471
Views
2
CrossRef citations to date
0
Altmetric
Review

Recent insights into oxidative metabolism of quercetin: catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms

ORCID Icon, , , , , ORCID Icon & ORCID Icon show all

References

  • Adams, M, and Z. Jia. 2005. Structural and biochemical analysis reveal pirins to possess quercetinase activity. The Journal of Biological Chemistry 280 (31):28675–82. doi: 10.1074/jbc.M501034200.
  • Adeniran, C, and D. Hamelberg. 2017. Redox-specific allosteric modulation of the conformational dynamics of κB DNA by Pirin in the NF-κB supramolecular complex. Biochemistry 56 (37):5002–10. doi: 10.1021/acs.biochem.7b00528.
  • Aherne, S. A, and N. M. O’Brien. 2002. Dietary flavonols: chemistry, food content, and metabolism. Nutrition (Burbank, Los Angeles County, Calif.) 18 (1):75–81. doi: 10.1016/S0899-9007(01)00695-5.
  • Alizadeh, S. R, and M. A. Ebrahimzadeh. 2022. Quercetin derivatives: drug design, development, and biological activities, a review. European Journal of Medicinal Chemistry 229:114068. doi: 10.1016/j.ejmech.2021.114068.
  • Almeida, A. F., G. I. A. Borge, M. Piskula, A. Tudose, L. Tudoreanu, K. Valentová, G. Williamson, and C. N. Santos. 2018. Bioavailability of quercetin in humans with a focus on interindividual variation. Comprehensive Reviews in Food Science and Food Safety. 17 (3):714–31. doi: 10.1111/1541-4337.12342.
  • Álvarez-Diduk, R., M. T. Ramírez-Silva, A. Galano, and A. Merkoçi. 2013. Deprotonation mechanism and acidity constants in aqueous solution of flavonols: a combined experimental and theoretical study. The Journal of Physical Chemistry. B 117 (41):12347–59. doi: 10.1021/jp4049617.
  • Anand David, A. V., R. Arulmoli, and S. Parasuraman. 2016. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacognosy Reviews 10 (20):84–9. doi: 10.4103/0973-7847.194044.
  • Asgharian, P., A. P. Tazehkand, S. R. Soofiyani, K. Hosseini, M. Martorell, V. Tarhriz, H. Ahangari, N. Cruz-Martins, J. Sharifi-Rad, Z. M. Almarhoon, et al. 2021. Quercetin impact in pancreatic cancer: an overview on its therapeutic effects. Oxidative Medicine and Cellular Longevity 2021:4393266. doi: 10.1155/2021/4393266.
  • Atala, E., J. Fuentes, M. J. Wehrhahn, and H. Speisky. 2017. Quercetin and related flavonoids conserve their antioxidant properties despite undergoing chemical or enzymatic oxidation. Food Chemistry 234:479–85. doi: 10.1016/j.foodchem.2017.05.023.
  • Aura, A. M., K. A. O’Leary, G. Williamson, M. Ojala, M. Bailey, R. Puupponen-Pimiä, A. M. Nuutila, K. M. Oksman-Caldentey, and K. Poutanen. 2002. Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. Journal of Agricultural and Food Chemistry 50 (6):1725–30. doi: 10.1021/jf0108056.
  • Awad, H. M., M. G. Boersma, J. Vervoort, and I. M. Rietjens. 2000. Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adducts. Archives of Biochemistry and Biophysics 378 (2):224–33. doi: 10.1006/abbi.2000.1832.
  • Balogh-Hergovich E, E, and G. Speier. 2001. Kinetics and mechanism of the base-catalyzed oxygenation of flavonol in DMSO-H2O solution. The Journal of Organic Chemistry 66 (24):7974–8. doi: 10.1021/jo015517n.
  • Barnes, J. S., F. W. Foss, Jr, and K. A. Schug. 2013. Thermally accelerated oxidative degradation of quercetin using continuous flow kinetic electrospray-ion trap-time of flight mass spectrometry. Journal of the American Society for Mass Spectrometry 24 (10):1513–22. doi: 10.1007/s13361-013-0698-6.
  • Barnes, J. S, and K. A. Schug. 2014. Oxidative degradation of quercetin with hydrogen peroxide using continuous-flow kinetic electrospray-ion trap-time-of-flight mass spectrometry. Journal of Agricultural and Food Chemistry 62 (19):4322–31. doi: 10.1021/jf500619x.
  • Berglund, G. I., G. H. Carlsson, A. T. Smith, H. Szöke, A. Henriksen, and J. Hajdu. 2002. The catalytic pathway of horseradish peroxidase at high resolution. Nature 417 (6887):463–8. doi: 10.1038/417463a.
  • Biler, M., D. Biedermann, K. Valentová, V. Křen, and M. Kubala. 2017. Quercetin and its analogues: optical and acido-basic properties. Physical Chemistry Chemical Physics: PCCP 19 (39):26870–9. doi: 10.1039/c7cp03845c.
  • Blaschek, L, and E. Pesquet. 2021. Phenoloxidases in plants-how structural diversity enables functional specificity. Frontiers in Plant Science 12:754601. doi: 10.3389/fpls.2021.754601.
  • Boersma, M. G., J. Vervoort, H. Szymusiak, K. Lemanska, B. Tyrakowska, N. Cenas, J. Segura-Aguilar, and I. M. Rietjens. 2000. Regioselectivity and reversibility of the glutathione conjugation of quercetin quinone methide. Chemical Research in Toxicology 13 (3):185–91. doi: 10.1021/tx990161k.
  • Bolton, J. L., T. L. Dunlap, and B. M. Dietz. 2018. Formation and biological targets of botanical o-quinones. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 120:700–7. doi: 10.1016/j.fct.2018.07.050.
  • Botta, L., F. Brunori, A. Tulimieri, D. Piccinino, R. Meschini, and R. Saladino. 2017. Laccase-mediated enhancement of the antioxidant activity of propolis and poplar bud exudates. ACS Omega 2 (6):2515–23. doi: 10.1021/acsomega.7b00294.
  • Breinholt, V. M., E. A. Offord, C. Brouwer, S. E. Nielsen, K. Brøsen, and T. Friedberg. 2002. In vitro investigation of cytochrome P450-mediated metabolism of dietary flavonoids. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 40 (5):609–16. doi: 10.1016/s0278-6915(01)00125-9.
