881
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Lifestyle of Listeria monocytogenes and food safety: Emerging listericidal technologies in the food industry

, , &

References

  • Angelo, K. M., A. R. Conrad, A. Saupe, H. Dragoo, N. West, A. Sorenson, A. Barnes, M. Doyle, J. Beal, K. A. Jackson, S, et al. 2017. Multistate outbreak of Listeria monocytogenes infections linked to whole apples used in commercially produced, prepackaged caramel apples: United States, 2014–2015. Epidemiology and Infection 145 (5):848–56. doi: 10.1017/S0950268816003083.
  • Arjunan, K. P., V. K. Sharma, and S. Ptasinska. 2015. Effects of atmospheric pressure plasmas on isolated and cellular DNA - A review. International Journal of Molecular Sciences 16 (2):2971–3016. doi: 10.3390/ijms16022971.
  • Ashokkumar, M. 2011. The characterization of acoustic cavitation bubbles-an overview. Ultrasonics Sonochemistry 18 (4):864–72. doi: 10.1016/j.ultsonch.2010.11.016.
  • Bajard, S., L. Rosso, G. Fardel, and J. Flandrois. 1996. The particular behavior of Listeria monocytogenes under sub-optimal conditions. International Journal of Food Microbiology 29 (2–3):201–11. doi: 10.1016/0168-1605(95)00031-3.
  • Bauer, W. J. 2016. Nanobubble-containing liquid solutions. United States patent. application publication. Pub. No.: US 2016/0236158 A1.
  • Bayles, D. O, and B. J. Wilkinson. 2000. Osmoprotectants and cryoprotectants for Listeria monocytogenes. Letters in Applied Microbiology 30 (1):23–7. doi: 10.1046/j.1472-765x.2000.00646.x.
  • Berrang, M., J. Frank, and R. Meinersmann. 2008. Effect of chemical sanitizers with and without ultrasonication on Listeria monocytogenes as a biofilm within polyvinyl chloride drain pipes. Journal of Food Protection 71 (1):66–9. doi: 10.4315/0362-028X-71.1.66.
  • Bhavya, M. L, and H. U. Hebbar. 2017. Pulsed light processing of foods for microbial safety. Food Quality and Safety 1 (3):187–202. doi: 10.1093/fqsafe/fyx017.
  • Bhushan, B., Y. Wang, and A. Maali. 2008. Coalescence and movement of nanobubbles studied with tapping mode AFM and tip-bubble interaction analysis. Journal of Physics: Condensed Matter 20 (48):485004. doi: 10.1088/0953-8984/20/48/485004.
  • Bogaerts, A., E. Neyts, R. Gijbels, and J. van der Mullen. 2002. Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectroscopy 57 (4):609–58. doi: 10.1016/S0584-8547(01)00406-2.
  • Bourke, P., D. Ziuzina, D. Boehm, P. J. Cullen, and K. Keener. 2018. The potential of cold plasma for safe and sustainable food production. Trends in Biotechnology 36 (6):615–26. doi: 10.1016/j.tibtech.2017.11.001.
  • Chan, Y. C, and M. Wiedmann. 2009. Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures. Critical Reviews in Food Science and Nutrition 49 (3):237–53. doi: 10.1080/10408390701856272.
  • Chapin, T. K., K. K. Nightingale, R. W. Worobo, M. Wiedmann, and L. K. Strawn. 2014. Geographical and meteorological factors associated with isolation of Listeria species in New York state produce production and natural environments. Journal of Food Protection 77 (11):1919–28. doi: 10.4315/0362-028X.JFP-14-132.
  • Cheigh, C. I., H. J. Hwang, and M. S. Chung. 2013. Intense pulsed light (IPL) and UV-C treatments for inactivating Listeria monocytogenes on solid medium and seafoods. Food Research International 54 (1):745–52. doi: 10.1016/j.foodres.2013.08.025.
  • Chiara, M., M. Caruso, A. M. D’Erchia, C. Manzari, R. Fraccalvieri, E. Goffredo, L. Latorre, A. Miccolupo, I. Padalino, G. Santagada, et al. 2015. Comparative genomics of Listeria Sensu Lato: Genus-wide differences in evolutionary dynamics and the progressive gain of complex, potentially pathogenicity-related traits through lateral gene transfer. Genome Biology and Evolution 7 (8):2154–72. doi: 10.1093/gbe/evv131.
  • Cruz, C. D, and G. C. Fletcher. 2011. Prevalence and biofilm-forming ability of Listeria monocytogenes in New Zealand mussel (Perna canaliculus) processing plants. Food Microbiology 28 (7):1387–93. doi: 10.1016/j.fm.2011.06.014.
  • Currie, A., J. M. Farber, C. Nadon, D. Sharma, Y. Whitfield, C. Gaulin, E. Galanis, S. Bekal, J. Flint, L. Tschetter, et al. 2015. Multi-province listeriosis outbreak linked to contaminated Deli meat consumed primarily in institutional settings, Canada, 2008. Foodborne Pathogens and Disease 12 (8):645–52. doi: 10.1089/fpd.2015.1939.
  • De Noordhout, C. M., B. Devleesschauwer, F. J. Angulo, G. Verbeke, J. Haagsma, M. Kirk, A. Havelaar, and N. Speybroeck. 2014. The global burden of listeriosis: A systematic review and meta-analysis. The Lancet. Infectious Diseases 14 (11):1073–82. doi: 10.1016/S1473-3099(14)70870-9.
  • Desneux, J., A. Biscuit, S. Picard, and A. M. Pourcher. 2016. Fate of viable but non-culturable Listeria monocytogenes in pig manure microcosms. Frontiers in Microbiology 7:245. doi: 10.3389/fmicb.2016.00245.
  • Diehl, J. F. 1995. Safety of irradiation foods, 2nd ed. New York: Marcel Dekker Inc.
  • Doganay, M. 2003. Listeriosis: Clinical presentation. FEMS Immunology and Medical Microbiology 35 (3):173–5. doi: 10.1016/S0928-8244(02)00467-4.
