3,260
Views
0
CrossRef citations to date
0
Altmetric
Review

The emerging roles of next-generation metabolomics in critical care nutrition

ORCID Icon, , , &

References

  • Adhikari, N. K., R. A. Fowler, S. Bhagwanjee, and G. D. Rubenfeld. 2010. Critical care and the global burden of critical illness in adults. Lancet (London, England) 376 (9749):1339–46. doi: 10.1016/S0140-6736(10)60446-1.
  • Al Sulaiman, K., O. Aljuhani, A. I. Al Shaya, A. Kharbosh, R. Kensara, A. Al Guwairy, A. Alharbi, R. Algarni, S. Al Harbi, R. Vishwakarma, et al. 2021. Evaluation of zinc sulfate as an adjunctive therapy in COVID-19 critically ill patients: A two center propensity-score matched study. Critical Care (London, England) 25 (1):363. doi: 10.1186/s13054-021-03785-1.
  • Alseekh, S., and A. R. Fernie. 2018. Metabolomics 20 years on: What have we learned and what hurdles remain? The Plant Journal: For Cell and Molecular Biology 94 (6):933–42. doi: 10.1111/tpj.13950.
  • Alvarez, J. A., E. Y. Chong, D. I. Walker, J. D. Chandler, E. S. Michalski, R. E. Grossmann, K. Uppal, S. Li, J. K. Frediani, R. Tirouvanziam, et al. 2017. Plasma metabolomics in adults with cystic fibrosis during a pulmonary exacerbation: A pilot randomized study of high-dose vitamin D3 administration. Metabolism 70:31–41. doi: 10.1016/j.metabol.2017.02.006.
  • Amrein, K., H. M. Oudemans-van Straaten, and M. M. Berger. 2018. Vitamin therapy in critically ill patients: Focus on thiamine, vitamin C, and vitamin D. Intensive Care Medicine 44 (11):1940–4. doi: 10.1007/s00134-018-5107-y.
  • Amrein, K., J. A. Lasky-Su, H. Dobnig, and K. B. Christopher. 2021. Metabolomic basis for response to high dose vitamin D in critical illness. Clinical Nutrition (Edinburgh, Scotland) 40 (4):2053–60. doi: 10.1016/j.clnu.2020.09.028.
  • Amunugama, K., D. P. Pike, and D. A. Ford. 2021. The lipid biology of sepsis. Journal of Lipid Research 62:100090. doi: 10.1016/j.jlr.2021.100090.
  • Besecker, B. Y., M. C. Exline, J. Hollyfield, G. Phillips, R. A. Disilvestro, M. D. Wewers, and D. L. Knoell. 2011. A comparison of zinc metabolism, inflammation, and disease severity in critically ill infected and noninfected adults early after intensive care unit admission. The American Journal of Clinical Nutrition 93 (6):1356–64. doi: 10.3945/ajcn.110.008417.
  • Bistrian, B. R., G. L. Blackburn, J. Vitale, D. Cochran, and J. Naylor. 1976. Prevalence of malnutrition in general medical patients. Jama 235 (15):1567–70. doi: 10.1001/jama.1976.03260410023017.
  • Bouharras El Idrissi, H., J. Molina Lopez, I. Perez Moreno, D. I. Florea, G. Lobo Tamer, L. Herrera-Quintana, A. Perez De La Cruz, M. R. Elvira, and E. M. Planells Del Pozo. 2015. Imbalances in protein metabolism in critical care patient with systemic inflammatory response syndrome at admission in intensive care unit. Nutricion Hospitalaria 32 (6):2848–54. doi: 10.3305/nh.2015.32.6.9827.
  • Braunschweig, C., S. Gomez, and P. M. Sheean. 2000. Impact of declines in nutritional status on outcomes in adult patients hospitalized for more than 7 days. Journal of the American Dietetic Association 100 (11):1316–22. doi: 10.1016/S0002-8223(00)00373-4.
  • Campbell, C. H. 1984. The severe lacticacidosis of thiamine deficiency: Acute pernicious or fulminating beriberi. Lancet (London, England) 2 (8400):446–9. doi: 10.1016/s0140-6736(84)92918-0.
  • Cander, B., Z. D. Dundar, M. Gul, and S. Girisgin. 2011. Prognostic value of serum zinc levels in critically ill patients. Journal of Critical Care 26 (1):42–6. doi: 10.1016/j.jcrc.2010.06.002.
  • Casaer, M. P., and G. Van den Berghe. 2014. Nutrition in the acute phase of critical illness. The New England Journal of Medicine 370 (25):2450–1. doi: 10.1056/NEJMc1404896.