  • Brown, S. B., V. Rajananda, J. A. Holroyd, and E. G. Evans. 1982. A study of the mechanism of quercetin oxygenation by 18O labelling. A comparison of the mechanism with that of haem degradation. The Biochemical Journal 205 (1):239–44. doi: 10.1042/bj2050239.
  • Buchner, N., A. Krumbein, S. Rohn, and L. W. Kroh. 2006. Effect of thermal processing on the flavonols rutin and quercetin. Rapid Communications in Mass Spectrometry: RCM 20 (21):3229–35. doi: 10.1002/rcm.2720.
  • Buettner, G. R. 1993. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Archives of Biochemistry and Biophysics 300 (2):535–43. doi: 10.1006/abbi.1993.1074.
  • Buongiorno, D, and G. D. Straganz. 2013. Structure and function of atypically coordinated enzymatic mononuclear non-heme-Fe(II) centers. Coordination Chemistry Reviews 257 (2):541–63. doi: 10.1016/j.ccr.2012.04.028.
  • Cai, X., Z. Fang, J. Dou, A. Yu, and G. Zhai. 2013. Bioavailability of quercetin: problems and promises. Current Medicinal Chemistry 20 (20):2572–82. doi: 10.2174/09298673113209990120.
  • Cao, H., X. Chen, A. R. Jassbi, and J. Xiao. 2015. Microbial biotransformation of bioactive flavonoids. Biotechnology Advances 33 (1):214–23. doi: 10.1016/j.biotechadv.2014.10.012.
  • Carletti, G., G. Nervo, and L. Cattivelli. 2014. Flavonoids and Melanins: a common strategy across two kingdoms. International Journal of Biological Sciences 10 (10):1159–70. doi: 10.7150/ijbs.9672.
  • Carullo, G., M. Badolato, and F. Aiello. 2018. Bioavailability and biochemistry of quercetin and applications to health and diseases. In Polyphenols: Mechanisms of action in human health and disease, ed. R. R. Watson, V. R. Preedy, and S. Zibadi, 361–71. Amsterdam: Elsevier Inc. doi: 10.1016/B978-0-12-813006-3.00026-X.
  • Chen, Q. X, and I. Kubo. 2002. Kinetics of mushroom tyrosinase inhibition by quercetin. Journal of Agricultural and Food Chemistry 50 (14):4108–12. doi: 10.1021/jf011378z.
  • Cherrak, S. A., N. Mokhtari-Soulimane, F. Berroukeche, B. Bensenane, A. Cherbonnel, H. Merzouk, and M. Elhabiri. 2016. In vitro antioxidant versus metal ion chelating properties of flavonoids: a structure-activity investigation. PLoS One 11 (10):e0165575. doi: 10.1371/journal.pone.0165575.
  • Cherviakovsky, E. M., D. A. Bolibrukh, A. V. Baranovsky, T. M. Vlasova, V. P. Kurchenko, A. A. Gilep, and S. A. Usanov. 2006. Oxidative modification of quercetin by hemeproteins. Biochemical and Biophysical Research Communications 342 (2):459–64. doi: 10.1016/j.bbrc.2006.02.001.
  • Choi, M. H., S. H. Yang, D. S. Kim, N. D. Kim, H. J. Shin, and K. Liu. 2021. Novel quercetin derivative of 3,7-dioleylquercetin shows less toxicity and highly potent tyrosinase inhibition activity. International Journal of Molecular Sciences 22 (8):4264. doi: 10.3390/ijms22084264.
  • Crozier, A., I. B. Jaganath, and M. N. Clifford. 2009. Dietary phenolics: chemistry, bioavailability and effects on health. Natural Product Reports 26 (8):1001–43. doi: 10.1039/b802662a.
  • Dabeek, W. M, and M. V. Marra. 2019. Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 11 (10):2288. doi: 10.3390/nu11102288.
  • Dajas, F. 2012. Life or death: neuroprotective and anticancer effects of quercetin. Journal of Ethnopharmacology 143 (2):383–96. doi: 10.1016/j.jep.2012.07.005.
  • D’Andrea, G. 2015. Quercetin: a flavonol with multifaceted therapeutic applications? Fitoterapia 106:256–71. doi: 10.1016/j.fitote.2015.09.018.
  • Das, S, and J. P. Rosazza. 2006. Microbial and enzymatic transformations of flavonoids. Journal of Natural Products 69 (3):499–508. doi: 10.1021/np0504659.
  • Derat, E., S. Shaik, C. Rovira, P. Vidossich, and M. Alfonso-Prieto. 2007. The effect of a water molecule on the mechanism of formation of compound 0 in horseradish peroxidase. Journal of the American Chemical Society 129 (20):6346–7. doi: 10.1021/ja0676861.
  • Derosa, G., P. Maffioli, A. D’Angelo, and F. Di Pierro. 2021. A role for quercetin in coronavirus disease 2019 (COVID-19). Phytotherapy Research: PTR 35 (3):1230–6. doi: 10.1002/ptr.6887.
  • Desentis-Mendoza, R. M., H. Hernandez-Sanchez, A. Moreno, E. Rojas del c, L. Chel-Guerrero, J. Tamariz, and M. E. Jaramillo-Flores. 2006. Enzymatic polymerization of phenolic compounds using laccase and tyrosinase from Ustilago maydis. Biomacromolecules 7 (6):1845–54. doi: 10.1021/bm060159p.
  • Dhanya, R. 2022. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 146:112560. doi: 10.1016/j.biopha.2021.112560.
  • Egbujor, M. C., S. Saha, B. Buttari, E. Profumo, and L. Saso. 2021. Activation of Nrf2 signaling pathway by natural and synthetic chalcones: a therapeutic road map for oxidative stress. Expert Review of Clinical Pharmacology 14 (4):465–80. doi: 10.1080/17512433.2021.1901578.
  • Erlank, H., A. Elmann, R. Kohen, and J. Kanner. 2011. Polyphenols activate Nrf2 in astrocytes via H2O2, semiquinones, and quinones. Free Radical Biology & Medicine 51 (12):2319–27. doi: 10.1016/j.freeradbiomed.2011.09.033.
  • Es-Safi, N. E., S. Ghidouche, and P. H. Ducrot. 2007. Flavonoids: hemisynthesis, reactivity, characterization and free radical scavenging activity. Molecules (Basel, Switzerland) 12 (9):2228–58. doi: 10.3390/12092228.
  • Fabre, N., I. Rustan, E. de Hoffmann, and J. Quetin-Leclercq. 2001. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. Journal of the American Society for Mass Spectrometry 12 (6):707–15. doi: 10.1016/S1044-0305(01)00226-4.