  • Dörr, T., K. Lewis, and M. Vulic. 2009. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genetics 5 (12):e1000760. doi: 10.1371/journal.pgen.1000760.
  • Dowe, M. J., E. D. Jackson, J. G. Mori, and C. R. Bell. 1997. Listeria monocytogenes survival in soil and incidence in agricultural soils. Journal of Food Protection 60 (10):1201–7. doi: 10.4315/0362-028X-60.10.1201.
  • Eklund, M. W., F. T. Poysky, R. N. Paranjpye, L. C. Lashbrook, M. E. Peterson, and G. A. Pelroy. 1995. Incidence and source of Listeria monocytogenes in cold-smoked fishery products and processing plants. Journal of Food Protection 58 (5):502–8. doi: 10.4315/0362-028X-58.5.502.
  • European Centre for Disease Prevention and Control. 2018. Multi-country outbreak of Listeria monocytogenes serogroup Ivb, multi-locus sequence type 6, infections linked to frozen corn and possibly to other frozen vegetables – First update. European Food Safety Authority 15 (7):1448E. doi: 10.2903/sp.efsa.2018.EN-1448.
  • Fan, X, and B. A. Niemira. 2020. Gamma ray, electron beam, and x-ray irradiation. In Food Safety Engineering Series, Ed. Demirici, A., Feng, H., Krishnamurthy, K., 471–92. Cham: Springer. doi: 10.1007/978-3-030-42660-6_18.
  • Ferreira, V., M. Wiedmann, P. Teixeira, and M. J. Stasiewicz. 2014. Listeria monocytogenes persistence in food-associated environments: Epidemiology, strain characteristics, and implications for public health. Journal of Food Protection 77 (1):150–70. doi: 10.4315/0362-028X.JFP-13-150.
  • Fiedler, F. 1988. Biochemistry of the cell surface of Listeria strains: A locating general view. Infection 16 (S2):S92–S97. doi: 10.1007/BF01639729.
  • Gale, J. M., K. A. Nissen, and M. J. Smerdon. 1987. UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases. Proceedings of the National Academy of Sciences of the United States of America 84 (19):6644–8. doi: 10.1073/pnas.84.19.6644.
  • Ganesan, A. R., U. Tiwari, P. N. Ezhilarasi, and G. Rajauria. 2021. Application of cold plasma on food matrices: A review on current and future prospects. Journal of Food Processing and Preservation 45 (1):e15070. doi: 10.1111/jfpp.15070.
  • Gaulin, C., D. Ramsay, and S. Bekal. 2012. Widespread listeriosis outbreak attributable to pasteurized cheese, which led to extensive cross-contamination affecting cheese retailers, Quebec, Canada, 2008. Journal of Food Protection 75 (1):71–8. doi: 10.4315/0362-028X.JFP-11-236.
  • Gianfranceschi, M. V., M. C. D’Ottavio, A. Gattuso, A. Bella, and P. Aureli. 2009. Distribution of serotypes and pulsotypes of Listeria monocytogenes from human, food and environmental isolates (Italy 2002-2005). Food Microbiology 26 (5):520–6. doi: 10.1016/j.fm.2009.03.003.
  • Giotis, E. S., A. Muthaiyan, I. S. Blair, B. J. Wilkinson, and D. A. McDowell. 2008. Genomic and proteomic analysis of the alkali-tolerance response (AlTR) in Listeria monocytogenes 10403S. BMC Microbiology 8:102. doi: 10.1186/1471-2180-8-102.
  • Glaser, P., L. Frangeul, C. Buchrieser, C. Rusniok, A. Amend, F. Baquero, P. Berche, H. Bloecker, P. Brandt, T. Chakraborty, et al. 2001. Comparative genomics of Listeria species. Science (New York, N.Y.) 294 (5543):849–52. doi: 10.1126/science.1063447.
  • Govaert, M., C. Smet, D. Verheyen, J. L. Walsh, and J. F. M. Van Impe. 2019. Combined effect of cold atmospheric plasma and hydrogen peroxide treatment on mature Listeria monocytogenes and Salmonella Typhimurium biofilms. Frontiers in Microbiology 10:2674. doi: 10.3389/fmicb.2019.02674.
  • Government of Canada. 2009. Report of the Independent Investigator into the 2008 Listeriosis Outbreak. https://publications.gc.ca/collections/collection_2009/agr/A22-508-2009E.pdf, retrieved March, 2022.
  • Gómez-López, V. M., P. Ragaert, J. Debevere, and F. Devlieghere. 2007. Pulsed light for food decontamination: A review. Trends in Food Science & Technology 18 (9):464–73. doi: 10.1016/j.tifs.2007.03.010.
  • Guenther, S., D. Huwyler, S. Richard, and M. J. Loessner. 2009. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Applied and Environmental Microbiology 75 (1):93–100. doi: 10.1128/AEM.01711-08.
  • Guerreiro, D. N., J. Wu, E. McDermott, D. Garmyn, P. Dockery, A. Boyd, P. Piveteau, and C. P. O’Byrne. 2022. In Vitro evolution of Listeria monocytogenes reveals selective pressure for loss of SigB and AgrA function at different incubation temperatures. Applied and Environmental Microbiology 88 (11):e0033022. doi: 10.1128/aem.00330-22.
  • Guilbaud, M., P. Piveteau, M. Desvaux, S. Brisse, and R. Briandet. 2015. Exploring the diversity of Listeria monocytogenes biofilm architecture by high-throughput confocal laser scanning microscopy and the predominance of the honeycomb-like morphotype. Applied and Environmental Microbiology 81 (5):1813–9. doi: 10.1128/AEM.03173-14.
  • Guillet, C., O. Join-Lambert, A. Le Monnier, A. Leclercq, F. Mechaï, M. F. Mamzer-Bruneel, M. K. Bielecka, M. Scortti, O. Disson, P. Berche, et al. 2010. Human listeriosis caused by Listeria ivanovii. Emerging Infectious Diseases 16 (1):136–8. doi: 10.3201/eid1601.091155.