  • Casaer, M. P., and R. Bellomo. 2019. Micronutrient deficiency in critical illness: An invisible foe? Intensive Care Medicine 45 (8):1136–9. doi: 10.1007/s00134-019-05678-y.
  • Castro, D. C., Y. R. Xie, S. S. Rubakhin, E. V. Romanova, and J. V. Sweedler. 2021. Image-guided MALDI mass spectrometry for high-throughput single-organelle characterization. Nature Methods 18 (10):1233–8. doi: 10.1038/s41592-021-01277-2.
  • Cattani, A., I. C. Eckert, J. E. Brito, R. F. Tartari, and F. M. Silva. 2020. Nutritional risk in critically ill patients: How it is assessed, its prevalence and prognostic value: A systematic review. Nutrition Reviews 78 (12):1052–68. doi: 10.1093/nutrit/nuaa031.
  • Chary, S., K. Amrein, S. H. Mahmoud, J. A. Lasky-Su, and K. B. Christopher. 2022. Sex-specific catabolic metabolism alterations in the critically ill following high dose vitamin D. Metabolites 12 (3):207. doi: 10.3390/metabo12030207.
  • Chen, Q., X. Liang, T. Wu, J. Jiang, Y. Jiang, S. Zhang, Y. Ruan, H. Zhang, C. Zhang, P. Chen, et al. 2022. Integrative analysis of metabolomics and proteomics reveals amino acid metabolism disorder in sepsis. Journal of Translational Medicine 20 (1):123. doi: 10.1186/s12967-022-03320-y.
  • Collie, J. T. B., R. F. Greaves, O. A. H. Jones, Q. Lam, G. M. Eastwood, and R. Bellomo. 2017. Vitamin B1 in critically ill patients: Needs and challenges. Clinical Chemistry and Laboratory Medicine 55 (11):1652–68. doi: 10.1515/cclm-2017-0054.
  • Dettmer, K., P. A. Aronov, and B. D. Hammock. 2007. Mass spectrometry-based metabolomics. Mass Spectrometry Reviews 26 (1):51–78. doi: 10.1002/mas.20108.
  • Donnino, M. W., L. W. Andersen, M. Chase, K. M. Berg, M. Tidswell, T. Giberson, R. Wolfe, A. Moskowitz, H. Smithline, L. Ngo, Center for Resuscitation Science Research Group, et al. 2016. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: A pilot study. Critical Care Medicine 44 (2):360–7. doi: 10.1097/CCM.0000000000001572.
  • Elke, G., M. Wang, N. Weiler, A. G. Day, and D. K. Heyland. 2014. Close to recommended caloric and protein intake by enteral nutrition is associated with better clinical outcome of critically ill septic patients: Secondary analysis of a large international nutrition database. Critical Care 18 (1):R29. doi: 10.1186/cc13720.
  • Esturau-Escofet, N., E. Rodriguez de San Miguel, M. Vela-Amieva, M. E. Garcia-Aguilera, C. C. Hernandez-Espino, L. Macias-Kauffer, C. Lopez-Candiani, J. J. Naveja, and I. Ibarra-Gonzalez. 2022. A longitudinal (1)H NMR-based metabolic profile analysis of urine from hospitalized premature newborns receiving enteral and parenteral nutrition. Metabolites 12 (3):255. doi: 10.3390/metabo12030255.
  • Fiehn, O. 2016. Metabolomics by gas chromatography-mass spectrometry: Combined targeted and untargeted profiling. Current Protocols in Molecular Biology 114 (1):30.4.1–30.4.32. doi: 10.1002/0471142727.mb3004s114.
  • Frank, R. A., F. J. Leeper, and B. F. Luisi. 2007. Structure, mechanism and catalytic duality of thiamine-dependent enzymes. Cellular and Molecular Life Sciences: CMLS 64 (7–8):892–905. doi: 10.1007/s00018-007-6423-5.
  • Fu, C., Q. Wu, Z. Zhang, Z. Xia, H. Ji, H. Lu, and Y. Wang. 2019. UPLC-ESI-IT-TOF-MS metabolomic study of the therapeutic effect of Xuefu Zhuyu decoction on rats with traumatic brain injury. Journal of Ethnopharmacology 245:112149. doi: 10.1016/j.jep.2019.112149.
  • Gonzalez-Granda, A., B. Seethaler, M. Haap, R. Riessen, and S. C. Bischoff. 2021. Effect of an intensified individual nutrition therapy on serum metabolites in critically ill patients - A targeted metabolomics analysis of the ONCA study. Clinical Nutrition ESPEN 43:267–75. doi: 10.1016/j.clnesp.2021.04.002.
