411. doi: 10.1111/jfpp.13411.
  • Salvia-Trujillo, L, and D. J. McClements. 2016. Influence of nanoemulsion addition on the stability of conventional emulsions. Food Biophysics 11 (1):1–9. doi: 10.1007/s11483-015-9401-8.
  • Schmitt, C, and S. L. Turgeon. 2011. Protein/polysaccharide complexes and coacervates in food systems. Advances in Colloid and Interface Science 167 (1-2):63–70. doi: 10.1016/j.cis.2010.10.001.
  • Shekarforoush, E., F. Ajalloueian, G. Zeng, A. C. Mendes, and I. S. Chronakis. 2018. Electrospun xanthan gum-chitosan nanofibers as delivery carrier of hydrophobic bioactives. Materials Letters 228:322–6. doi: 10.101.6/j.matlet.2018.06.033.
  • Singh, H. 2016. Nanotechnology applications in functional foods; opportunities and challenges. Preventive Nutrition and Food Science 21 (1):1–8. doi: 10.3746/pnf.2016.21.1.1.
  • Solans, C, and I. Solé. 2012. Nano-emulsions: Formation by low-energy methods. Current Opinion in Colloid & Interface Science 17 (5):246–54. doi: 10.1016/j.cocis.2012.07.003.
  • Stijnman, A. C., I. Bodnar, and R. Hans Tromp. 2011. Electrospinning of food-grade polysaccharides. Food Hydrocolloids. 25 (5):1393–8. doi: 10.1016/j.foodhyd.2011.01.005.
  • Sun, X., P. Jia, T. Zhe, T. Bu, Y. Liu, Q. Wang, and L. Wang. 2019. Construction and multifunctionalization of chitosan-based three-phase nano-delivery system. Food Hydrocolloids. 96:402–11. doi: 10.1016/j.foodhyd.2019.05.040.
  • Sun, J., T. M. Liu, Y. Y. Mu, H. Jing, M. Obadi, and B. Xu. 2021. Enhancing the stabilization of beta-carotene emulsion using ovalbumin-dextran conjugates as emulsifier. Colloids and Surfaces a-Physicochemical and Engineering Aspects 626. doi: 10.1016/j.colsurfa.2021.126806.
  • Tan, C., J. Xie, X. Zhang, J. Cai, and S. Xia. 2016. Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocolloids. 57:236–45. doi: 10.1016/j.foodhyd.2016.01.021.
  • Tomasula, P. M., A. M. M. Sousa, S. C. Liou, R. Li, L. M. Bonnaillie, and L. S. Liu. 2016. Short communication: Electrospinning of casein/pullulan blends for food-grade applications. Journal of Dairy Science 99 (3):1837–45. doi: 10.3168/jds.2015-10374.
  • Toragall, V., N. Jayapala, and B. Vallikannan. 2020. Chitosan-oleic acid-sodium alginate a hybrid nanocarrier as an efficient delivery system for enhancement of lutein stability and bioavailability. International Journal of Biological Macromolecules 150:578–94. doi: 10.1016/j.ijbiomac.2020.02.104.
  • Wang, C., X. Li, S. Sang, D. Julian McClements, L. Chen, J. Long, A. Jiao, J. Wang, Z. Jin, and C. Qiu. 2022. Preparation, characterization and in vitro digestive behaviors of emulsions synergistically stabilized by γ-cyclodextrin/sodium caseinate/alginate. Food Research International 160:111634. Advance online publication. doi: 10.1016/j.foodres.2022.111634.
  • Wang, M., L. Li, M. Wan, Y. Lin, Y. Tong, Y. Cui, H. Deng, C. Tan, Y. Kong, and X. Meng. 2021. Preparing, optimising, and evaluating chitosan nanocapsules to improve the stability of anthocyanins from Aronia melanocarpa. RSC Advances 11 (1):210–8. doi: 10.1039/d0ra08162k.
  • Wang, X., F. Peng, F. Liu, Y. Xiao, F. Li, H. Lei, J. Wang, M. Li, and H. Xu. 2020a. Zein-pectin composite nanoparticles as an efficient hyperoside delivery system: Fabrication, characterization, and in vitro release property. LWT 133:109869. doi: 10.1016/j.lwt.2020.109869.