  • Halbedel, S., H. Wilking, A. Holzer, S. Kleta, M. A. Fischer, S. Lüth, A. Pietzka, S. Huhulescu, R. Lachmann, A. Krings, et al. 2020. Large nationwide outbreak of invasive listeriosis associated with blood sausage, Germany, 2018–2019. Emerging Infectious Diseases 26 (7):1456–64. doi: 10.3201/eid2607.200225.
  • Hernandez-Milian, A, and A. Payeras-Cifre. 2014. What is new in listeriosis? BioMed Research International 2014:358051. 10.1155/2014/358051
  • Ho, A. J., R. Ivanek, Y. T. Gröhn, K. K. Nightingale, and M. Wiedmann. 2007. Listeria monocytogenes fecal shedding in dairy cattle shows high levels of day-to-day variation and includes outbreaks and sporadic cases of shedding of specific L. monocytogenes subtypes. Preventive Veterinary Medicine 80 (4):287–305. doi: 10.1016/j.prevetmed.2007.03.005.
  • Hoffman, A. D., K. L. Gall, D. M. Norton, and M. Wiedmann. 2003. Listeria monocytogenes contamination patterns for the smoked fish processing environment and for raw fish. Journal of Food Protection 66 (1):52–60. doi: 10.4315/0362-028X-66.1.52.
  • Hurtado, A., M. Ocejo, and B. Oporto. 2017. Salmonella spp. and Listeria monocytogenes shedding in domestic ruminants and characterization of potentially pathogenic strains. Veterinary Microbiology 210:71–6. doi: 10.1016/j.vetmic.2017.09.003.
  • Ivanek, R., Y. T. Gröhn, L. W. Tauer, and M. Wiedmann. 2004. The cost and benefit of Listeria monocytogenes food safety measures. Critical Reviews in Food Science and Nutrition 44 (7–8):513–23. doi: 10.1080/10408690490489378.
  • Jannesari, M., O. Akhavan, H. R. M. Hosseini, and B. Bakhshi. 2020. Graphene/CuCO2 nanoshuttles with controllable release of oxygen nanobubbles promoting interruption of bacterial respiration. ACS Applied Materials & Interfaces 12 (32):35813–25. doi: 10.1021/acsami.0c05732.
  • Jeon, M. J, and J. W. Ha. 2020. Synergistic bactericidal effect and mechanism of x-ray irradiation and citric acid combination against food-borne pathogens on spinach leaves. Food Microbiology 91:103543. doi: 10.1016/j.fm.2020.103543.
  • Kadam, S. R., H. M. W. den Besten, S. van der Veen, M. H. Zwietering, R. Moezelaar, and T. Abee. 2013. Diversity assessment of Listeria monocytogenes biofilm formation: Impact of growth condition, serotype and strain origin. International Journal of Food Microbiology 165 (3):259–64. doi: 10.1016/j.ijfoodmicro.2013.05.025.
  • Kleta, S., J. A. Hammerl, R. Dieckmann, B. Malorny, M. Borowiak, S. Halbedel, R. Prager, E. Trost, A. Flieger, H. Wilking, et al. 2017. Molecular tracing to find source of protracted invasive listeriosis outbreak, southern Germany, 2012–2016. Emerging Infectious Diseases 23 (10):1680–3. doi: 10.3201/eid2310.161623.
  • Kljujev, I., V. Raicevic, J. Jovicic-Petrovic, B. Vujovic, M. Mirkovic, and M. Rothballer. 2018. Listeria monocytogenes – danger for health safety vegetable production. Microbial Pathogenesis 120:23–31. doi: 10.1016/j.micpath.2018.04.034.
  • Knudsen, G. M., Y. Ng, and L. Gram. 2013. Survival of bactericidal antibiotic treatment by a persister subpopulation of Listeria monocytogenes. Applied and Environmental Microbiology 79 (23):7390–7. doi: 10.1128/AEM.02184-13.
  • Kovacevic, J., J. Ziegler, E. Wałecka-Zacharska, A. Reimer, D. D. Kitts, and M. W. Gilmour. 2016. Tolerance of Listeria monocytogenes to quaternary ammonium sanitizers is mediated by a novel efflux pump encoded by emrE. Applied and Environmental Microbiology 82 (3):939–53. doi: 10.1128/AEM.03741-15.
  • Kramer, B., J. Wunderlich, and P. Muranyi. 2017. Recent findings in pulsed light disinfection. Journal of Applied Microbiology 122 (4):830–56. doi: 10.1111/jam.13389.
  • Kyere, E. O., G. Foong, J. Palmer, J. J. Wargent, G. C. Fletcher, and S. Flint. 2019. Rapid attachment of Listeria monocytogenes to hydroponic and soil grown lettuce leaves. Food Control. 101:77–80. doi: 10.1016/j.foodcont.2019.02.015.
  • Laroussi, M., D. A. Mendis, and M. Rosenberg. 2003. Plasma interaction with microbes. New Journal of Physics 5:41– doi: 10.1088/1367-2630/5/1/341.
  • Lassen, S. G., S. Ethelberg, J. T. Bjorkman, T. Jensen, G. Sorensen, A. K. Jensen, L. Muller, E. M. Nielsen, and K. Molbak. 2016. Two listeria outbreaks caused by smoked fish consumption – Using whole-genome sequencing for outbreak investigations. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases 22 (7):620–4. doi: 10.1016/j.cmi.2016.04.017.
  • Lee, B. H., S. Cole, S. Badel-Berchoux, L. Guillier, B. Felix, N. Krezdorn, M. Hébraud, T. Bernardi, I. Sultan, and P. Piveteau. 2019. Biofilm formation of Listeria monocytogenes strains under food processing environments and pan-genome-wide association study. Frontiers in Microbiology 10:2698. doi: 10.3389/fmicb.2019.02698.
  • Lee, N. Y., S. W. Kim, and S. D. Ha. 2014. Synergistic effect of ultrasound and sodium hypochlorite (NaOCl) on reducing Listeria monocytogenes ATCC19118 in broth, stainless steel, and iceberg lettuce. Foodborne Pathogens and Disease 11 (7):581–7. doi: 10.1089/fpd.2013.1722.