  • Gostyńska, A., M. Stawny, K. Dettlaff, and A. Jelińska. 2019. Clinical nutrition of critically ill patients in the context of the latest ESPEN guidelines. Medicina (Kaunas) 55 (12):770. doi: 10.3390/medicina55120770.
  • Gundogan, K., F. S. Yucesoy, N. T. Ozer, S. Temel, S. Sahin, G. G. Sahin, M. Sungur, A. Esmaoglu, T. Talih, C. Yazici, et al. 2022. Serum micronutrient levels in critically ill patients receiving continuous renal replacement therapy: A prospective, observational study. JPEN. Journal of Parenteral and Enteral Nutrition 46 (5):1141–8. doi: 10.1002/jpen.2378.
  • Hambidge, M. 2000. Human zinc deficiency. The Journal of Nutrition 130 (5S Suppl):1344S–9S. doi: 10.1093/jn/130.5.1344S.
  • Han, J., Y. Xia, L. Lin, Z. Zhang, H. Tian, and K. Li. 2018. Next-generation metabolomics in the development of new antidepressants: Using albiflorin as an example. Current Pharmaceutical Design 24 (22):2530–40. doi: 10.2174/1381612824666180727114134.
  • Hansen, B. A., and O. Bruserud. 2018. Hypomagnesemia in critically ill patients. Journal of Intensive Care 6:21. doi: 10.1186/s40560-018-0291-y.
  • Hasan, R., L. Rink, and H. Haase. 2013. Zinc signals in neutrophil granulocytes are required for the formation of neutrophil extracellular traps. Innate Immunity 19 (3):253–64. doi: 10.1177/1753425912458815.
  • Heyland, D. K., N. Jones, N. Z. Cvijanovich, and H. Wong. 2008. Zinc supplementation in critically ill patients: A key pharmaconutrient? JPEN. Journal of Parenteral and Enteral Nutrition 32 (5):509–19. doi: 10.1177/0148607108322402.
  • Honeywell, S., R. Zelig, and D. R. Radler. 2019. Impact of Intravenous Lipid emulsions containing fish oil on clinical outcomes in critically ill surgical patients: A literature review. Nutrition in Clinical Practice: Official Publication of the American Society for Parenteral and Enteral Nutrition 34 (1):112–22. doi: 10.1002/ncp.10224.
  • Hsu, C. C., C. Y. Sun, C. Y. Tsai, M. Y. Chen, S. Y. Wang, J. T. Hsu, C. N. Yeh, and T. S. Yeh. 2021. Metabolism of proteins and amino acids in critical illness: From physiological alterations to relevant clinical practice. Journal of Multidisciplinary Healthcare 14:1107–17. doi: 10.2147/JMDH.S306350.
  • Huo, M., Z. Wang, W. Fu, L. Tian, W. Li, Z. Zhou, Y. Chen, J. Wei, and Z. Abliz. 2021. Spatially resolved metabolomics based on air-flow-assisted desorption electrospray ionization-mass spectrometry imaging reveals region-specific metabolic alterations in diabetic encephalopathy. Journal of Proteome Research 20 (7):3567–79. doi: 10.1021/acs.jproteome.1c00179.
  • Jolliet, P., C. Pichard, G. Biolo, R. Chioléro, G. Grimble, X. Leverve, G. Nitenberg, I. Novak, M. Planas, J. C. Preiser, et al. 1999. Enteral nutrition in intensive care patients: A practical approach. Clinical Nutrition (Edinburgh, Scotland) 18 (1):47–56. doi: 10.1054/clnu.1998.0001.
  • Jurowski, K., B. Szewczyk, G. Nowak, and W. Piekoszewski. 2014. Biological consequences of zinc deficiency in the pathomechanisms of selected diseases. Journal of Biological Inorganic Chemistry : JBIC: A Publication of the Society of Biological Inorganic Chemistry 19 (7):1069–79. doi: 10.1007/s00775-014-1139-0.
  • Kiabi, F., A. Alipour, H. Darvishi-Khezri, A. Aliasgharian, and A. Zeydi. 2017. Zinc supplementation in adult mechanically ventilated trauma patients is associated with decreased occurrence of ventilator-associated pneumonia: A secondary analysis of a prospective, observational study. Indian Journal of Critical Care Medicine 21 (1):34–9. doi: 10.4103/0972-5229.198324.
  • Kondrup, J. 2014. Nutritional-risk scoring systems in the intensive care unit. Current Opinion in Clinical Nutrition and Metabolic Care 17 (2):177–82. doi: 10.1097/MCO.0000000000000041.