  • Fahlman, B. M, and E. S. Krol. 2009. UVA and UVB radiation-induced oxidation products of quercetin. Journal of Photochemistry and Photobiology. B, Biology 97 (3):123–31. doi: 10.1016/j.jphotobiol.2009.08.009.
  • Fan, M., G. Zhang, X. Hu, X. Xu, and D. Gong. 2017. Quercetin as a tyrosinase inhibitor: inhibitory activity, conformational change and mechanism. Food Research International (Ottawa, Ont.) 100 (Pt 1):226–33. doi: 10.1016/j.foodres.2017.07.010.
  • Feng, X., Y. Li, M. Brobbey Oppong, and F. Qiu. 2018. Insights into the intestinal bacterial metabolism of flavonoids and the bioactivities of their microbe-derived ring cleavage metabolites. Drug Metabolism Reviews 50 (3):343–56. doi: 10.1080/03602532.2018.1485691.
  • Fenoll, L. G., P. A. García-Ruiz, R. Varón, and F. García-Cánovas. 2003. Kinetic study of the oxidation of quercetin by mushroom tyrosinase. Journal of Agricultural and Food Chemistry 51 (26):7781–7. doi: 10.1021/jf034656y.
  • Fetzner, S. 2012. Ring-cleaving dioxygenases with a cupin fold. Applied and Environmental Microbiology 78 (8):2505–14. doi: 10.1128/AEM.07651-11.
  • Fiedler, A. T, and A. A. Fischer. 2017. Oxygen activation by mononuclear Mn, Co, and Ni centers in biology and synthetic complexes. Journal of Biological Inorganic Chemistry: JBIC: A Publication of the Society of Biological Inorganic Chemistry 22 (2-3):407–24. doi: 10.1007/s00775-016-1402-7.
  • Fiorucci, S., J. Golebiowski, D. Cabrol-Bass, and S. Antonczak. 2007. Molecular simulations bring new insights into flavonoid/quercetinase interaction modes. Proteins 67 (4):961–70. doi: 10.1002/prot.21380.
  • FooDB 2022. Compound Quercetin (FDB011904). Accessed January 10, 2022. https://foodb.ca/compounds/FDB011904.
  • Formica, J. V, and W. Regelson. 1995. Review of the biology of Quercetin and related bioflavonoids. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 33 (12):1061–80. doi: 10.1016/0278-6915(95)00077-1.
  • Fuentes, J., E. Atala, E. Pastene, C. Carrasco-Pozo, and H. Speisky. 2017. Quercetin oxidation paradoxically enhances its antioxidant and cytoprotective properties. Journal of Agricultural and Food Chemistry 65 (50):11002–10. doi: 10.1021/acs.jafc.7b05214.
  • Fuentes, J., M. F. Arias-Santé, E. Atala, E. Pastene, M. J. Kogan, and H. Speisky. 2020. Low nanomolar concentrations of a quercetin oxidation product, which naturally occurs in onion peel, protect cells against oxidative damage. Food Chemistry 314:126166. doi: 10.1016/j.foodchem.2020.126166.
  • Fuentes, J., A. C. de Camargo, E. Atala, M. Gotteland, C. Olea-Azar, and H. Speisky. 2021. Quercetin oxidation metabolite present in onion peel protects Caco-2 cells against the oxidative stress, NF-kB activation, and loss of epithelial barrier function induced by NSAIDs. Journal of Agricultural and Food Chemistry 69 (7):2157–67. doi: 10.1021/acs.jafc.0c07085.
  • Fuentes, J., O. Brunser, E. Atala, J. Herranz, A. C. de Camargo, H. Zbinden-Foncea, and H. Speisky. 2022. Protection against indomethacin-induced loss of intestinal epithelial barrier function by a quercetin oxidation metabolite present in onion peel: in vitro and in vivo studies. The Journal of Nutritional Biochemistry 100:108886. doi: 10.1016/j.jnutbio.2021.108886.
  • Fukami, T., T. Yokoi, and M. Nakajima. 2022. Non-P450 drug-metabolizing enzymes: contribution to drug disposition, toxicity, and development. Annual Review of Pharmacology and Toxicology 62:405–25. doi: 10.1146/annurev-pharmtox-052220-105907.
  • Galati, G., M. Y. Moridani, T. S. Chan, and P. J. O’Brien. 2001. Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation. Free Radical Biology & Medicine 30 (4):370–82. doi: 10.1016/S0891-5849(00)00481-0.
  • Gebicka, L. 2020. Redox reactions of heme proteins with flavonoids. Journal of Inorganic Biochemistry 208:111095. doi: 10.1016/j.jinorgbio.2020.111095.
  • Gopal, B., L. L. Madan, S. F. Betz, and A. A. Kossiakoff. 2005. The crystal structure of a quercetin 2,3-dioxygenase from Bacillus subtilis suggests modulation of enzyme activity by a change in the metal ion at the active site(s). Biochemistry 44 (1):193–201. doi: 10.1021/bi0484421.
  • Guo, B., Y. Yuan, Y. Wu, Q. Xie, and S. Yao. 2002. Assay and analysis for anti- and pro-oxidative effects of ascorbic acid on DNA with the bulk acoustic wave impedance technique. Analytical Biochemistry 305 (2):139–48. doi: 10.1006/abio.2002.5602.
  • Guo, B., Y. Zhang, G. Hicks, X. Huang, R. Li, N. Roy, and Z. Jia. 2019. Structure-dependent modulation of substrate binding and biodegradation activity of Pirin proteins toward plant flavonols. ACS Chemical Biology 14 (12):2629–40. doi: 10.1021/acschembio.9b00575.
  • Guo, X. Y., Y. Q. Lv, Y. Ye, Z. Y. Liu, X. Q. Zheng, J. L. Lu, Y. R. Liang, and J. H. Ye. 2021. Polyphenol oxidase dominates the conversions of flavonol glycosides in tea leaves. Food Chemistry 339:128088. doi: 10.1016/j.foodchem.2020.128088.
  • Guo, Y, and R. S. Bruno. 2015. Endogenous and exogenous mediators of quercetin bioavailability. The Journal of Nutritional Biochemistry 26 (3):201–10. doi: 10.1016/j.jnutbio.2014.10.008.
  • Hakulinen, N, and J. Rouvinen. 2015. Three-dimensional structures of laccases. Cellular and Molecular Life Sciences: CMLS 72 (5):857–68. doi: 10.1007/s00018-014-1827-5.
