404
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Polyphenols target miRNAs as a therapeutic strategy for diabetic complications

, , , , , & show all

References

  • Ahmad, I, and M. Hoda. 2020. Attenuation of diabetic retinopathy and neuropathy by resveratrol: review on its molecular mechanisms of action. Life Sciences 245:117350. doi: 10.1016/j.lfs.2020.117350.
  • Al-Kafaji, G., G. Al-Mahroos, H. A. Al-Muhtaresh, C. Skrypnyk, M. A. Sabry, and A. R. Ramadan. 2016. Decreased expression of circulating microrna-126 in patients with type 2 diabetic nephropathy: a potential blood-based biomarker. Experimental and Therapeutic Medicine 12 (2):815–22. doi: 10.3892/etm.2016.3395.
  • Al-Rejaie, S. S., A. M. Aleisa, H. M. Abuohashish, M. Y. Parmar, M. S. Ola, A. A. Al-Hosaini, and M. M. Ahmed. 2015. Naringenin neutralises oxidative stress and nerve growth factor discrepancy in experimental diabetic neuropathy. Neurological Research 37 (10):924–33. doi: 10.1179/1743132815y.0000000079.
  • An, X., L. Zhang, Y. Yuan, B. Wang, Q. Yao, L. Li, J. Zhang, M. He, and J. Zhang. 2017. Hyperoside pre-treatment prevents glomerular basement membrane damage in diabetic nephropathy by inhibiting podocyte heparanase expression. Scientific Reports 7 (1):6413. doi: 10.1038/s41598-017-06844-2.
  • Andriambeloson, E., C. Baillet, P. A. Vitte, G. Garotta, M. Dreano, and N. Callizot. 2006. Interleukin‐6 attenuates the development of experimental diabetes‐related neuropathy. Neuropathology: Official Journal of the Japanese Society of Neuropathology 26 (1):32–42. doi: 10.1111/j.1440-1789.2006.00651.x.
  • Annese, T., R. Tamma, M. De Giorgis, and D. Ribatti. 2020. Micrornas biogenesis, functions and role in tumor angiogenesis. Frontiers in Oncology 10:581007. doi: 10.3389/fonc.2020.581007.
  • Arneth, B., R. Arneth, and M. Shams. 2019. Metabolomics of type 1 and type 2 diabetes. International Journal of Molecular Sciences 20 (10):2467. doi: 10.3390/ijms20102467.
  • Asrih, M, and S. Steffens. 2013. Emerging role of epigenetics and mirna in diabetic cardiomyopathy. Cardiovascular Pathology: The Official Journal of the Society for Cardiovascular Pathology 22 (2):117–25. doi: 10.1016/j.carpath.2012.07.004.
  • Assmann, T. S., M. Recamonde-Mendoza, B. M. de Souza, A. C. Bauer, and D. Crispim. 2018. Micrornas and diabetic kidney disease: systematic review and bioinformatic analysis. Molecular and Cellular Endocrinology 477:90–102. doi: 10.1016/j.mce.2018.06.005.
  • Atale, N., D. Yadav, V. Rani, and J. O. Jin. 2020. Pathophysiology, clinical characteristics of diabetic cardiomyopathy: therapeutic potential of natural polyphenols. Frontiers in Nutrition 7:564352. doi: 10.3389/fnut.2020.564352.
  • Ayavoo, T., K. Murugesan, and A. Gnanasekaran. 2021. Roles and mechanisms of stem cell in wound healing. Stem Cell Investigation 8:4. doi: 10.21037/sci-2020-027.
  • Bartel, D. P. 2004. Micrornas: genomics, biogenesis, mechanism, and function. Cell 116 (2):281–97. doi: 10.1016/S0092-8674(04)00045-5.
  • Beltrami, C., K. Simpson, M. Jesky, A. Wonnacott, C. Carrington, P. Holmans, L. Newbury, R. Jenkins, T. Ashdown, C. Dayan, et al. 2018. Association of elevated urinary mir-126, mir-155, and mir-29b with diabetic kidney disease. The American Journal of Pathology 188 (9):1982–92. doi: 10.1016/j.ajpath.2018.06.006.