  • Lan, S. H., C. C. Lai, S. P. Chang, L. C. Lu, S. H. Hung, and W. T. Lin. 2020. Vitamin D supplementation and the outcomes of critically ill adult patients: A systematic review and meta-analysis of randomized controlled trials. Scientific Reports 10 (1):14261. doi: 10.1038/s41598-020-71271-9.
  • Langley, R. J., E. L. Tsalik, J. C. van Velkinburgh, S. W. Glickman, B. J. Rice, C. Wang, B. Chen, L. Carin, A. Suarez, R. P. Mohney, et al. 2013. An integrated clinico-metabolomic model improves prediction of death in sepsis. Science Translational Medicine 5 (195):195ra95. doi: 10.1126/scitranslmed.3005893.
  • Lasky-Su, J., A. Dahlin, A. A. Litonjua, A. J. Rogers, M. J. McGeachie, R. M. Baron, L. Gazourian, D. Barragan-Bradford, L. E. Fredenburgh, A. M. K. Choi, et al. 2017. Metabolome alterations in severe critical illness and vitamin D status. Critical Care (London, England) 21 (1):193. doi: 10.1186/s13054-017-1794-y.
  • Lew, C. C. H., R. Yandell, R. J. L. Fraser, A. P. Chua, M. F. F. Chong, and M. Miller. 2017. Association between malnutrition and clinical outcomes in the intensive care unit: A systematic review. JPEN. Journal of Parenteral and Enteral Nutrition 41 (5):744–58. doi: 10.1177/0148607115625638.
  • Li, C., S. Chu, S. Tan, X. Yin, Y. Jiang, X. Dai, X. Gong, X. Fang, and D. Tian. 2021. Towards higher sensitivity of mass spectrometry: A perspective from the mass analyzers. Frontiers in Chemistry 9:813359. doi: 10.3389/fchem.2021.813359.
  • Li, K., J. C. Naviaux, A. T. Bright, L. Wang, and R. K. Naviaux. 2017. A robust, single-injection method for targeted, broad-spectrum plasma metabolomics. Metabolomics: Official Journal of the Metabolomic Society 13 (10):122. doi: 10.1007/s11306-017-1264-1.
  • Li, K., J. C. Naviaux, J. M. Monk, L. Wang, and R. K. Naviaux. 2020. Improved dried blood spot-based metabolomics: A targeted, broad-spectrum, single-injection method. Metabolites 10 (3):82. doi: 10.3390/metabo10030082.
  • Li, K., V. R. Pidatala, R. Shaik, R. Datta, and W. Ramakrishna. 2014. Integrated metabolomic and proteomic approaches dissect the effect of metal-resistant bacteria on maize biomass and copper uptake. Environmental Science & Technology 48 (2):1184–93. doi: 10.1021/es4047395.
  • Li, K., X. Wang, V. R. Pidatala, C. P. Chang, and X. Cao. 2014. Novel quantitative metabolomic approach for the study of stress responses of plant root metabolism. Journal of Proteome Research 13 (12):5879–87. doi: 10.1021/pr5007813.
  • Limaye, C. S., V. A. Londhey, M. Y. Nadkart, and N. E. Borges. 2011. Hypomagnesemia in critically ill medical patients. The Journal of the Association of Physicians of India 59:19–22.
  • Makarov, A. 2019. Orbitrap journey: Taming the ion rings. Nature Communications 10 (1):3743. doi: 10.1038/s41467-019-11748-y.
  • Manzanares, W., and G. Hardy. 2011. Thiamine supplementation in the critically ill. Current Opinion in Clinical Nutrition and Metabolic Care 14 (6):610–7. doi: 10.1097/MCO.0b013e32834b8911.
  • McKeever, L., S. J. Peterson, O. Lateef, and C. Braunschweig. 2021. The influence of timing in critical care nutrition. Annual Review of Nutrition 41:203–22. doi: 10.1146/annurev-nutr-111120-114108.
  • McMillan, A., A. E. Orimadegun, M. W. Sumarah, J. Renaud, M. M. da Encarnacao, G. B. Gloor, O. O. Akinyinka, G. Reid, and S. J. Allen. 2017. Metabolic derangements identified through untargeted metabolomics in a cross-sectional study of Nigerian children with severe acute malnutrition. Metabolomics 13 (2):1–14. doi: 10.1007/s11306-016-1150-2.
  • McNamara, R., A. M. Deane, J. Anstey, and R. Bellomo. 2018. Understanding the rationale for parenteral ascorbate (vitamin C) during an acute inflammatory reaction: A biochemical perspective. Critical Care and Resuscitation: Journal of the Australasian Academy of Critical Care Medicine 20 (3):174–9.