  • Hattori, S, and I. Noguchi. 1959. Microbial degradation of rutin. Nature 184 (Suppl 15):1145–6. doi: 10.1038/1841145b0.
  • Heppner, D. E., C. H. Kjaergaard, and E. I. Solomon. 2014. Mechanism of the reduction of the native intermediate in the multicopper oxidases: insights into rapid intramolecular electron transfer in turnover. Journal of the American Chemical Society 136 (51):17788–801. doi: 10.1021/ja509150j.
  • Heřmánková, E., M. Zatloukalová, M. Biler, R. Sokolová, M. Bancířová, A. G. Tzakos, V. Křen, M. Kuzma, P. Trouillas, and J. Vacek. 2019. Redox properties of individual quercetin moieties. Free Radical Biology & Medicine 143:240–51. doi: 10.1016/j.freeradbiomed.2019.08.001.
  • Hitchings, R, and L. Kelly. 2019. Predicting and understanding the human microbiome’s impact on pharmacology. Trends in Pharmacological Sciences 40 (7):495–505. doi: 10.1016/j.tips.2019.04.014.
  • Hosny, M., K. Dhar, and J. P. Rosazza. 2001. Hydroxylations and methylations of quercetin, fisetin, and catechin by Streptomyces griseus. Journal of Natural Products 64 (4):462–5. doi: 10.1021/np000457m.
  • Hvattum, E., Y. Stenstrøm, and D. Ekeberg. 2004. Study of the reaction products of flavonols with 2,2-diphenyl-1-picrylhydrazyl using liquid chromatography coupled with negative electrospray ionization tandem mass spectrometry. Journal of Mass Spectrometry: JMS 39 (12):1570–81. doi: 10.1002/jms.756.
  • Javdan, B., J. G. Lopez, P. Chankhamjon, Y. J. Lee, R. Hull, Q. Wu, X. Wang, S. Chatterjee, and M. S. Donia. 2020. Personalized mapping of drug metabolism by the human gut microbiome. Cell 181 (7):1661–79.e22. doi: 10.1016/j.cell.2020.05.001.
  • Jeoung, J. H., D. Nianios, S. Fetzner, and H. Dobbek. 2016. Quercetin 2,4-dioxygenase activates dioxygen in a side-on O2-Ni complex. Angewandte Chemie (International ed. in English) 55 (10):3281–4. doi: 10.1002/anie.201510741.
  • Jia, B., X. Han, K. H. Kim, and C. O. Jeon. 2022. Discovery and mining of enzymes from the human gut microbiome. Trends in Biotechnology 40 (2):240–54. doi: 10.1016/j.tibtech.2021.06.008.
  • Joyner, P. M. 2021. Protein adducts and protein oxidation as molecular mechanisms of flavonoid bioactivity. Molecules 26 (16):5102. doi: 10.3390/molecules26165102.
  • Jørgensen, L. V., C. Cornett, U. Justesen, L. H. Skibsted, and L. O. Dragsted. 1998. Two-electron electrochemical oxidation of quercetin and kaempferol changes only the flavonoid C-ring. Free Radical Research 29 (4):339–50. doi: 10.1080/10715769800300381.
  • Jungbluth, G., I. Rühling, and W. Ternes. 2000. Oxidation of flavonols with Cu(II), Fe(II) and Fe(III) in aqueous media. Journal of the Chemical Society, Perkin Transactions 2 (9):1946–52.
  • Kampatsikas, I, and A. Rompel. 2021. Similar but still different: which amino acid residues are responsible for varying activities in type-III copper enzymes? Chembiochem: A European Journal of Chemical Biology 22 (7):1161–75. doi: 10.1002/cbic.202000647.
  • Karuppagounder, V., S. Arumugam, R. A. Thandavarayan, R. Sreedhar, V. V. Giridharan, and K. Watanabe. 2016. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis. Drug Discovery Today 21 (4):632–9. doi: 10.1016/j.drudis.2016.02.011.
  • Kasprzak, M., A. Erxleben, and J. Ochocki. 2015. Properties and applications of flavonoid metal complexes. RSC Advances 5 (57):45853–77. doi: 10.1039/C5RA05069C.
  • Kawabata, K., R. Mukai, and A. Ishisaka. 2015. Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability. Food & Function 6 (5):1399–417. doi: 10.1039/c4fo01178c.
  • Khursheed, R., S. K. Singh, S. Wadhwa, M. Gulati, and A. Awasthi. 2020. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discovery Today 25 (1):209–22. doi: 10.1016/j.drudis.2019.11.001.
  • Krishnamachari, V., L. H. Levine, and P. W. Paré. 2002. Flavonoid oxidation by the radical generator AIBN: a unified mechanism for quercetin radical scavenging. Journal of Agricultural and Food Chemistry 50 (15):4357–63. doi: 10.1021/jf020045e.
  • Krishnamachari, V., L. H. Levine, C. Zhou, and P. W. Paré. 2004. In vitro flavon-3-ol oxidation mediated by a B ring hydroxylation pattern. Chemical Research in Toxicology 17 (6):795–804. doi: 10.1021/tx034242z.
  • Krishnamurty, H. G., K. J. Cheng, G. A. Jones, F. J. Simpson, and J. E. Watkin. 1970. Identification of products produced by the anaerobic degradation of rutin and related flavonoids by Butyrivibrio sp. C3. Canadian Journal of Microbiology 16 (8):759–67. doi: 10.1139/m70-129.
  • Krishnamurty, H. G, and F. J. Simpson. 1970. Studies with oxygen 18 on the action of a dioxygenase on quercetin. The Journal of Biological Chemistry 245 (6):1467–71.
  • Kubo, I., K. Nihei, and K. Shimizu. 2004. Oxidation products of quercetin catalyzed by mushroom tyrosinase. Bioorganic & Medicinal Chemistry 12 (20):5343–7. doi: 10.1016/j.bmc.2004.07.050.
  • Kumar, S, and A. K. Pandey. 2013. Chemistry and biological activities of flavonoids: an overview. Scientific World Journal. 29:162750.
  • Lee, J., S. E. Ebeler, J. A. Zweigenbaum, and A. E. Mitchell. 2012. UHPLC-(ESI)QTOF MS/MS profiling of quercetin metabolites in human plasma postconsumption of applesauce enriched with apple peel and onion. Journal of Agricultural and Food Chemistry 60 (34):8510–20. doi: 10.1021/jf302637t.