  • Leistner, L. 2000. Basic aspects of food preservation by hurdle technology. International Journal of Food Microbiology 55 (1–3):181–6. doi: 10.1016/S0168-1605(00)00161-6.
  • Li, Z., A. Perez-Osorio, Y. Wang, K. Eckmann, W. A. Glover, M. W. Allard, E. W. Brown, and Y. Chen. 2017. Whole genome sequencing analyses of Listeria monocytogenes that persisted in a milkshake machine for a year and caused illnesses in Washington State. BMC Microbiology 17 (1):134. doi: 10.1186/s12866-017-1043-1.
  • Li, J., J. Ahn, D. Liu, S. Chen, X. Ye, and T. Ding. 2016. Evaluation of ultrasound-induced damage to Escherichia coli and Staphylococcus aureus by flow cytometry and transmission electron microscopy. Applied and Environmental Microbiology 82 (6):1828–37. doi: 10.1128/AEM.03080-15.
  • Lianou, A., A. Kakouri, E. C. Pappa, and J. Samelis. 2017. Growth interactions and antilisterial effects of the bacteriocinogenic Lactococcus lactis subsp. cremoris M104 and Enterococcus faecium KE82 strains in thermized milk in the presence or absence of a commercial starter culture. Food Microbiology 64:145–54. doi: 10.1016/j.fm.2016.12.019.
  • Liao, X., P. J. Cullen, A. I. Muhammad, Z. Jiang, X. Ye, D. Liu, and T. Ding. 2020. Cold plasma-based hurdle interventions: New strategies for improving food safety. Food Engineering Reviews 12 (3):321–32. doi: 10.1007/s12393-020-09222-3.
  • Lill, R. 2009. Function and biogenesis of iron-sulfur proteins. Nature 460 (7257):831–8. doi: 10.1038/nature08301.
  • Liu, X., M. Omar, J. E. Abrahante, K. V. Nagaraja, and S. Vidovic. 2020. Insights into the oxidative stress response of Salmonella ­enterica serovar Enteritidis revealed by the next generation sequencing approach. Antioxidants 9 (9):849. doi: 10.3390/antiox9090849.
  • Locatelli, A., A. Spor, C. Jolivet, P. Piveteau, and A. Hartmann. 2013. Biotic and abiotic soil properties influence survival of Listeria monocytogenes in soil. PloS One 8 (10):e75969. doi: 10.1371/journal.pone.0075969.
  • Lou, Y, and A. E. Yousef. 1997. Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factor. Applied and Environmental Microbiology 63 (4):1252–5. doi: 10.1128/aem.63.4.1252-1255.1997.
  • Lyautey, E., D. R. Lapen, G. Wilkes, K. McCleary, F. Pagotto, K. Tyler, A. Hartmann, P. Piveteau, A. Rieu, W. J. Robertson, et al. 2007. Distribution and characteristics of Listeria monocytogenes isolates from surface waters of the South Nation River watershed, Ontario, Canada. Applied and Environmental Microbiology 73 (17):5401–10. doi: 10.1128/AEM.00354-07.
  • Lyu, T., S. Wu, R. J. G. Mortimer, and G. Pan. 2019. Nanobubble technology in environmental engineering: Revolutionization potential and challenges. Environmental Science & Technology 53 (13):7175–6. doi: 10.1021/acs.est.9b02821.
  • Mahendran, R., K. R. Ramanan, F. J. Barba, J. M. Lorenzo, O. López-Fernández, P. E. Munekata, S. Roohinejad, A. S. Sant’Ana, and B. K. Tiwari. 2019. Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends in Food Science & Technology 88:67–79. doi: 10.1016/j.tifs.2019.03.010.
  • Makino, K., K. Oshima, K. Kurokawa, K. Yokoyama, T. Uda, K. Tagomori, Y. Iijima, M. Najima, M. Nakano, A. Yamashita, et al. 2003. Genome sequence of Vibrio parahaemolyticus: A pathogenic mechanism distinct from that of V cholerae. Lancet (London, England) 361 (9359):743–9. doi: 10.1016/S0140-6736(03)12659-1.
  • Mandal, R., X. Mohammadi, A. Wiktor, A. Singh, and A. P. Singh. 2020. Applications of pulsed light decontamination technology in food processing: An overview. Applied Sciences 10 (10):3606. doi: 10.3390/app10103606.
  • Maury, M. M., Y. H. Tsai, C. Charlier, M. Touchon, V. Chenal-Francisque, A. Leclercq, A. Criscuolo, C. Gaultier, S. Roussel, A. Brisabois, et al. 2016. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nature Genetics 48 (3):308–13. doi: 10.1038/ng.3501.
  • McCollum, J. T., A. B. Cronquist, B. J. Silk, K. A. Jackson, K. A. O’Connor, S. Cosgrove, J. P. Gossack, S. S. Parachini, N. S. Jain, P. Ettestad, et al. 2013. Multistate outbreak of listeriosis associated with cantaloupe. The New England Journal of Medicine 369 (10):944–53. doi: 10.1056/NEJMoa1215837.
  • McLauchlin, J, and C. E. D. Reese. 2009. Genus I. Listeria. In Bergey’s Manual of Systematic Bacteriology, ed. de Vos, P., G.M. Garrity, D. Jones, N. R. Krieg, W. Ludwig, F.A. Rainey, K. Schleifer, W.B. Whitman, vol. 3. 2nd ed. New York: Springer. 244–57.
  • McLaughlin, H. P., P. G. Casey, J. Cotter, C. G. M. Gahan, and C. Hill. 2011. Factors affecting survival of Listeria monocytogenes and Listeria innocua in soil samples. Archives of Microbiology 193 (11):775–85. doi: 10.1007/s00203-011-0716-7.
  • Mead, P. S., L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerging Infectious Diseases 5 (5):607–25. doi: 10.3201/eid0505.990502.
  • Miettinen, M. K., K. J. Björkroth, and H. J. Korkeala. 1999. Characterization of Listeria monocytogenes from an ice cream plant by serotyping and pulsed-field gel electrophoresis. International Journal of Food Microbiology 46 (3):187–92. doi: 10.1016/S0168-1605(98)00185-8.