  • Bhattacharjee, N., S. Barma, N. Konwar, S. Dewanjee, and P. Manna. 2016. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update. European Journal of Pharmacology 791:8–24. doi: 10.1016/j.ejphar.2016.08.022.
  • Bi, X., L. Zhou, Y. Liu, J. Gu, and Q. S. Mi. 2022. Microrna-146a deficiency delays wound healing in normal and diabetic mice. Advances in Wound Care 11 (1):19–27. doi: 10.1089/wound.2020.1165.
  • Bladé, C., L. Baselga-Escudero, M. J. Salvadó, and A. Arola-Arnal. 2013. Mirnas, polyphenols, and chronic disease. Molecular Nutrition & Food Research 57 (1):58–70. doi: 10.1002/mnfr.201200454.
  • Blattner, S. M, and M. Kretzler. 2005. Integrin-linked kinase in renal disease: connecting cell-matrix interaction to the cytoskeleton. Current Opinion in Nephrology and Hypertension 14 (4):404–10. doi: 10.1097/01.mnh.0000172730.67746.5b.
  • Cao, D., M. Zhao, C. Wan, Q. Zhang, T. Tang, J. Liu, Q. Shao, B. Yang, J. He, and C. Jiang. 2019. Role of tea polyphenols in delaying hyperglycemia-induced senescence in human glomerular mesangial cells via mir-126/akt-p53-p21 pathways. International Urology and Nephrology 51 (6):1071–8. doi: 10.1007/s11255-019-02165-7.
  • Cao, Y., J. Hu, J. Sui, L. Jiang, Y. Cong, and G. Ren. 2018. Quercetin is able to alleviate tgf-β-induced fibrosis in renal tubular epithelial cells by suppressing mir-21. Experimental and Therapeutic Medicine 16 (3):2442–8. doi: 10.3892/etm.2018.6489.
  • Carpi, S., E. Scoditti, M. Massaro, B. Polini, C. Manera, M. Digiacomo, J. E. Salsano, G. Poli, T. Tuccinardi, S. Doccini, et al. 2019. The extra-virgin olive oil polyphenols oleocanthal and oleacein counteract inflammation-related gene and mirna expression in adipocytes by attenuating nf-κb activation. Nutrients 11 (12):2855. doi: 10.3390/nu11122855.
  • Çetinkalp, Ş., E. H. Gökçe, I. Şimşir, S. Tuncay Tanrıverdi, F. Doğan, Ç. Biray Avcı, İ. Eroğlu, T. Utku, C. Gündüz, and Ö. Özer. 2021. Comparative evaluation of clinical efficacy and safety of collagen laminin-based dermal matrix combined with resveratrol microparticles (dermalix) and standard wound care for diabetic foot ulcers. The International Journal of Lower Extremity Wounds 20 (3):217–26. doi: 10.1177/1534734620907773.
  • Chakrabarti, S. 2016. Microrna15a - a molecule modulating multiple pathologies in diabetic retinopathy. EBioMedicine 11:13–4. doi: 10.1016/j.ebiom.2016.08.017.
  • Chen, J.-F., E. P. Murchison, R. Tang, T. E. Callis, M. Tatsuguchi, Z. Deng, M. Rojas, S. M. Hammond, M. D. Schneider, C. H. Selzman, et al. 2008. Targeted deletion of dicer in the heart leads to dilated cardiomyopathy and heart failure. Proceedings of the National Academy of Sciences of the United States of America 105 (6):2111–6. doi: 10.1073/pnas.0710228105.
  • Chen, J., C. Cui, X. Yang, J. Xu, P. Venkat, A. Zacharek, P. Yu, and M. Chopp. 2017. Mir-126 affects brain-heart interaction after cerebral ischemic stroke. Translational Stroke Research 8 (4):374–85. doi: 10.1007/s12975-017-0520-z.