  • Wang, S., J. Yang, G. Shao, D. Qu, H. Zhao, L. Yang, L. Zhu, Y. He, H. Liu, and D. Zhu. 2020b. Soy protein isolated-soy hull polysaccharides stabilized O/W emulsion: Effect of polysaccharides concentration on the storage stability and interfacial rheological properties. Food Hydrocolloids. 101:105490. doi: 10.1016/j.foodhyd.2019.105490.
  • Wei, Y., C. Li, L. Dai, L. Zhang, J. Liu, L. Mao, F. Yuan, and Y. Gao. 2020. The construction of resveratrol-loaded protein-polysaccharide-tea saponin complex nanoparticles for controlling physicochemical stability and in vitro digestion. Food & Function 11 (11):9973–83. doi: 10.1039/d0fo01741h.
  • Wei, Y., C. Sun, L. Dai, X. Zhan, and Y. Gao. 2018. Structure, physicochemical stability and in vitro simulated gastrointestinal digestion properties of β-carotene loaded zein-propylene glycol alginate composite nanoparticles fabricated by emulsification-evaporation method. Food Hydrocolloids. 81:149–58. doi: 10.1016/j.foodhyd.2018.02.042.
  • Xi, J., L. Zhou, and Y. Fei. 2012. Preparation of chondroitin sulfate nanocapsules for use as carries by the interfacial polymerization method. International Journal of Biological Macromolecules 50 (1):157–63. doi: 10.1016/j.ijbiom.ac.2011.10.013.
  • Xiong, K., L. Zhou, J. Wang, A. Ma, D. Fang, L. Xiong, and Q. Sun. 2020. Construction of food-grade pH-sensitive nanoparticles for delivering functional food ingredients. Trends in Food Science & Technology 96:102–13. doi: 10.1016/j.tifs.2019.12.019.
  • Xu, D. X., F. Yuan, Y. X. Gao, A. Panya, D. J. McClements, and E. A. Decker. 2014. Influence of whey protein-beet pectin conjugate on the properties and digestibility of beta-carotene emulsion during in vitro digestion. Food Chemistry 156:374–9. doi: 10.1016/j.foodchem.2014.02.019.
  • Yan, X., L. Chai, E. Fleury, F. Ganachaud, and J. Bernard. 2021. Sweet as a Nut’: Production and use of nanocapsules made of glycopolymer or polysaccharide shell. Progress in Polymer Science 120:101429. doi: 10.1016/j.progpolymsci.2021.101429.
  • Yang, X., A. Li, X. Li, L. Sun, and Y. Guo. 2020. An overview of classifications, properties of food polysaccharides and their links to applications in improving food textures. Trends in Food Science & Technology 102:1–15. doi: 10.1016/j.tifs.2020.05.020.
  • Yang, R., Y. Liu, Y. Gao, Z. Yang, S. Zhao, Y. Wang, C. Blanchard, and Z. Zhou. 2018. Nano-encapsulation of epigallocatechin gallate in the ferritin-chitosan double shells: Simulated digestion and absorption evaluation. Food Research International (Ottawa, Ont.) 108:1–7. doi: 10.1016/j.foodres.2018.02.074.
  • Zeng, Q., W. Zeng, Y. Jin, and L. Sheng. 2022. Construction and evaluation of ovalbumin-pullulan nanogels as a potential delivery carrier for curcumin. Food Chemistry 367:130716. doi: 10.1016/j.foodchem.2021.130716.
  • Zhang, Y., C. Chi, X. Huang, Q. Zou, X. Li, and L. Chen. 2017. Starch-based nanocapsules fabricated through layer-by-layer assembly for oral delivery of protein to lower gastrointestinal tract. Carbohydrate Polymers 171:242–51. doi: 10.1016/j.carbpol.2017.04.090.
  • Zhang, Y., Z. Cui, H. Mei, J. Xu, T. Zhou, F. Cheng, and K. Wang. 2019. Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer. Carbohydrate Polymers 219:143–54. doi: 10.1016/j.carbpol.2019.04.041.