  • Milillo, S. R., E. C. Friedly, J. C. Saldivar, A. Muthaiyan, C. O’Bryan, P. G. Crandall, M. G. Johnson, and S. C. Ricke. 2012. A review of the ecology, genomics, and stress response of Listeria innocua and Listeria monocytogenes. Critical Reviews in Food Science and Nutrition 52 (8):712–25. doi: 10.1080/10408398.2010.507909.
  • Misra, N. N, and C. Jo. 2017. Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science & Technology 64:74–86. doi: 10.1016/j.tifs.2017.04.005.
  • Mohan, V., R. Wibisono, L. de Hoop, G. Summers, and G. C. Fletcher. 2019. Identifying suitable Listeria innocua strains as surrogates for Listeria monocytogenes for horticultural products. Frontiers in Microbiology 10:2281. doi: 10.3389/fmicb.2019.02281.
  • Montgomery, N. L, and P. Banerjee. 2015. Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in biofilms by pulsed ultraviolet light. BMC Research Notes 8 (1):235. doi: 10.1186/s13104-015-1206-9.
  • Morita, R., S. Nakane, A. Shimada, M. Inoue, H. Iino, T. Wakamatsu, K. Fukui, N. Nakagawa, R. Masui, and S. Kuramitsu. 2010. Molecular mechanisms of the whole DNA repair system: A comparison of bacterial and eukaryotic systems. Journal of Nucleic Acids 2010:179594. doi: 10.4061/2010/179594.
  • Møller, P., N. P. Jacobsen, J. K. Folkmann, P. H. Danielsen, L. Mikkelsen, J. G. Hemmingsen, L. K. Vesterdal, L. Forchhammer, H. Wallin, and S. Loft. 2010. Role of oxidative damage in toxicity of particulates. Free Radical Research 44 (1):1–46. doi: 10.3109/10715760903300691.
  • Murray, E. G. D., R. A. Webb, and M. B. R. Swann. 1926. A disease of rabbits characterized by large mononuclear leucocytosis, caused by a hitherto undescribed bacillus, Bacterium monocytogenes (n.sp). The Journal of Pathology and Bacteriology 29 (4):407–39. doi: 10.1002/path.1700290409.
  • Mylonakis, E., M. Paliou, E. Hohmann, S. Calderwood, and E. J. Wing. 2002. Listeriosis during pregnancy: A case series and review of 222 cases. Medicine 81 (4):260–9. doi: 10.1097/00005792-200207000-00002.
  • Nesbakken, T., G. Kapperud, and D. A. Caugant. 1996. Pathways of Listeria monocytogenes contamination in the meat processing industry. International Journal of Food Microbiology 31 (1–3):161–71. doi: 10.1016/0168-1605(96)00978-6.
  • Nichols, D. S., K. A. Presser, J. Olley, T. Ross, and T. A. McMeekin. 2002. Variation of branched-chain fatty acids marks the normal physiological range for growth in Listeria monocytogenes. Applied and Environmental Microbiology 68 (6):2809–13. doi: 10.1128/AEM.68.6.2809-2813.2002.
  • Nightingale, K. K., Y. H. Schukken, C. R. Nightingale, E. D. Fortes, A. J. Ho, Z. Her, Y. T. Grohn, P. L. McDonough, and M. Wiedmann. 2004. Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. Applied and Environmental Microbiology 70 (8):4458–67. doi: 10.1128/AEM.70.8.4458-4467.2004.
  • Noutsopoulos, D., A. Kakouri, E. Kartezini, D. Pappas, E. Hatziloukas, and J. Samelis. 2017. Growth, nisA gene expression, and in situ activity of novel Lactococcus lactis subsp. cremoris costarter culture in commercial hard cheese production. Journal of Food Protection 80 (12):2137–46. doi: 10.4315/0362-028X.JFP-17-245.
  • Olanya, O. M., A. K. Hoshide, O. A. Ijabadeniyi, D. O. Ukuku, S. Mukhopadhyay, B. A. Niemira, and O. Ayeni. 2019. Cost estimate of listeriosis (Listeria monocytogenes) occurrence in South Africa in 2017 and its food safety implications. Food Control 102:231–9. doi: 10.1016/j.foodcont.2019.02.007.
  • Olsen, S. J., M. Patrick, S. B. Hunter, V. Reddy, L. Kornstein, W. R. MacKenzie, K. Lane, S. Bidol, G. A. Stoltman, D. M. Frye, et al. 2005. Multistate outbreak of Listeria monocytogenes infection linked to delicatessen turkey meat. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 40 (7):962–7. doi: 10.1086/428575.
  • Orsi, R. H., H. den Bakker, and M. Wiedmann. 2011. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. International Journal of Medical Microbiology: IJMM 301 (2):79–96. doi: 10.1016/j.ijmm.2010.05.002.
  • Parapouli, M., C. Delbès-Paus, A. Kakouri, A. I. Koukkou, M. C. Montel, and J. Samelis. 2013. Characterization of a wild, novel nisin a-producing Lactococcus strain with an L. lactis subsp. cremoris genotype and an L. lactis subsp. lactis phenotype, isolated from Greek raw milk. Applied and Environmental Microbiology 79 (11):3476–84. doi: 10.1128/AEM.00436-13.
  • Park, J. S, and J. W. Ha. 2019. X-ray irradiation inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes on sliced cheese and its bactericidal mechanisms. International Journal of Food Microbiology 289:127–33. doi: 10.1016/j.ijfoodmicro.2018.09.011.
  • Perna, N. T., G. Plunkett, V. Burland, B. Mau, J. D. Glasner, D. J. Rose, G. F. Mayhew, P. S. Evans, J. Gregor, H. A. Kirkpatrick, et al. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409 (6819):529–33. doi: 10.1038/35054089.
  • Petran, R, and E. Zottola. 1989. A study of factors affecting growth and recovery of Listeria monocytogenes Scott A. Journal of Food Science 54 (2):458–60. doi: 10.1111/j.1365-2621.1989.tb03105.x.