  • Chen, J., C. Li, W. Liu, B. Yan, X. Hu, and F. Yang. 2019. Mirna-155 silencing reduces sciatic nerve injury in diabetic peripheral neuropathy. Journal of Molecular Endocrinology 63 (3):227–38. doi: 10.1530/jme-19-0067.
  • Chen, S., H. Jiang, X. Wu, and J. Fang. 2016. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators of Inflammation 2016:9340637. doi: 10.1155/2016/9340637.
  • Chen, S., P. Puthanveetil, B. Feng, S. J. Matkovich, G. W. Dorn, 2nd, and S. Chakrabarti. 2014. Cardiac mir-133a overexpression prevents early cardiac fibrosis in diabetes. Journal of Cellular and Molecular Medicine 18 (3):415–21. doi: 10.1111/jcmm.12218.
  • Climent, M., G. Viggiani, Y. W. Chen, G. Coulis, and A. Castaldi. 2020. Microrna and ros crosstalk in cardiac and pulmonary diseases. International Journal of Molecular Sciences 21 (12):4370. doi: 10.3390/ijms21124370.
  • Coppari, S., M. Colomba, D. Fraternale, V. Brinkmann, M. Romeo, M. B. L. Rocchi, B. D. Giacomo, M. Mari, L. Guidi, S. Ramakrishna, et al. 2021. Antioxidant and anti-inflammaging ability of prune (Prunus spinosa L.) extract result in improved wound healing efficacy. Antioxidants (Basel, Switzerland) 10 (3):374. doi: 10.3390/antiox10030374.
  • Dai, B., H. Li, J. Fan, Y. Zhao, Z. Yin, X. Nie, D. W. Wang, and C. Chen. 2018. Mir-21 protected against diabetic cardiomyopathy induced diastolic dysfunction by targeting gelsolin. Cardiovascular Diabetology 17 (1):123. doi: 10.1186/s12933-018-0767-z.
  • Dai, C., S. Jiang, C. Chu, M. Xin, X. Song, and B. Zhao. 2019. Baicalin protects human retinal pigment epithelial cell lines against high glucose-induced cell injury by up-regulation of microrna-145. Experimental and Molecular Pathology 106:123–30. doi: 10.1016/j.yexmp.2019.01.002.
  • Dantas da Costa, E., E. R. Polina, D. Crispim, R. C. Sbruzzi, D. Lavinsky, F. Mallmann, N. C. Martinelli, L. H. Canani, and K. G. Dos Santos. 2019. Plasma levels of mir-29b and mir-200b in type 2 diabetic retinopathy. Journal of Cellular and Molecular Medicine 23 (2):1280–7. doi: 10.1111/jcmm.14030.
  • Das, F., S. Maity, N. Ghosh-Choudhury, B. S. Kasinath, and G. Ghosh Choudhury. 2019. Deacetylation of s6 kinase promotes high glucose-induced glomerular mesangial cell hypertrophy and matrix protein accumulation. The Journal of Biological Chemistry 294 (24):9440–60. doi: 10.1074/jbc.RA118.007023.
  • Das, S., M. Ferlito, O. A. Kent, K. Fox-Talbot, R. Wang, D. Liu, N. Raghavachari, Y. Yang, S. J. Wheelan, E. Murphy, et al. 2012. Nuclear mirna regulates the mitochondrial genome in the heart. Circulation Research 110 (12):1596–603., doi: 10.1161/CIRCRESAHA.112.267732.
  • Dewanjee, S, and N. Bhattacharjee. 2018. Microrna: a new generation therapeutic target in diabetic nephropathy. Biochemical Pharmacology 155:32–47. doi: 10.1016/j.bcp.2018.06.017.
  • Dillmann, W. H. 2019. Diabetic cardiomyopathy. Circulation Research 124 (8):1160–2. doi: 10.1161/circresaha.118.314665.