  • Leopoldini, M., N. Russo, and M. Toscano. 2006. Gas and liquid phase acidity of natural antioxidants. Journal of Agricultural and Food Chemistry 54 (8):3078–85. doi: 10.1021/jf053180a.
  • Li, H., X. Wang, G. Tian, and Y. Liu. 2018. Insights into the dioxygen activation and catalytic mechanism of the nickel-containing quercetinase. Catalysis Science & Technology 8 (9):2340–51. doi: 10.1039/C8CY00187A.
  • Li, X., J. Guo, J. Lian, F. Gao, A. J. Khan, T. Wang, and F. Zhang. 2021. Molecular simulation study on the interaction between tyrosinase and flavonoids from Sea Buckthorn. ACS Omega 6 (33):21579–85. doi: 10.1021/acsomega.1c02593.
  • Lin, S., H. Zhang, J. Simal-Gandara, K. W. Cheng, M. Wang, H. Cao, and J. Xiao. 2022. Investigation of new products of quercetin formed in boiling water via UPLC-Q-TOF-MS-MS analysis. Food Chemistry 386:132747. doi: 10.1016/j.foodchem.2022.132747.
  • Liu, F., I. Rehmani, S. Esaki, R. Fu, L. Chen, V. de Serrano, and A. Liu. 2013. Pirin is an iron-dependent redox regulator of NF-κB. Proceedings of the National Academy of Sciences of the United States of America 110 (24):9722–7. doi: 10.1073/pnas.1221743110.
  • Liu, W., Y. Feng, S. Yu, Z. Fan, X. Li, J. Li, and H. Yin. 2021. The flavonoid biosynthesis network in plants. International Journal of Molecular Sciences 22 (23):12824. doi: 10.3390/ijms222312824.
  • Lomozová, Z., M. C. Catapano, M. Hrubša, J. Karlíčková, K. Macáková, R. Kučera, and P. Mladěnka. 2021. Chelation of iron and copper by quercetin b-ring methyl metabolites, isorhamnetin and tamarixetin, and their effect on metal-based fenton chemistry. Journal of Agricultural and Food Chemistry 69 (21):5926–37. doi: 10.1021/acs.jafc.1c01729.
  • Lu, N., Y. Sui, R. Tian, and Y. Y. Peng. 2018. Inhibitive effects of quercetin on myeloperoxidase-dependent hypochlorous acid formation and vascular endothelial injury. Journal of Agricultural and Food Chemistry 66 (19):4933–40. doi: 10.1021/acs.jafc.8b01537.
  • Luca, S. V., I. Macovei, A. Bujor, A. Miron, K. Skalicka-Woźniak, A. C. Aprotosoaie, and A. Trifan. 2020. Bioactivity of dietary polyphenols: the role of metabolites. Critical Reviews in Food Science and Nutrition 60 (4):626–59. doi: 10.1080/10408398.2018.1546669.
  • Magar, R. T, and J. K. Sohng. 2020. A review on structure, modifications and structure-activity relation of quercetin and its derivatives. Journal of Microbiology and Biotechnology 30 (1):11–20. doi: 10.4014/jmb.1907.07003.
  • Makris, D. P, and J. T. Rossiter. 2002. An investigation on structural aspects influencing product formation in enzymic and chemical oxidation of quercetin and related flavonols. Food Chem. 77 (2):177–85. doi: 10.1016/S0308-8146(01)00333-8.
  • Marfak, A., P. Trouillas, D. P. Allais, Y. Champavier, C. A. Calliste, and J. L. Duroux. 2002. Radiolysis of quercetin in methanol solution: observation of depside formation. Journal of Agricultural and Food Chemistry 50 (17):4827–33. doi: 10.1021/jf020165m.
  • Matsuura, T., H. Matsushima, and H. Sakamoto. 1967. Photosensitized oxygenation of 3-hydroxyflavones. A possible model for biological oxygenation. Journal of the American Chemical Society 89 (24):6370–1. doi: 10.1021/ja01000a078.
  • Miltonprabu, S. 2019. Quercetin: a flavonol with versatile therapeutic applications and its interactions with other drugs. In Nonvitamin and nonmineral nutritional supplements, ed. S. M. Nabavi and A. S. Silva, 75–83. Amsterdam: Elsevier Inc. doi: 10.1016/B978-0-12-812491-8.00010-2.
  • Muhlemann, J. K., T. L. B. Younts, and G. K. Muday. 2018. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proceedings of the National Academy of Sciences of the United States of America 115 (47):E11188–E11197. doi: 10.1073/pnas.1811492115.
  • Muñoz-Reyes, D., A. I. Morales, and M. Prieto. 2021. Transit and metabolic pathways of quercetin in tubular cells: involvement of its antioxidant properties in the kidney. Antioxidants (Basel) 10 (6):909. doi: 10.3390/antiox10060909.
  • Nabavi, S. F., G. L. Russo, M. Daglia, and S. M. Nabavi. 2015. Role of quercetin as an alternative for obesity treatment: you are what you eat!. Food Chemistry 179:305–10. doi: 10.1016/j.foodchem.2015.02.006.
  • Nishinaga, A., T. Tojo, H. Tomita, and T. Matsuura. 1979. Base-catalysed oxygenolysis of 3-hydroxyflavones. Journal of the Chemical Society, Perkin Transactions 1 2511–6. doi: 10.1039/p19790002511.
  • Novais, E. J., V. A. Tran, S. N. Johnston, K. R. Darris, A. J. Roupas, G. A. Sessions, I. M. Shapiro, B. O. Diekman, and M. V. Risbud. 2021. Long-term treatment with senolytic drugs dasatinib and quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nature Communications 12 (1):5213. doi: 10.1038/s41467-021-25453-2.
  • Oka, T., F. J. Simpson, J. J. Child, and C. Mills. 1971. Degradation of rutin by Aspergillus flavus. Purification of the dioxygenase, querecentinase. Canadian Journal of Microbiology 17 (1):111–8. doi: 10.1139/m71-019.
  • Oka, T., F. J. Simpson, and H. G. Krishnamurty. 1972. Degradation of rutin by Aspergillus flavus. Studies on specificity, inhibition, and possible reaction mechanism of quercetinase. Canadian Journal of Microbiology 18 (4):493–508. doi: 10.1139/m72-076.
  • Omar, K., M. H. Grant, C. Henderson, and D. G. Watson. 2014. The complex degradation and metabolism of quercetin in rat hepatocyte incubations. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 44 (12):1074–82. doi: 10.3109/00498254.2014.932032.