  • Misra, B. B. 2021. New software tools, databases, and resources in metabolomics: Updates from 2020. Metabolomics: Official Journal of the Metabolomic Society 17 (5):49. doi: 10.1007/s11306-021-01796-1.
  • Mogensen, K. M., J. Lasky-Su, A. J. Rogers, R. M. Baron, L. E. Fredenburgh, J. Rawn, M. K. Robinson, A. Massarro, A. M. Choi, and K. B. Christopher. 2017. Metabolites associated with malnutrition in the intensive care unit are also associated with 28-Day mortality. Journal of Parenteral and Enteral Nutrition 41 (2):188–97. doi: 10.1177/0148607116656164.
  • Mogensen, K. M., M. K. Robinson, J. D. Casey, N. S. Gunasekera, T. Moromizato, J. D. Rawn, and K. B. Christopher. 2015. Nutritional status and mortality in the critically ill. Critical Care Medicine 43 (12):2605–15. doi: 10.1097/CCM.0000000000001306.
  • National Heart, Lung, Petal Clinical Trials Network Blood Institute, Ginde, A. A., R. G. Brower, J. M. Caterino, L. Finck, V. M. Banner-Goodspeed, C. K. Grissom, D. Hayden, C. L. Hough, et al. 2019. Early high-dose vitamin D3 for critically ill, vitamin D-deficient patients. The New England Journal of Medicine 381 (26):2529–40. doi: 10.1056/NEJMoa1911124.
  • Neumann, E. K., L. G. Migas, J. L. Allen, R. M. Caprioli, R. Van de Plas, and J. M. Spraggins. 2020. Spatial metabolomics of the human kidney using MALDI trapped ion mobility imaging mass spectrometry. Analytical Chemistry 92 (19):13084–91. doi: 10.1021/acs.analchem.0c02051.
  • Nicholson, J. K., and J. C. Lindon. 2008. Systems biology: Metabonomics. Nature 455 (7216):1054–6. doi: 10.1038/4551054a.
  • Nicholson, J. K., J. C. Lindon, and E. Holmes. 1999. Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 29 (11):1181–9. doi: 10.1080/004982599238047.
  • Nicolo, M., D. K. Heyland, J. Chittams, T. Sammarco, and C. Compher. 2016. Clinical outcomes related to protein delivery in a critically ill population: A multicenter, multinational observation study. JPEN. Journal of Parenteral and Enteral Nutrition 40 (1):45–51. doi: 10.1177/0148607115583675.
  • O’Sullivan, A., B. Henrick, B. Dixon, D. Barile, A. Zivkovic, J. Smilowitz, D. Lemay, W. Martin, J. B. German, and S. E. Schaefer. 2018. 21st century toolkit for optimizing population health through precision nutrition. Critical Reviews in Food Science and Nutrition 58 (17):3004–15. doi: 10.1080/10408398.2017.1348335.
  • Oudemans-van Straaten, H. M., A. M. Spoelstra-de Man, and M. C. de Waard. 2014. Vitamin C revisited. Critical Care (London, England) 18 (4):460. doi: 10.1186/s13054-014-0460-x.
  • Pang, Z., G. Zhou, J. Ewald, L. Chang, O. Hacariz, N. Basu, and J. Xia. 2022. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nature Protocols 17 (8):1735–61. doi: 10.1038/s41596-022-00710-w.
  • Parent, B. A., M. Seaton, D. Djukovic, H. Gu, B. Wheelock, S. L. Navarro, D. Raftery, and G. E. O’Keefe. 2017. Parenteral and enteral nutrition in surgical critical care: Plasma metabolomics demonstrates divergent effects on nitrogen, fatty-acid, ribonucleotide, and oxidative metabolism. The Journal of Trauma and Acute Care Surgery 82 (4):704–13. doi: 10.1097/TA.0000000000001381.
  • Parent, B. A., M. Seaton, R. F. Sood, H. Gu, D. Djukovic, D. Raftery, and G. E. O’Keefe. 2016. Use of metabolomics to trend recovery and therapy after injury in critically ill trauma patients. JAMA Surgery 151 (7):e160853. doi: 10.1001/jamasurg.2016.0853.
  • Park, J. M., J. Y. Noh, M. J. Kim, T. G. Yun, S. G. Lee, K. S. Chung, E. H. Lee, M. H. Shin, N. S. Ku, S. Yoon, et al. 2019. MALDI-TOF mass spectrometry based on parylene-matrix chip for the analysis of lysophosphatidylcholine in sepsis patient sera. Analytical Chemistry 91 (22):14719–27. doi: 10.1021/acs.analchem.9b04019.