  • Dimas, G. G., T. P. Didangelos, and D. M. Grekas. 2017. Matrix gelatinases in atherosclerosis and diabetic nephropathy: progress and challenges. Current Vascular Pharmacology 15 (6):557–65. doi: 10.2174/1570161115666170202162345.
  • Dixon, D, and M. Edmonds. 2021. Managing diabetic foot ulcers: pharmacotherapy for wound healing. Drugs 81 (1):29–56. doi: 10.1007/s40265-020-01415-8.
  • Du, L. Q., Y. Wang, H. Wang, J. Cao, Q. Liu, and F. Y. Fan. 2011. Knockdown of rad51 expression induces radiation- and chemo-sensitivity in osteosarcoma cells. Medical Oncology (Northwood, London, England) 28 (4):1481–7. doi: 10.1007/s12032-010-9605-1.
  • Ebrahimpour, S., A. Esmaeili, F. Dehghanian, and S. Beheshti. 2020. Effects of quercetin-conjugated with superparamagnetic iron oxide nanoparticles on learning and memory improvement through targeting micrornas/nf-κb pathway. Scientific Reports 10 (1):15070. doi: 10.1038/s41598-020-71678-4.
  • Ebrahimpour, S., S. B. Shahidi, M. Abbasi, Z. Tavakoli, and A. Esmaeili. 2020. Quercetin-conjugated superparamagnetic iron oxide nanoparticles (qcspions) increases nrf2 expression via mir-27a mediation to prevent memory dysfunction in diabetic rats. Scientific Reports 10 (1):15957. doi: 10.1038/s41598-020-71971-2.
  • Fan, B., M. Chopp, Z. G. Zhang, and X. S. Liu. 2020. Emerging roles of micrornas as biomarkers and therapeutic targets for diabetic neuropathy. Frontiers in Neurology 11:558758. doi: 10.3389/fneur.2020.558758.
  • Fan, B., M. Chopp, Z. G. Zhang, and X. S. Liu. 2021. Treatment of diabetic peripheral neuropathy with engineered mesenchymal stromal cell-derived exosomes enriched with microrna-146a provide amplified therapeutic efficacy. Experimental Neurology 341:113694. doi: 10.1016/j.expneurol.2021.113694.
  • Fang, P., M. Yu, M. Shi, P. Bo, X. Gu, and Z. Zhang. 2020. Baicalin and its aglycone: a novel approach for treatment of metabolic disorders. Pharmacological Reports: PR 72 (1):13–23. doi: 10.1007/s43440-019-00024-x.
  • Feldman, E. L., B. C. Callaghan, R. Pop-Busui, D. W. Zochodne, D. E. Wright, D. L. Bennett, V. Bril, J. W. Russell, and V. Viswanathan. 2019. Diabetic neuropathy. Nature Reviews. Disease Primers 5 (1):42. doi: 10.1038/s41572-019-0097-9.
  • Feng, Y., L. Chen, Q. Luo, M. Wu, Y. Chen, and X. Shi. 2018. Involvement of microrna-146a in diabetic peripheral neuropathy through the regulation of inflammation. Drug Design, Development and Therapy 12:171–7. doi: 10.2147/DDDT.S157109.
  • Finnerup, N. B., S. H. Sindrup, and T. S. Jensen. 2010. The evidence for pharmacological treatment of neuropathic pain. Pain 150 (3):573–81. doi: 10.1016/j.pain.2010.06.019.
  • Galiniak, S., D. Aebisher, and D. Bartusik-Aebisher. 2019. Health benefits of resveratrol administration. Acta Biochimica Polonica 66 (1):13–21. doi: 10.18388/abp.2018_2749.
  • Garo, L. P, and G. Murugaiyan. 2016. Contribution of micrornas to autoimmune diseases. Cellular and Molecular Life Sciences: CMLS 73 (10):2041–51. doi: 10.1007/s00018-016-2167-4.
  • Garzon, R., S. Liu, M. Fabbri, Z. Liu, C. E. Heaphy, E. Callegari, S. Schwind, J. Pang, J. Yu, N. Muthusamy, et al. 2009. Microrna-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly dnmt3a and 3b and indirectly dnmt1. Blood 113 (25):6411–8. doi: 10.1182/blood-2008-07-170589.