  • Orhan, I. E. 2021. Cholinesterase inhibitory potential of quercetin towards Alzheimer’s disease-a promising natural molecule or fashion of the day?-A narrowed review. Current Neuropharmacology 19 (12):2205–13. doi: 10.2174/1570159X18666201119153807.
  • Orozco-Nunnelly, D. A., D. Muhammad, R. Mezzich, B. S. Lee, L. Jayathilaka, L. S. Kaufman, and K. M. Warpeha. 2014. Pirin1 (PRN1) is a multifunctional protein that regulates quercetin, and impacts specific light and UV responses in the seed-to-seedling transition of Arabidopsis thaliana. PLoS One. 9 (4):e93371. doi: 10.1371/journal.pone.0093371.
  • Osman, A., D. P. Makris, and P. Kefalas. 2008. Investigation on biocatalytic properties of a peroxidase-active homogenate from onion solid wastes: an insight into quercetin oxidation mechanism. Process Biochemistry. 43 (8):861–7. doi: 10.1016/j.procbio.2008.04.003.
  • Pang, H., M. Bartlam, Q. Zeng, H. Miyatake, T. Hisano, K. Miki, L. L. Wong, G. F. Gao, and Z. Rao. 2004. Crystal structure of human pirin: an iron-binding nuclear protein and transcription cofactor. The Journal of Biological Chemistry 279 (2):1491–8. doi: 10.1074/jbc.M310022200.
  • Perez-Dominguez, F., D. Carrillo-Beltrán, R. Blanco, J. P. Muñoz, G. León-Cruz, A. H. Corvalan, U. Urzúa, G. M. Calaf, and F. Aguayo. 2021. Role of Pirin, an oxidative stress sensor protein, in epithelial carcinogenesis. Biology (Basel) 10 (2):116. doi: 10.3390/biology10020116.
  • Pietta, P. G. 2000. Flavonoids as antioxidants. Journal of Natural Products 63 (7):1035–42. doi:10.1021/np9904509.
  • Pollastri, S, and M. Tattini. 2011. Flavonols: old compounds for old roles. Annals of Botany 108 (7):1225–33. doi: 10.1093/aob/mcr234.
  • Pourcel, L., J. M. Routaboul, V. Cheynier, L. Lepiniec, and I. Debeaujon. 2007. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science 12 (1):29–36. doi: 10.1016/j.tplants.2006.11.006.
  • Procházková, D., I. Boušová, and N. Wilhelmová. 2011. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82 (4):513–23. doi: 10.1016/j.fitote.2011.01.018.
  • Ramos, F. A., Y. Takaishi, M. Shirotori, Y. Kawaguchi, K. Tsuchiya, H. Shibata, T. Higuti, T. Tadokoro, and M. Takeuchi. 2006. Antibacterial and antioxidant activities of quercetin oxidation products from yellow onion (Allium cepa) skin. Journal of Agricultural and Food Chemistry 54 (10):3551–7. doi: 10.1021/jf060251c.
  • Ramsden, C. A, and P. A. Riley. 2014. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorganic & Medicinal Chemistry 22 (8):2388–95. doi: 10.1016/j.bmc.2014.02.048.
  • Ranawat, P., C. M. Pathak, and K. L. Khanduja. 2013. A new perspective on the quercetin paradox in male reproductive dysfunction. Phytotherapy Research: PTR 27 (6):802–10. doi: 10.1002/ptr.4799.
  • Rogozinska, M, and M. Biesaga. 2020. Decomposition of flavonols in the presence of saliva. Applied Sciences 10 (21):7511. doi: 10.3390/app10217511.
  • Russo, M., C. Spagnuolo, I. Tedesco, S. Bilotto, and G. L. Russo. 2012. The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochemical Pharmacology. 83 (1):6–15. doi: 10.1016/j.bcp.2011.08.010.
  • Rusznyák, S, and A. Szent-Györgyi. 1936. Vitamin P: flavonols as vitamins. Nature 138 (3479):27– doi: 10.1038/138027a0.
  • Saito, K., K. Yonekura-Sakakibara, R. Nakabayashi, Y. Higashi, M. Yamazaki, T. Tohge, and A. R. Fernie. 2013. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiology and Biochemistry: PPB 72:21–34. doi: 10.1016/j.plaphy.2013.02.001.
  • Saito, T., T. Kawakami, S. Yamanaka, and M. Okumura. 2015. Computational study of catalytic reaction of quercetin 2,4-dioxygenase. The Journal of Physical Chemistry. B 119 (23):6952–62. doi: 10.1021/acs.jpcb.5b03564.
  • Schneider, C., O. N. Gordon, R. L. Edwards, and P. B. Luis. 2015. Degradation of curcumin: from mechanism to biological implications. Journal of Agricultural and Food Chemistry 63 (35):7606–14. doi: 10.1021/acs.jafc.5b00244.
  • Schreiber, W. 1974. Action of horse radish peroxidase upon some falvones. FEBS Letters 41 (1):50–2. doi: 10.1016/0014-5793(74)80951-8.
  • Schreier, P, and E. Miller. 1985. Studies on flavonol degradation by peroxidase (donor: H2O2-oxidoreductase, EC 1.11.1.7): part 2—quercetin. Food Chemistry. 18 (4):301–17. doi: 10.1016/0308-8146(85)90111-6.
  • Serreli, G, and M. Deiana. 2019. In vivo formed metabolites of polyphenols and their biological efficacy. Food & Function 10 (11):6999–7021. doi: 10.1039/c9fo01733j.
  • Shiba, Y., T. Kinoshita, H. Chuman, Y. Taketani, E. Takeda, Y. Kato, M. Naito, K. Kawabata, A. Ishisaka, J. Terao, et al. 2008. Flavonoids as substrates and inhibitors of myeloperoxidase: molecular actions of aglycone and metabolites. Chemical Research in Toxicology 21 (8):1600–9. doi: 10.1021/tx8000835.
  • Siegbahn, P. E. 2004. Hybrid DFT study of the mechanism of quercetin 2,3-dioxygenase. Inorganic Chemistry 43 (19):5944–53. doi: 10.1021/ic0498541.
  • Simpson, F. J., G. Talbot, and D. W. Westlake. 1960. Production of carbon monoxide in the enzymatic degradation of rutin. Biochemical and Biophysical Research Communications 2:15–8. doi: 10.1016/0006-291x(60)90255-2.
  • Simpson, F. J., N. Narasimhachari, and D. W. S. Westlake. 1963. Degradation of rutin by Aspergillus flavus: the carbon monoxide producing system. Canadian Journal of Microbiology 9 (1):15–25. doi: 10.1139/m63-002.