  • Parra Millan, R., M. E. Jimenez Mejias, V. Sanchez Encinales, R. Ayerbe Algaba, A. Gutierrez Valencia, M. E. Pachon Ibanez, C. Diaz, J. Perez Del Palacio, L. F. Lopez Cortes, J. Pachon, et al. 2016. Efficacy of lysophosphatidylcholine in combination with antimicrobial agents against Acinetobacter baumannii in experimental murine peritoneal sepsis and pneumonia models. Antimicrobial Agents and Chemotherapy 60 (8):4464–70. doi: 10.1128/AAC.02708-15.
  • Patkova, A., V. Joskova, E. Havel, M. Kovarik, M. Kucharova, Z. Zadak, and M. Hronek. 2017. Energy, protein, carbohydrate, and lipid intakes and their effects on morbidity and mortality in critically ill adult patients: A systematic review. Advances in Nutrition 8 (4):624–34. doi: 10.3945/an.117.015172.
  • Pieracci, F. M., R. T. Stovall, B. Jaouen, M. Rodil, A. Cappa, C. C. Burlew, D. N. Holena, R. Maier, S. Berry, J. Jurkovich, et al. 2014. A multicenter, randomized clinical trial of IV iron supplementation for anemia of traumatic critical illness. Critical Care Medicine 42 (9):2048–57. doi: 10.1097/CCM.0000000000000408.
  • Pradelli, L., K. Mayer, S. Klek, A. J. Omar Alsaleh, R. A. C. Clark, M. D. Rosenthal, A. R. Heller, and M. Muscaritoli. 2020. Omega-3 fatty-acid enriched parenteral nutrition in hospitalized patients: Systematic review with meta-analysis and trial sequential analysis. Journal of Parenteral and Enteral Nutrition 44 (1):44–57. doi: 10.1002/jpen.1672.
  • Pradelli, L., S. Klek, K. Mayer, A. J. Omar Alsaleh, M. D. Rosenthal, A. R. Heller, and M. Muscaritoli. 2020. Omega-3 fatty acid-containing parenteral nutrition in ICU patients: Systematic review with meta-analysis and cost-effectiveness analysis. Critical Care (London, England) 24 (1):634. doi: 10.1186/s13054-020-03356-w.
  • Preiser, J. C., A. R. van Zanten, M. M. Berger, G. Biolo, M. P. Casaer, G. S. Doig, R. D. Griffiths, D. K. Heyland, M. Hiesmayr, G. Iapichino, et al. 2015. Metabolic and nutritional support of critically ill patients: Consensus and controversies. Critical Care (London, England) 19:35. doi: 10.1186/s13054-015-0737-8.
  • Rappez, L., M. Stadler, S. Triana, R. M. Gathungu, K. Ovchinnikova, P. Phapale, M. Heikenwalder, and T. Alexandrov. 2021. SpaceM reveals metabolic states of single cells. Nature Methods 18 (7):799–805. doi: 10.1038/s41592-021-01198-0.
  • Rech, M. A., T. Hunsaker, and J. Rodriguez. 2014. Deficiency in 25-hydroxyvitamin D and 30-day mortality in patients with severe sepsis and septic shock. American Journal of Critical Care: An Official Publication, American Association of Critical-Care Nurses 23 (5):e72-9–e79. doi: 10.4037/ajcc2014723.
  • Seydel, C. 2021. Single-cell metabolomics hits its stride. Nature Methods 18 (12):1452–6. doi: 10.1038/s41592-021-01333-x.
  • Sharma, K., K. M. Mogensen, and M. K. Robinson. 2019. Pathophysiology of critical illness and role of nutrition. Nutrition in Clinical Practice: Official Publication of the American Society for Parenteral and Enteral Nutrition 34 (1):12–22. doi: 10.1002/ncp.10232.
  • Shokri-Mashhadi, N., A. Aliyari, Z. Hajhashemy, S. Saadat, and M. H. Rouhani. 2022. Is it time to reconsider the administration of thiamine alone or in combination with vitamin C in critically ill patients? A meta-analysis of clinical trial studies. Journal of Intensive Care 10 (1):8. doi: 10.1186/s40560-022-00594-8.
  • Shrestha, D. B., P. Budhathoki, Y. R. Sedhai, S. K. Mandal, S. Shikhrakar, S. Karki, R. K. Baniya, M. G. Kashiouris, X. Qiao, and A. A. Fowler. 2021. Vitamin C in critically ill patients: An updated systematic review and meta-analysis. Nutrients 13 (10):3564. doi: 10.3390/nu13103564.