  • Ghosh, N, and R. Katare. 2018. Molecular mechanism of diabetic cardiomyopathy and modulation of microrna function by synthetic oligonucleotides. Cardiovascular Diabetology 17 (1):43. doi: 10.1186/s12933-018-0684-1.
  • Godos, J., S. Marventano, A. Mistretta, F. Galvano, and G. Grosso. 2017. Dietary sources of polyphenols in the mediterranean healthy eating, aging and lifestyle (meal) study cohort. International Journal of Food Sciences and Nutrition 68 (6):750–6. doi: 10.1080/09637486.2017.1285870.
  • Gomez, I. G., D. A. MacKenna, B. G. Johnson, V. Kaimal, A. M. Roach, S. Ren, N. Nakagawa, C. Xin, R. Newitt, S. Pandya, et al. 2015. Anti-microrna-21 oligonucleotides prevent alport nephropathy progression by stimulating metabolic pathways. The Journal of Clinical Investigation 125 (1):141–56. doi: 10.1172/jci75852.
  • Gong, Q., F. Li, J. Xie, and G. Su. 2019. Upregulated vegf and robo4 correlate with the reduction of mir-15a in the development of diabetic retinopathy. Endocrine 65 (1):35–45. doi: 10.1007/s12020-019-01921-0.
  • Gong, Q., J. Xie, Y. Liu, Y. Li, and G. Su. 2017. Differentially expressed micrornas in the development of early diabetic retinopathy. Journal of Diabetes Research 2017:4727942. doi: 10.1155/2017/4727942.
  • Guo, L., K. Tan, Q. Luo, and X. Bai. 2020. Dihydromyricetin promotes autophagy and attenuates renal interstitial fibrosis by regulating mir-155-5p/pten signaling in diabetic nephropathy. Bosnian Journal of Basic Medical Sciences 20 (3):372–80. doi: 10.17305/bjbms.2019.4410.
  • Guo, R, and S. Nair. 2017. Role of microrna in diabetic cardiomyopathy: from mechanism to intervention. Biochimica et Biophysica Acta. Molecular Basis of Disease 1863 (8):2070–7. doi: 10.1016/j.bbadis.2017.03.013.
  • Guo, S., J. Sun, and Y. Zhuang. 2020. Quercetin alleviates lipopolysaccharide-induced inflammatory responses by up-regulation mir-124 in human renal tubular epithelial cell line hk-2. BioFactors (Oxford, England) 46 (3):402–10. doi: 10.1002/biof.1596.
  • Han, F., J. Zhang, K. Li, W. Wang, and D. Dai. 2020. Triptolide protects human retinal pigment epithelial arpe-19 cells against high glucose-induced cell injury by regulation of mir-29b/pten. Archives of Physiology and Biochemistry 126:1–7. doi: 10.1080/13813455.2020.1797101.
  • Han, N., W. Tian, N. Yu, and L. Yu. 2020. Yap1 is required for the angiogenesis in retinal microvascular endothelial cells via the inhibition of malat1‐mediated mir‐200b‐3p in high glucose‐induced diabetic retinopathy. Journal of Cellular Physiology 235 (2):1309–20. doi: 10.1002/jcp.29047.
  • Harada, M., X. Luo, T. Murohara, B. Yang, D. Dobrev, and S. Nattel. 2014. Microrna regulation and cardiac calcium signaling: role in cardiac disease and therapeutic potential. Circulation Research 114 (4):689–705. doi: 10.1161/CIRCRESAHA.114.301798.
  • Haviland, N., J. Walsh, R. Roberts, and T. S. Bailey. 2016. Update on clinical utility of continuous glucose monitoring in type 1 diabetes. Current Diabetes Reports 16 (11):115. doi: 10.1007/s11892-016-0808-5.