  • Phan, K. K. T., T. Truong, Y. Wang, and B. Bhandari. 2020. Nanobubbles: Fundamental characteristics and application in food processing. Trends in Food Science & Technology 95:118–30. doi: 10.1016/j.tifs.2019.11.019.
  • Pi, X., Y. Yang, Y. Sun, Q. Cui, Y. Wan, G. Fu, H. Chen, and J. Cheng. 2021. Food irradiation: A promising technology to produce hypoallergenic food with high quality. Critical Reviews in Food Science and Technology 1–14. doi: 10.1080/10408398.2021.1904822.
  • Pouillot, R., K. C. Klontz, Y. Chen, L. S. Burall, D. Macarisin, M. Doyle, K. M. Bally, E. Strain, A. R. Datta, T. S. Hammack, et al. 2016. Infectious dose of Listeria monocytogenes in outbreak linked to ice cream, United States, 2015. Emerging Infectious Diseases 22 (12):2113–9. doi: 10.3201/eid2212.160165.
  • Rafeeq, S., S. Shiroodi, M. H. Schwarz, N. Nitin, and R. Ovissipour. 2020. Inactivation of Aeromonas hydrophila and Vibrio parahaemolyticus by curcumin-mediated photosensitization and nanobubble-ultrasonication approaches. Foods 9 (9):1306. doi: 10.3390/foods9091306.
  • Ragon, M., T. Wirth, F. Hollandt, R. Lavenir, M. Lecuit, A. L. Monnier, and S. Brisse. 2008. A new perspective on Listeria monocytogenes evolution. PLoS Pathogens 4 (9):e1000146. doi: 10.1371/journal.ppat.1000146.
  • Ramos-Villarroel, A. Y., N. Aron-Maftei, O. Martín-Belloso, and R. Soliva-Fortuny. 2012. The role of pulsed light spectral distribution in the inactivation of Escherichia coli and Listeria innocua on fresh-cut mushrooms. Food Control 24 (1–2):206–13. doi: 10.1016/j.foodcont.2011.09.029.
  • Roh, S. H., Y. J. Oh, S. Y. Lee, J. H. Kang, and S. C. Min. 2020. Inactivation of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in processed chicken breast via atmospheric in-package cold plasma treatment. Lebensmittel-Wissenschaft & Technologie 127:109429. doi: 10.1016/j.lwt.2020.109429.
  • Rollin, F., J. Kennedy, and J. Wills. 2011. Consumers and new food technologies. Trends in Food Science & Technology 22 (2–3):99–111. doi: 10.1016/j.tifs.2010.09.001.
  • Ross, T., P. Dalgaard, and S. Tienungoon. 2000. Predictive modelling of the growth and survival of Listeria in fishery products. International Journal of Food Microbiology 62 (3):231–45. doi: 10.1016/S0168-1605(00)00340-8.
  • Rothrock, M. J., Jr., M. L. Davis, A. Locatelli, A. Bodie, T. G. McIntosh, J. R. Donaldson, and S. C. Ricke. 2017. Listeria occurrence in poultry flocks: Detection and potential implications. Frontiers in Veterinary Science 4:125. doi: 10.3389/fvets.2017.00125.
  • Rowan, N. J. 2019. Pulsed light as an emerging technology to cause disruption for food and adjacent industries – Quo vadis? Trends in Food Science & Technology 88:316–32. doi: 10.1016/j.tifs.2019.03.027.
  • Ruppitsch, W., R. Prager, S. Halbedel, P. Hyden, A. Pietzka, S. Huhulescu, D. Lohr, K. Schönberger, E. Aichinger, and A. Hauri. 2015. Ongoing outbreak of invasive listeriosis, Germany, 2012–2015. Euro Surveillance 20 (50). doi: 10.2807/1560-7917.ES.2015.20.50.30094.
  • Sagong, H. G., S. Y. Lee, P. S. Chang, S. Heu, S. Ryu, Y. J. Choi, and D. H. Kang. 2011. Combined effect of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes on organic fresh lettuce. International Journal of Food Microbiology 145 (1):287–92. doi: 10.1016/j.ijfoodmicro.2011.01.010.
  • Samelis, J, and A. Kakouri. 2018. Hurdle factors minimizing growth of Listeria monocytogenes while counteracting in situ antilisterial effects of a novel nisin A-producing Lactococcus lactis subsp. cremoris costarter in thermized cheese milks. AIMS Microbiology 4 (1):19–41. doi: 10.3934/microbiol.2018.1.19.
  • Sauders, B. D., D. Pettit, B. Currie, P. Suits, A. Evans, K. Stellrecht, D. M. Dryja, D. Slate, and M. Wiedmann. 2005. Low prevalence of Listeria monocytogenes in human stool. Journal of Food Protection 68 (1):178–81. doi: 10.4315/0362-028x-68.1.178.
  • Schlech, W. F., P. M. Lavigne, R. A. Bortolussi, A. C. Allen, E. V. Haldane, A. J. Wort, A. W. Hightower, S. E. Johnson, S. H. King, E. S. Nicholls, et al. 1983. Epidemic listeriosis – Evidence for transmission by food. The New England Journal of Medicine 308 (4):203–6. doi: 10.1056/NEJM198301273080407.
  • Schmid, B., J. Klumpp, E. Raimann, M. J. Loessner, R. Stephan, and T. Tasara. 2009. Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Applied and Environmental Microbiology 75 (6):1621–7. doi: 10.1128/AEM.02154-08.
  • Schrand, A. M., M. F. Rahman, S. M. Hussain, J. J. Schlager, D. A. Smith, and A. F. Syed. 2010. Metal-based nanoparticles and their toxicity assessment. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology 2 (5):544–68. doi: 10.1002/wnan.103.
  • Shen, Y., S. Boulos, E. Sumrall, B. Gerber, A. Julian-Rodero, M. R. Eugster, L. Fieseler, L. Nystrom, M. O. Ebert, and M. J. Loessner. 2017. Structural and functional diversity in Listeria cell wall ­teichoic acids. The Journal of Biological Chemistry 292 (43):17832–44. doi: 10.1074/jbc.M117.813964.