  • Singer, P. 2019. Preserving the quality of life: Nutrition in the ICU. Critical Care (London, England) 23 (Suppl 1):139. doi: 10.1186/s13054-019-2415-8.
  • Singer, P., A. R. Blaser, M. M. Berger, W. Alhazzani, P. C. Calder, M. P. Casaer, M. Hiesmayr, K. Mayer, J. C. Montejo, C. Pichard, et al. 2019. ESPEN guideline on clinical nutrition in the intensive care unit. Clinical Nutrition (Edinburgh, Scotland) 38 (1):48–79. doi: 10.1016/j.clnu.2018.08.037.
  • Singer, P., I. Bendavid, R. Mesilati-Stahy, P. Green, M. Rigler, S. Lev, S. Schif-Zuck, A. Amiram, M. Theilla, and I. Kagan. 2021. Enteral and supplemental parenteral nutrition enriched with omega-3 polyunsaturated fatty acids in intensive care patients - A randomized, controlled, double-blind clinical trial. Clinical Nutrition 40 (5):2544–54. doi: 10.1016/j.clnu.2021.03.034.
  • Singer, P., M. M. Berger, G. Van den Berghe, G. Biolo, P. Calder, A. Forbes, R. Griffiths, G. Kreyman, X. Leverve, and C. Pichard. 2009. ESPEN guidelines on parenteral nutrition: Intensive care. Clinical Nutrition (Edinburgh, Scotland) 28 (4):387–400. doi: 10.1016/j.clnu.2009.04.024.
  • Skalny, A. V., L. Rink, O. P. Ajsuvakova, M. Aschner, V. A. Gritsenko, S. I. Alekseenko, A. A. Svistunov, D. Petrakis, D. A. Spandidos, J. Aaseth, et al. 2020. Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). International Journal of Molecular Medicine 46 (1):17–26. doi: 10.3892/ijmm.2020.4575.
  • Stachowska, E., M. Folwarski, D. Jamioł-Milc, D. Maciejewska, and K. Skonieczna-Żydecka. 2020. Nutritional support in Coronavirus 2019 Disease. Medicina (Kaunas) 56 (6):289. doi: 10.3390/medicina56060289.
  • Stolarski, A. E., L. Young, J. Weinberg, J. Kim, E. Lusczek, D. G. Remick, B. Bistrian, and P. Burke. 2022. Early metabolic support for critically ill trauma patients: A prospective randomized controlled trial. Journal of Trauma and Acute Care Surgery 92 (2):255–65. doi: 10.1097/TA.0000000000003453.
  • Stoppe, C., S. Wendt, N. M. Mehta, C. Compher, J. C. Preiser, D. K. Heyland, and A. S. Kristof. 2020. Biomarkers in critical care nutrition. Critical Care (London, England) 24 (1):499. doi: 10.1186/s13054-020-03208-7.
  • Su, L., H. Li, A. Xie, D. Liu, W. Rao, L. Lan, X. Li, F. Li, K. Xiao, H. Wang, et al. 2015. Dynamic changes in amino acid concentration profiles in patients with sepsis. PloS One 10 (4):e0121933. doi: 10.1371/journal.pone.0121933.
  • Taylor, M. J., J. K. Lukowski, and C. R. Anderton. 2021. Spatially resolved mass spectrometry at the single cell: Recent innovations in proteomics and metabolomics. Journal of the American Society for Mass Spectrometry 32 (4):872–94. doi: 10.1021/jasms.0c00439.
  • Taylor, M. J., S. Mattson, A. Liyu, S. A. Stopka, Y. M. Ibrahim, A. Vertes, and C. R. Anderton. 2021. Optical microscopy-guided laser ablation electrospray ionization ion mobility mass spectrometry: Ambient single cell metabolomics with increased confidence in molecular identification. Metabolites 11 (4):200. doi: 10.3390/metabo11040200.
  • Thiessen, S. E., J. Gunst, and G. Van den Berghe. 2018. Role of glucagon in protein catabolism. Current Opinion in Critical Care 24 (4):228–34. doi: 10.1097/MCC.0000000000000509.
  • Todd, S. R., E. A. Gonzalez, K. Turner, and R. A. Kozar. 2008. Update on postinjury nutrition. Current Opinion in Critical Care 14 (6):690–5. doi: 10.1097/MCC.0b013e3283196562.
  • Tyrrell, C. S. B., O. T. Mytton, S. V. Gentry, M. Thomas-Meyer, J. L. Y. Allen, A. A. Narula, B. McGrath, M. Lupton, J. Broadbent, A. Ahmed, et al. 2021. Managing intensive care admissions when there are not enough beds during the COVID-19 pandemic: A systematic review. Thorax 76 (3):302–12. doi: 10.1136/thoraxjnl-2020-215518.