  • Singh, P., Y. Arif, A. Bajguz, and S. Hayat. 2021. The role of quercetin in plants. Plant Physiology and Biochemistry: PPB 166:10–9. doi: 10.1016/j.plaphy.2021.05.023.
  • Slimestad, R., T. Fossen, and I. M. Vågen. 2007. Onions: a source of unique dietary flavonoids. Journal of Agricultural and Food Chemistry 55 (25):10067–80. doi: 10.1021/jf0712503.
  • Smith, W. L. 2008. Nutritionally essential fatty acids and biologically indispensable cyclooxygenases. Trends in Biochemical Sciences 33 (1):27–37. doi: 10.1016/j.tibs.2007.09.013.
  • Sokolová, R., Š. Ramešová, I. Degano, M. Hromadová, M. Gál, and J. Žabka. 2012. The oxidation of natural flavonoid quercetin. Chemical Communications (Cambridge, England) 48 (28):3433–5. doi: 10.1039/c2cc18018a.
  • Solomon, E. I. 2016. Dioxygen binding, activation, and reduction to H2O by Cu enzymes. Inorganic Chemistry 55 (13):6364–75. doi: 10.1021/acs.inorgchem.6b01034.
  • Speisky, H., F. Shahidi, A. Costa de Camargo, and J. Fuentes. 2022. Revisiting the oxidation of flavonoids: loss, conservation or enhancement of their antioxidant properties. Antioxidants (Basel) 11 (1):133. doi: 10.3390/antiox11010133.
  • Spencer, J. P., G. G. Kuhnle, R. J. Williams, and C. Rice-Evans. 2003. Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites. The Biochemical Journal 372 (Pt 1):173–81. doi: 10.1042/BJ20021972.
  • Steiner, R. A., K. H. Kalk, and B. W. Dijkstra. 2002. Anaerobic enzyme.substrate structures provide insight into the reaction mechanism of the copper-dependent quercetin 2,3-dioxygenase. Proceedings of the National Academy of Sciences of the United States of America 99 (26):16625–30. doi: 10.1073/pnas.262506299.
  • Stevens, J. F, and C. S. Maier. 2016. The chemistry of gut microbial metabolism of polyphenols. Phytochemistry Reviews: Proceedings of the Phytochemical Society of Europe 15 (3):425–44. doi: 10.1007/s11101-016-9459-z.
  • Talà, A., F. Damiano, G. Gallo, E. Pinatel, M. Calcagnile, M. Testini, D. Fico, D. Rizzo, A. Sutera, G. Renzone, et al. 2018. Pirin: a novel redox-sensitive modulator of primary and secondary metabolism in Streptomyces. Metabolic Engineering 48:254–68. doi: 10.1016/j.ymben.2018.06.008.
  • Tang, S. M., X. T. Deng, J. Zhou, Q. P. Li, X. X. Ge, and L. Miao. 2020. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 121:109604. doi: 10.1016/j.biopha.2019.109604.
  • Terao, J., K. Murota, and Y. Kawai. 2011. Conjugated quercetin glucuronides as bioactive metabolites and precursors of aglycone in vivo. Food & Function 2 (1):11–7. doi: 10.1039/c0fo00106f.
  • Tian, R., Z. Jin, L. Zhou, X. P. Zeng, and N. Lu. 2021. Quercetin attenuated myeloperoxidase-dependent HOCl generation and endothelial dysfunction in diabetic vasculature. Journal of Agricultural and Food Chemistry 69 (1):404–13. doi: 10.1021/acs.jafc.0c06335.
  • Timbola, A. K.,C. D. d Souza,C Giacomelli, andA Spinelli. 2006. Electrochemical oxidation of quercetin in hydro-alcoholic solution. Journal of the Brazilian Chemical Society 17 (1):139–48. doi:10.1590/S0103-50532006000100020.
  • Tranchimand, S., P. Brouant, and G. Iacazio. 2010. The rutin catabolic pathway with special emphasis on quercetinase. Biodegradation 21 (6):833–59. doi: 10.1007/s10532-010-9359-7.
  • Trouillas, P., P. Marsal, D. Siri, R. Lazzaroni, and J.-L. Duroux. 2006. A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: the specificity of the 3-OH site. Food Chemistry 97 (4):679–88. doi: 10.1016/j.foodchem.2005.05.042.
  • Twala, P. P., A. Mitema, C. Baburam, and N. A. Feto. 2020. Breakthroughs in the discovery and use of different peroxidase isoforms of microbial origin. AIMS Microbiology 6 (3):330–49. doi: 10.3934/microbiol.2020020.
  • Ulusoy, H. G, and N. Sanlier. 2020. A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Critical Reviews in Food Science and Nutrition 60 (19):3290–303. doi: 10.1080/10408398.2019.1683810.
  • Uno, Y., S. Uehara, and H. Yamazaki. 2022. Drug-oxidizing and conjugating non-cytochrome P450 (non-P450) enzymes in cynomolgus monkeys and common marmosets as preclinical models for humans. Biochemical Pharmacology 197:114887. doi: 10.1016/j.bcp.2021.114887.
  • Vásquez-Espinal, A., O. Yañez, E. Osorio, C. Areche, O. García-Beltrán, L. M. Ruiz, B. K. Cassels, and W. Tiznado. 2019. Theoretical study of the antioxidant activity of quercetin oxidation products. Frontiers in Chemistry 7:818. doi: 10.3389/fchem.2019.00818.
  • Vinson, J. A. 2019. Intracellular polyphenols: how little we know. Journal of Agricultural and Food Chemistry 67 (14):3865–70. doi: 10.1021/acs.jafc.8b07273.
  • Vlasits, J., C. Jakopitsch, M. Bernroitner, M. Zamocky, P. G. Furtmüller, and C. Obinger. 2010. Mechanisms of catalase activity of heme peroxidases. Archives of Biochemistry and Biophysics 500 (1):74–81. doi: 10.1016/j.abb.2010.04.018.
  • Walle, T., U. K. Walle, and P. V. Halushka. 2001. Carbon dioxide is the major metabolite of quercetin in humans. The Journal of Nutrition 131 (10):2648–52. doi: 10.1093/jn/131.10.2648.
  • Wang, D., D. Sun-Waterhouse, F. Li, L. Xin, and D. Li. 2019. MicroRNAs as molecular targets of quercetin and its derivatives underlying their biological effects: a preclinical strategy. Critical Reviews in Food Science and Nutrition 59 (14):2189–201. doi: 10.1080/10408398.2018.1441123.