  • Zhang, H., Y. Fu, Y. Xu, F. Niu, Z. Li, C. Ba, B. Jin, G. Chen, and X. Li. 2019. One-step assembly of zein/caseinate/alginate nanoparticles for encapsulation and improved bioaccessibility of propolis. Food & Function 10 (2):635–45. doi: 10.1039/c8fo01614c.
  • Zhang, Z., G. Hao, C. Liu, J. Fu, D. Hu, J. Rong, and X. Yang. 2021. Recent progress in the preparation, chemical interactions and applications of biocompatible polysaccharide-protein nanogel carriers. Food Research International 147 (110564):110564. doi: 10.1016/j.foodres.2021.110564.
  • Zhang, D., F. Jiang, J. Ling, X. K. Ouyang, and Y. G. Wang. 2021. Delivery of curcumin using a zein-xanthan gum nanocomplex: Fabrication, characterization, and in vitro release properties. Colloids & Surfaces B: Biointerfaces 204:111827. doi: 10.1016/j.colsurfb.2021.111827.
  • Zhang, H., L. Jiang, M. Tong, Y. Lu, X.-K. Ouyang, and J. Ling. 2021. Encapsulation of curcumin using fucoidan stabilized zein nanoparticles: Preparation, characterization, and in vitro release performance. Journal of Molecular Liquids 329:115586. doi: 10.1016/j.molliq.2021.115586.
  • Zhang, Z., C. Qiu, X. Li, D. J. McClements, A. Jiao, J. Wang, and Z. Jin. 2021. Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols. Trends in Food Science & Technology 116:492–500. doi: 10.1016/j.tifs.2021.08.009.
  • Zhang, Z., H. Shan, L. Chen, C. He, X. Zhuang, and X. Chen. 2013. Synthesis of pH-responsive starch nanoparticles grafted poly (l-glutamic acid) for insulin controlled release. European Polymer Journal 49 (8):2082–91. doi: 10.1016/j.eurpolymj.2013.04.032.
  • Zhang, T., S. Yu, X. Tang, C. Ai, H. Chen, J. Lin, H. Meng, and X. Guo. 2022. Ethanol-soluble polysaccharide from sugar beet pulp for stabilizing zein nanoparticles and improving encapsulation of curcumin. Food Hydrocolloids. 124:107208. doi: 10.1016/j.foodhyd.2021.107208.
  • Zhang, X., Q. Zeng, Y. Liu, and Z. Cai. 2021. Enhancing the resistance of anthocyanins to environmental stress by constructing ovalbumin-propylene glycol alginate nanocarriers with novel configurations. Food Hydrocolloids. 118:106668. doi: 10.1016/j.foodhyd.2021.106668.
  • Zhang, L., F. Zhang, Y. Fang, and S. Wang. 2019. Alginate-shelled SPI nanoparticle for encapsulation of resveratrol with enhanced colloidal and chemical stability. Food Hydrocolloids. 90:313–20. doi: 10.1016/j.foodhyd.2018.12.042.
  • Zhao, X., X. Zhang, S. Tie, S. Hou, H. Wang, Y. Song, R. Rai, and M. Tan. 2020. Facile synthesis of nano-nanocarriers from chitosan and pectin with improved stability and biocompatibility for anthocyanins delivery: An in vitro and in vivo study. Food Hydrocolloids. 109:106114. doi: 10.1016/j.foodhyd.2020.106114.
  • Zhou, M., Q. Hu, T. Wang, J. Xue, and Y. Luo. 2016a. Effects of different polysaccharides on the formation of egg yolk LDL complex nanogels for nutrient delivery. Carbohydrate Polymers 153:336–44. doi: 10.1016/j.carbpol.2016.07.105.
  • Zhou, M., T. Wang, Q. Hu, and Y. Luo. 2016b. Low density lipoprotein/pectin complex nanogels as potential oral delivery vehicles for curcumin. Food Hydrocolloids. 57:20–9. doi: 10.1016/j.foodhyd.2016.01.010.
  • Zhu, F. 2017. Encapsulation and delivery of food ingredients using starch based systems. Food Chemistry 229:542–52. doi: 10.1016/j.foodchem.2017.02.101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.