  • He, X., G. Kuang, Y. Zuo, S. Li, S. Zhou, and C. Ou. 2021. The role of non-coding rnas in diabetic nephropathy-related oxidative stress. Frontiers in Medicine 8:626423. doi: 10.3389/fmed.2021.626423.
  • Hou, Y., Y. Zhang, S. Lin, Y. Yu, L. Yang, L. Li, and W. Wang. 2021. Protective mechanism of apigenin in diabetic nephropathy is related to its regulation of mir-423-5p-usf2 axis. American Journal of Translational Research 13 (4):2006–20.
  • Hu, Q., C. Qu, X. Xiao, W. Zhang, Y. Jiang, Z. Wu, D. Song, X. Peng, X. Ma, and Y. Zhao. 2021. Flavonoids on diabetic nephropathy: advances and therapeutic opportunities. Chinese Medicine 16 (1):74. doi: 10.1186/s13020-021-00485-4.
  • Huang, D. D., G. Shi, Y. Jiang, C. Yao, and C. Zhu. 2020. A review on the potential of resveratrol in prevention and therapy of diabetes and diabetic complications. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 125:109767. doi: 10.1016/j.biopha.2019.109767.
  • Huang, J., J. Fu, B. Liu, R. Wang, and T. You. 2020. A synthetic curcuminoid analog, (2e,6e)-2,6-bis(2-(trifluoromethyl)benzylidene)cyclohexanone, ameliorates impaired wound healing in streptozotocin-induced diabetic mice by increasing mir-146a. Molecules (Basel, Switzerland) 25 (4):920. doi: 10.3390/molecules25040920.
  • Huang, S. S., D. F. Ding, S. Chen, C. L. Dong, X. L. Ye, Y. G. Yuan, Y. M. Feng, N. You, J. R. Xu, H. Miao, et al. 2017. Resveratrol protects podocytes against apoptosis via stimulation of autophagy in a mouse model of diabetic nephropathy. Scientific Reports 7:45692. doi: 10.1038/srep45692.
  • Hui, Y, and Y. Yin. 2018. Microrna-145 attenuates high glucose-induced oxidative stress and inflammation in retinal endothelial cells through regulating tlr4/nf-κb signaling. Life Sciences 207:212–8. doi: 10.1016/j.lfs.2018.06.005.
  • Hur, J., K. A. Sullivan, M. Pande, Y. Hong, A. A. Sima, H. V. Jagadish, M. Kretzler, and E. L. Feldman. 2011. The identification of gene expression profiles associated with progression of human diabetic neuropathy. Brain 134 (11):3222–35. doi: 10.1093/brain/awr228.
  • Hussain, G., S. A. A. Rizvi, S. Singhal, M. Zubair, and J. Ahmad. 2016. Serum levels of tgf-β1 in patients of diabetic peripheral neuropathy and its correlation with nerve conduction velocity in type 2 diabetes mellitus. Diabetes & Metabolic Syndrome 10 (1 Suppl 1):S135–S139. doi: 10.1016/j.dsx.2015.10.011.
  • Ioannou, K. 2017. Diabetic nephropathy: is it always there? Assumptions, weaknesses and pitfalls in the diagnosis. Hormones (Athens, Greece) 16 (4):351–61.
  • Jia, C., H. Chen, M. Wei, X. Chen, Y. Zhang, L. Cao, P. Yuan, F. Wang, G. Yang, and J. Ma. 2017. Gold nanoparticle-based mir155 antagonist macrophage delivery restores the cardiac function in ovariectomized diabetic mouse model. International Journal of Nanomedicine 12:4963–79. doi: 10.2147/ijn.s138400.
  • Jia, G., M. A. Hill, and J. R. Sowers. 2018. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circulation Research 122 (4):624–38. doi: 10.1161/circresaha.117.311586.
  • Jia, G., A. Whaley-Connell, and J. R. Sowers. 2018. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia 61 (1):21–8. doi: 10.1007/s00125-017-4390-4.