  • Wang, P., H. W. Bai, and B. T. Zhu. 2010. Structural basis for certain naturally occurring bioflavonoids to function as reducing co-substrates of cyclooxygenase I and II. PLoS One 5 (8):e12316. doi: 10.1371/journal.pone.0012316.
  • Wang, W. J., W. J. Wei, and R. Z. Liao. 2018. Deciphering the chemoselectivity of nickel-dependent quercetin 2,4-dioxygenase. Physical Chemistry Chemical Physics: PCCP 20 (23):15784–94. doi: 10.1039/c8cp02683a.
  • Wang, Y., Y. He, M. P. Rayman, and J. Zhang. 2021. Prospective selective mechanism of emerging senolytic agents derived from flavonoids. Journal of Agricultural and Food Chemistry 69 (42):12418–23. doi: 10.1021/acs.jafc.1c04379.
  • Wen, Z., Z.-M. Zhang, L. Zhong, J. Fan, M. Li, Y. Ma, Y. Zhou, W. Zhang, B. Guo, B. Chen, et al. 2021. Directed evolution of a plant glycosyltransferase for chemo- and regioselective glycosylation of pharmaceutically significant flavonoids. ACS Catalysis 11 (24):14781–90. doi: 10.1021/acscatal.1c04191.
  • Westlake, D. W., G. Talbot, E. R. Blakley, and F. J. Simpson. 1959. Microbiol decomposition of rutin. Canadian Journal of Microbiology 5:621–9. doi: 10.1139/m59-076.
  • Westlake, D. W., J. M. Roxburgh, and G. Talbot. 1961. Microbial production of carbon monoxide from flavonoids. Nature 189:510–1. doi: 10.1038/189510a0.
  • Widiatningrum, T., S. Maeda, K. Kataoka, and T. Sakurai. 2015. A pirin-like protein from Pseudomonas stutzeri and its quercetinase activity. Biochemistry and Biophysics Reports 3:144–9. doi: 10.1016/j.bbrep.2015.08.001.
  • van der Woude, H., G. M. Alink, B. E. van Rossum, K. Walle, H. van Steeg, T. Walle, and I. M. Rietjens. 2005. Formation of transient covalent protein and DNA adducts by quercetin in cells with and without oxidative enzyme activity. Chemical Research in Toxicology 18 (12):1907–16. doi: 10.1021/tx050201m.
  • Xiao, L., G. Luo, Y. Tang, and P. Yao. 2018. Quercetin and iron metabolism: what we know and what we need to know. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 114:190–203. doi: 10.1016/j.fct.2018.02.022.
  • Yan, X., J. Song, Q. Lu, and C. Li. 2020. Mechanistic insights into the crucial roles of Glu76 residue in nickel-dependent quercetin 2,4-dioxygenase for quercetin oxidative degradation. Journal of Catalysis 387:73–83. doi: 10.1016/j.jcat.2020.04.016.
  • Yang, D., T. Wang, M. Long, and P. Li. 2020. Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxidative Medicine and Cellular Longevity 2020:8825387. doi: 10.1155/2020/8825387.
  • Yang, C., P. Li, P. Wang, and B. T. Zhu. 2021a. Mechanism of reactivation of the peroxidase catalytic activity of human cyclooxygenases by reducing cosubstrate quercetin. Journal of Molecular Graphics & Modelling 107:107941. doi: 10.1016/j.jmgm.2021.107941.
  • Yang, G., S. Hong, P. Yang, Y. Sun, Y. Wang, P. Zhang, W. Jiang, and Y. Gu. 2021b. Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria. Nature Communications 12 (1):790. doi: 10.1038/s41467-021-20974-2.
  • Yin, Z.-H., C.-H. Sun, and H.-Z. Fang. 2017. Analysis and comparison on fragmentation behavior of quercetin and morin by ESI-MS. Journal of Instrumental Analysis 36 (2):205–11. doi: 10.3969/j.issn.1004-4957.2017.02.009.
  • Yu, Q., L. Fan, and Z. Duan. 2019. Five individual polyphenols as tyrosinase inhibitors: inhibitory activity, synergistic effect, action mechanism, and molecular docking. Food Chemistry 297:124910. doi: 10.1016/j.foodchem.2019.05.184.
  • Zámocký, M., S. Hofbauer, I. Schaffner, B. Gasselhuber, A. Nicolussi, M. Soudi, K. F. Pirker, P. G. Furtmüller, and C. Obinger. 2015. Independent evolution of four heme peroxidase superfamilies. Archives of Biochemistry and Biophysics 574:108–19. doi: 10.1016/j.abb.2014.12.025.
  • Zenkevich, I. G., A. Y. Eshchenko, S. V. Makarova, A. G. Vitenberg, Y. G. Dobryakov, and V. A. Utsal. 2007. Identification of the products of oxidation of quercetin by air oxygen at ambient temperature. Molecules (Basel, Switzerland) 12 (3):654–72. doi: 10.3390/12030654.
  • Zenkevich, I. G, and T. I. Pushkareva. 2017. Systematization of the results of the chromatography–mass spectrometry identification of the products of quercetin oxidation by atmospheric oxygen in aqueous solutions. Journal of Analytical Chemistry 72 (10):1061–75. doi: 10.1134/S1061934817080147.
  • Zhao, X., J. Wang, Y. Deng, L. Liao, M. Zhou, C. Peng, and Y. Li. 2021. Quercetin as a protective agent for liver diseases: a comprehensive descriptive review of the molecular mechanism. Phytotherapy Research: PTR 35 (9):4727–47. doi: 10.1002/ptr.7104.
  • Zhou, A., S. Kikandi, and O. A. Sadik. 2007. Electrochemical degradation of quercetin: isolation and structural elucidation of the degradation products. Electrochemistry Communications 9 (9):2246–55. doi: 10.1016/j.elecom.2007.06.026.
  • Zhou, A, and O. A. Sadik. 2008. Comparative analysis of quercetin oxidation by electrochemical, enzymatic, autoxidation, and free radical generation techniques: a mechanistic study. Journal of Agricultural and Food Chemistry 56 (24):12081–91. doi: 10.1021/jf802413v.
  • Zimmermann, M., M. Zimmermann-Kogadeeva, R. Wegmann, and A. L. Goodman. 2019. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science 363 (6427):eaat9931. doi: 10.1126/science.aat9931.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.