  • Shiroodi, S., M. H. Schwarz, N. Nitin, and R. Ovissipour. 2021. Efficacy of nanobubbles alone or in combination with neutral electrolyzed water in removing Escherichia coli O157:H7, Vibrio parahaemolyticus, and Listeria innocua biofilms. Food and Bioprocess Technology 14 (2):287–97. doi: 10.1007/s11947-020-02572-0.
  • Simic, M. G. 1983. Radiation chemistry of water-soluble food components. In Preservation of food by ionizing radiation, ed. Josephson, E.S., Peterson, M.S., pp 1–73. Boca Raton: CRC Press. doi: 10.1201/9781351075985.
  • Singh, A., A. S. Sekhon, P. Unger, M. Babb, Y. Yang, and M. Michael. 2021. Impact of gas micro-nano-bubbles on the efficacy of commonly used antimicrobials in the food industry. Journal of Applied Microbiology 130 (4):1092–105. doi: 10.1111/jam.14840.
  • Singh, A. K., A. V. Ulanov, Z. Li, R. K. Jayaswal, and B. J. Wilkinson. 2011. Metabolomes of the psychrotolerant bacterium Listeria monocytogenes 10403S grown at 37 °C and 8 °C. International Journal of Food Microbiology 148 (2):107–14. doi: 10.1016/j.ijfoodmicro.2011.05.008.
  • Singh, S, and R. Shalini. 2016. Effect of hurdle technology in food preservation: A review. Critical Reviews in Food Science and Nutrition 56 (4):641–9. doi: 10.1080/10408398.2012.761594.
  • Smith, A. M., N. P. Tau, S. L. Smouse, M. Allam, A. Ismail, N. R. Ramalwa, B. Disenyeng, M. Ngomane, and J. Thomas. 2019. Outbreak of Listeria monocytogenes in South Africa, 2017–2018: Laboratory activities and experiences associated with whole-genome sequencing analysis of isolates. Foodborne Pathogens and Disease 16 (7):524–30. doi: 10.1089/fpd.2018.2586.
  • Sokurenko, E. V., R. Gomulkiewicz, and D. E. Dykhuizen. 2006. Source-sink dynamics of virulence evolution. Nature Reviews. Microbiology 4 (7):548–55. doi: 10.1038/nrmicro1446.
  • Sumrall, E. T., A. P. Keller, Y. Shen, and M. J. Loessner. 2020. Structure and function of Listeria teichoic acids and their implications. Molecular Microbiology 113 (3):627–37. doi: 10.1111/mmi.14472.
  • Sun, Y., Y. Qiu, A. Nie, and X. Wang. 2007. Experimental research on inactivation of bacteria by using dielectric barrier discharge. IEEE Transactions on Plasma Science 35 (5):1496–500. doi: 10.1109/TPS.2007.905947.
  • Tchatchouang, C. D. K., J. Fri, M. De Santi, G. Brandi, G. F. Schiavano, G. Amagliani, and C. N. Ateba. 2020. Listeriosis outbreak in South Africa: A comparative analysis with previously reported cases worldwide. Microorganisms 8 (1):135. doi: 10.3390/microorganisms8010135.
  • Tekile, A., I. Kim, and J. Y. Lee. 2016. Extent and persistence of dissolved oxygen enhancement using nanobubbles. Environmental Engineering Research 21 (4):427–35. doi: 10.4491/eer.2016.028.
  • Temesgen, T., T. T. Bui, M. Han, T. Kim, and H. Park. 2017. Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review. Advances in Colloid and Interface Science 246:40–51. doi: 10.1016/j.cis.2017.06.011.
  • The United States Department of Justice. 2020. Former Blue Bell creameries president charged in connection with 2015 ice cream Listeria contamination. https://www.dodig.mil/Criminal-Investigations/Article/2392893/former-blue-bell-creameries-president-charged-in-connection-with-2015-ice-cream/ [accessed March 2022].
  • Thomas, M. K., R. Vriezen, J. M. Farber, A. Currie, W. Schlech, and A. Fazil. 2015. Economic cost of a Listeria monocytogenes outbreak in Canada, 2008. Foodborne Pathogens and Disease 12 (12):966–71. doi: 10.1089/fpd.2015.1965.
  • Thomas, J., N. Govender, K. M. McCarthy, L. K. Erasmus, T. J. Doyle, M. Allam, A. Ismail, N. Ramalwa, P. Sekwadi, G. Ntshoe, et al. 2020. Outbreak of listeriosis in South Africa associated with processed meat. The New England Journal of Medicine 382 (7):632–43. doi: 10.1056/NEJMoa1907462.
  • Thomson, N. R., D. J. Clayton, D. Windhorst, G. Vernikos, S. Davidson, C. Churcher, M. A. Quail, M. Stevens, M. A. Jones, M. Watson, et al. 2008. Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Research 18 (10):1624–37. doi: 10.1101/gr.077404.108.
  • Tienungoon, S., D. Ratkowsky, T. McMeekin, and T. Ross. 2000. Growth limits of Listeria monocytogenes as a function of temperature, pH, NaCl, and lactic acid. Applied and Environmental Microbiology 66 (11):4979–87. doi: 10.1128/aem.66.11.4979-4987.2000.
  • Tompkin, R. B. 2002. Control of Listeria monocytogenes in the food-processing environment. Journal of Food Protection 65 (4):709–25. doi: 10.4315/0362-028x-65.4.709.
  • Torlak, E, and D. Sert. 2013. Combined effect of benzalkonium chloride and ultrasound against Listeria monocytogenes biofilm on plastic surface. Letters in Applied Microbiology 57 (3):220–6. doi: 10.1111/lam.12100.
  • Unnerstad, H., E. Bannerman, J. Bille, M. L. Danielsson-Tham, E. Waak, and W. Tham. 1996. Prolonged contamination of a dairy with Listeria monocytogenes. Neth. Milk Dairy Journal 50:493–9.