  • Jiang, Y., L. Liu, and J. J. Steinle. 2018. Mirna15a regulates insulin signal transduction in the retinal vasculature. Cellular Signalling 44:28–32. doi: 10.1016/j.cellsig.2018.01.016.
  • Kabir, M. T., N. Tabassum, M. S. Uddin, F. Aziz, T. Behl, B. Mathew, M. H. Rahman, R. Akter, A. Rauf, and L. Aleya. 2021. Therapeutic potential of polyphenols in the management of diabetic neuropathy. Evidence-Based Complementary and Alternative Medicine: eCAM 2021:9940169. doi: 10.1155/2021/9940169.
  • Khamaneh, A. M., M. R. Alipour, F. S. Hesari, and F. G. Soufi. 2015. A signature of microrna-155 in the pathogenesis of diabetic complications. Journal of Physiology and Biochemistry 71 (2):301–9. doi: 10.1007/s13105-015-0413-0.
  • Khanra, R., N. Bhattacharjee, T. K. Dua, A. Nandy, A. Saha, J. Kalita, P. Manna, and S. Dewanjee. 2017. Taraxerol, a pentacyclic triterpenoid, from abroma augusta leaf attenuates diabetic nephropathy in type 2 diabetic rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 94:726–41. doi: 10.1016/j.biopha.2017.07.112.
  • Khanra, R., S. Dewanjee, T. K. Dua, R. Sahu, M. Gangopadhyay, V. De Feo, and M. Zia-Ul-Haq. 2015. Abroma augusta L. (malvaceae) leaf extract attenuates diabetes induced nephropathy and cardiomyopathy via inhibition of oxidative stress and inflammatory response. Journal of Translational Medicine 13 (1):6–14. doi: 10.1186/s12967-014-0364-1.
  • Khokhar, M., D. Roy, A. Modi, R. Agarwal, D. Yadav, P. Purohit, and P. Sharma. 2020. Perspectives on the role of pten in diabetic ­nephropathy: an update. Critical Reviews in Clinical Laboratory Sciences 57 (7):470–83. doi: 10.1080/10408363.2020.1746735.
  • Khursheed, R., S. K. Singh, S. Wadhwa, M. Gulati, B. Kapoor, A. Awasthi, A. Kr, R. Kumar, F. H. Pottoo, V. Kumar, et al. 2021. Opening eyes to therapeutic perspectives of bioactive polyphenols and their nanoformulations against diabetic neuropathy and related complications. Expert Opinion on Drug Delivery 18 (4):427–48. doi: 10.1080/17425247.2021.1846517.
  • Klimczak, D., M. Kuch, T. Pilecki, D. Żochowska, A. Wirkowska, and L. Pączek. 2017. Plasma microrna-155-5p is increased among patients with chronic kidney disease and nocturnal hypertension. Journal of the American Society of Hypertension: JASH 11 (12):831–41. doi: 10.1016/j.jash.2017.10.008.
  • Kolb, H, and S. Martin. 2017. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Medicine 15 (1):131. doi: 10.1186/s12916-017-0901-x.
  • Kölling, M., T. Kaucsar, C. Schauerte, A. Hübner, A. Dettling, J. K. Park, M. Busch, X. Wulff, M. Meier, K. Scherf, et al. 2017. Therapeutic mir-21 silencing ameliorates diabetic kidney disease in mice. Molecular Therapy: The Journal of the American Society of Gene Therapy 25 (1):165–80. doi: 10.1016/j.ymthe.2016.08.001.
  • Kolset, S. O., F. P. Reinholt, and T. Jenssen. 2012. Diabetic nephropathy and extracellular matrix. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society 60 (12):976–86. doi: 10.1369/0022155412465073.
  • Krichevsky, A. M, and G. Gabriely. 2009. Mir-21: a small multi-faceted RNA. Journal of Cellular and Molecular Medicine 13 (1):39–53. doi: 10.1111/j.1582-4934.2008.00556.x.