  • Viana, M. V., F. Becce, O. Pantet, S. Schmidt, G. Bagnoud, J. J. Thaden, G. A. M. Ten Have, M. Engelen, A. Voidey, N. E. P. Deutz, et al. 2021. Impact of beta-hydroxy-beta-methylbutyrate (HMB) on muscle loss and protein metabolism in critically ill patients: A RCT. Clinical Nutrition 40 (8):4878–87. doi: 10.1016/j.clnu.2021.07.018.
  • Vincent, J. L., and M. Singer. 2010. Critical care: Advances and future perspectives. Lancet (London, England) 376 (9749):1354–61. doi: 10.1016/S0140-6736(10)60575-2.
  • Wang, J., Y. Sun, S. Teng, and K. Li. 2020. Prediction of sepsis mortality using metabolite biomarkers in the blood: A meta-analysis of death-related pathways and prospective validation. BMC Medicine 18 (1):83. doi: 10.1186/s12916-020-01546-5.
  • Wang, L., X. Xing, X. Zeng, S. R. Jackson, T. TeSlaa, O. Al-Dalahmah, L. Z. Samarah, K. Goodwin, L. Yang, M. R. McReynolds, et al. 2022. Spatially resolved isotope tracing reveals tissue metabolic activity. Nature Methods 19 (2):223–30. doi: 10.1038/s41592-021-01378-y.
  • Wang, N., M. P. Wang, L. Jiang, B. Du, B. Zhu, and X. M. Xi. 2021. Association between the modified Nutrition Risk in Critically Ill (mNUTRIC) score and clinical outcomes in the intensive care unit: A secondary analysis of a large prospective observational study. BMC Anesthesiology 21 (1):220. doi: 10.1186/s12871-021-01439-x.
  • Wen, B., J. M. Njunge, C. Bourdon, G. B. Gonzales, B. M. Gichuki, D. Lee, D. S. Wishart, M. Ngari, E. Chimwezi, J. Thitiri, et al. 2022. Systemic inflammation and metabolic disturbances underlie inpatient mortality among ill children with severe malnutrition. Science Advances 8 (7):eabj6779. doi: 10.1126/sciadv.abj6779.
  • West, K. A., R. Schmid, J. M. Gauglitz, M. Wang, and P. C. Dorrestein. 2022. foodMASST a mass spectrometry search tool for foods and beverages. NPJ Science of Food 6 (1):22. doi: 10.1038/s41538-022-00137-3.
  • Wijnands, K. A., T. M. Castermans, M. P. Hommen, D. M. Meesters, and M. Poeze. 2015. Arginine and citrulline and the immune response in sepsis. Nutrients 7 (3):1426–63. doi: 10.3390/nu7031426.
  • Yan, J. J., J. S. Jung, J. E. Lee, J. Lee, S. O. Huh, H. S. Kim, K. C. Jung, J. Y. Cho, J. S. Nam, H. W. Suh, et al. 2004. Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nature Medicine 10 (2):161–7. doi: 10.1038/nm989.
  • Yang, X., H. Wang, C. Huang, X. He, W. Xu, Y. Luo, and K. Huang. 2017. Zinc enhances the cellular energy supply to improve cell motility and restore impaired energetic metabolism in a toxic environment induced by OTA. Scientific Reports 7 (1):14669. doi: 10.1038/s41598-017-14868-x.
  • Yuan, M., S. B. Breitkopf, X. Yang, and J. M. Asara. 2012. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nature Protocols 7 (5):872–81. doi: 10.1038/nprot.2012.024.
  • Zhang, P., Y. Bian, Z. Tang, and F. Wang. 2021. Use of nutrition risk in critically ill (NUTRIC) scoring system for nutrition risk assessment and prognosis prediction in critically ill neurological patients: A prospective observational study. JPEN. Journal of Parenteral and Enteral Nutrition 45 (5):1032–41. doi: 10.1002/jpen.1977.
  • Zheng, J., K. Wang, Y. Wang, and K. Li. 2022. Precautions for study design and data interpretation of clinical metabolomics. Proceedings of the National Academy of Sciences 119 (5):e2118654119. doi: 10.1073/pnas.2118654119.
  • Zhou, X., J. Liu, Q. Zhang, S. Rao, X. Wu, J. Zhang, and J. Li. 2022. Comparison of the suitability between NRS2002 and MUST as the first-step screening tool for GLIM Criteria in hospitalized patients with GIST. Frontiers in Nutrition 9:864024. doi: 10.3389/fnut.2022.864024.