  • Ushikubo, F. Y., T. Furukawa, R. Nakagawa, M. Enari, Y. Makino, Y. Kawagoe, T. Shiina, and S. Oshita. 2010. Evidence of the existence and the stability of nano-bubbles in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects 361 (1–3):31–7. doi: 10.1016/j.colsurfa.2010.03.005.
  • Valderrama, W. B, and C. N. Cutter. 2013. An ecological perspective of Listeria monocytogenes biofilms in food processing facilities. Critical Reviews in Food Science and Nutrition 53 (8):801–17. doi: 10.1080/10408398.2011.561378.
  • Vargas-Ramella, M., M. Pateiro, M. Gavahian, D. Franco, W. Zhang, A. M. Khaneghah, Y. Guerrero-Sánchez, and J. M. Lorenzo. 2021. Impact of pulsed light processing technology on phenolic compounds of fruits and vegetables. Trends in Food Science & Technology 115:1–11. doi: 10.1016/j.tifs.2021.06.037.
  • Verran, J. 2002. Biofouling in food processing: Biofilm or biotransfer potential? Food and Bioproducts Processing 80 (4):292–8. doi: 10.1205/096030802321154808.
  • Verran, J., P. Airey, A. Packera, and K. A. Whiteheada. 2008. Microbial retention on open food contact surfaces and implications for food contamination. In Advances in Applied Microbiology, ed. Laskin, A.I., Sariaslani, S., Gadd, G.M., 223–46. San Diego, CA: Academic Press. doi: 10.1016/S0065-2164(08)00408-5.
  • Vidovic, S., J. Elder, P. Medihala, J. R. Lawrence, B. Predicala, H. Zhang, and D. R. Korber. 2015. ZnO nanoparticles impose a panmetabolic toxic effect along with strong necrosis, inducing activation of the envelope stress response in Salmonella enterica serovar Enteritidis. Antimicrobial Agents and Chemotherapy 59 (6):3317–28. doi: 10.1128/AAC.00363-15.
  • Vidovic, S., P. Medihala, J. J. Dynes, P. Daida, V. Vujanovic, A. P. Hitchcock, D. Shetty, H. Zhang, D. R. Brown, J. R. Lawrence, et al. 2018. Importance of the RpoE regulon in maintaining the lipid bilayer during antimicrobial treatment with the polycationic agent, chlorhexidine. Proteomics 18 (3–4):1700285. doi: 10.1002/pmic.201700285.
  • Vidovic, S., R. An, and A. Rendahl. 2019. Molecular and physiological characterization of fluoroquinolone-highly resistant Salmonella Enteritidis strains. Frontiers in Microbiology 10:729. doi: 10.3389/fmicb.2019.00729.
  • Vogel, B. F., H. H. Huss, B. Ojeniyi, P. Ahrens, and L. Gram. 2001. Elucidation of Listeria monocytogenes contamination routes in cold-smoked salmon processing plants detected by DNA-based typing methods. Applied and Environmental Microbiology 67 (6):2586–95. doi: 10.1128/AEM.67.6.2586-2595.2001.
  • Weis, J, and H. P. Seeliger. 1975. Incidence of Listeria monocytogenes in nature. Applied Microbiology 30 (1):29–32. doi: 10.1128/am.30.1.29-32.1975.
  • Weissfeld, A. S., N. Landes, H. Livesay, and E. Trevino. 2017. Listeria monocytogenes contamination of ice cream: A rare event that occurred twice in the last two years. Clinical Microbiology Newsletter 39 (3):19–22. doi: 10.1016/j.clinmicnews.2017.01.001.
  • Weller, D., M. Wiedmann, and L. K. Strawn. 2015. Spatial and temporal factors associated with an increased prevalence of Listeria monocytogenes in spinach fields in New York state. Applied and Environmental Microbiology 81 (17):6059–69. doi: 10.1128/AEM.01286-15.
  • Wulff, G., L. Gram, P. Ahrens, and B. F. Vogel. 2006. One group of genetically similar Listeria monocytogenes strains frequently dominates and persists in several fish slaughter- and smokehouses. Applied and Environmental Microbiology 72 (6):4313–22. doi: 10.1128/AEM.02288-05.
  • Xiao, W, and G. Xu. 2020. Mass transfer of nanobubble aeration and its effect on biofilm growth: Microbial activity and structural properties. The Science of the Total Environment 703:134976. doi: 10.1016/j.scitotenv.2019.134976.
  • Yano, H, and A. Sakai. 2014. Systems and methods for generating nanobubbles. United States patent. application publication. Pub No.: US 2014/0191425 A1.
  • Yu, H., Y. Liu, L. Li, Y. Guo, Y. Xie, Y. Cheng, and W. Yao. 2020. Ultrasound-involved emerging strategies for controlling foodborne microbial biofilms. Trends in Food Science & Technology 96:91–101. doi: 10.1016/j.tifs.2019.12.010.
  • Yusupov, M., A. Bogaerts, S. Huygh, R. Snoeckx, A. C. T. van Duin, and E. C. Neyts. 2013. Plasma-induced destruction of bacterial cell wall components: A reactive molecular dynamics simulation. The Journal of Physical Chemistry C 117 (11):5993–8. doi: 10.1021/jp3128516.
  • Zhang, H., S. Tsai, and R. V. Tikekar. 2021. Inactivation of Listeria innocua on blueberries by novel ultrasound washing process and their impact on quality during storage. Food Control 121:107580. doi: 10.1016/j.foodcont.2020.107580.
  • Zhu, K., D. O. Bayles, A. Xiong, R. K. Jayaswal, and B. J. Wilkinson. 2005. Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain α-keto acid dehydrogenase. Microbiology 151 (2):615–23. doi: 10.1099/mic.0.27634-0.
  • Ziuzina, D., L. Han, P. J. Cullen, and P. Bourke. 2015. Cold plasma inactivation of internalized bacteria and biofilms for Salmonella enterica serovar Typhomirium, Listeria monocytogenes and Escherichia coli. International Journal of Food Microbiology 210:53–61. doi: 10.1016/j.ijfoodmicro.2015.05.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.