  • Kumar, A., G. Negi, and S. S. Sharma. 2013. Neuroprotection by resveratrol in diabetic neuropathy: concepts & mechanisms. Current Medicinal Chemistry 20 (36):4640–5. doi: 10.2174/09298673113209990151.
  • Kuwabara, Y., T. Horie, O. Baba, S. Watanabe, M. Nishiga, S. Usami, M. Izuhara, T. Nakao, T. Nishino, K. Otsu, et al. 2015. Microrna-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the lkb1/ampk pathway. Circulation Research 116 (2):279–88. doi: 10.1161/circresaha.116.304707.
  • Lai, J. Y., J. Luo, C. O’Connor, X. Jing, V. Nair, W. Ju, A. Randolph, I. Z. Ben-Dov, R. N. Matar, D. Briskin, et al. 2015. Microrna-21 in glomerular injury. Journal of the American Society of Nephrology 26 (4):805–16. doi: 10.1681/ASN.2013121274.
  • Latronico, M. V., L. Elia, G. Condorelli, and D. Catalucci. 2008. Heart failure: targeting transcriptional and post-transcriptional control mechanisms of hypertrophy for treatment. The International Journal of Biochemistry & Cell Biology 40 (9):1643–8. doi: 10.1016/j.biocel.2008.03.002.
  • Leinders, M., N. Üçeyler, A. Thomann, and C. Sommer. 2017. Aberrant microrna expression in patients with painful peripheral neuropathies. Journal of the Neurological Sciences 380:242–9. doi: 10.1016/j.jns.2017.07.041.
  • Li, D., Z. Lu, J. Jia, Z. Zheng, and S. Lin. 2013. Curcumin ameliorates podocytic adhesive capacity damage under mechanical stress by inhibiting mir-124 expression. Kidney & Blood Pressure Research 38 (1):61–71. doi: 10.1159/000355755.
  • Li, D., Z. Lu, J. Jia, Z. Zheng, and S. Lin. 2013. Mir-124 is related to podocytic adhesive capacity damage in stz-induced uninephrectomized diabetic rats. Kidney & Blood Pressure Research 37 (4-5):422–31. doi: 10.1159/000355721.
  • Li, H., M. W. Liu, W. Yang, L. J. Wan, H. L. Yan, J. C. Li, S. Y. Tang, and Y. Q. Wang. 2020. Naringenin induces neuroprotection against homocysteine-induced pc12 cells via the upregulation of superoxide dismutase 1 expression by decreasing mir-224-3p expression. Journal of Biological Regulators and Homeostatic Agents 34 (2):421–33. doi: 10.23812/20-27-a-39.
  • Li, S. H., M. S. Wang, W. L. Ke, and M. R. Wang. 2021. Naringenin alleviates myocardial ischemia reperfusion injury by enhancing the myocardial mir-126-pi3k/akt axis in streptozotocin-induced diabetic rats. Experimental and Therapeutic Medicine 22 (2):810. doi: 10.3892/etm.2021.10242.
  • Li, X., N. Du, Q. Zhang, J. Li, X. Chen, X. Liu, Y. Hu, W. Qin, N. Shen, C. Xu, et al. 2014. Microrna-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy. Cell Death & Disease 5 (10):e1479-e1479. doi: 10.1038/cddis.2014.430.
  • Li, X. Y., Y. Q. Zhang, G. Xu, S. H. Li, and H. Li. 2018. Mir-124/mcp-1 signaling pathway modulates the protective effect of itraconazole on acute kidney injury in a mouse model of disseminated candidiasis. International Journal of Molecular Medicine 41 (6):3468–76. doi: 10.3892/ijmm.2018.3564.
  • Li, Y., S. Zhao, L. V. der Merwe, W. Dai, and C. Lin. 2022. Efficacy of curcumin for wound repair in diabetic rats/mice: a systematic review and meta-analysis of preclinical studies. Current Pharmaceutical Design 28DOI (3):187–97. doi: 10.2174/1381612827666210617122026.
  • Liu, K., F. Mei, Y. Wang, N. Xiao, L. Yang, Y. Wang, J. Li, F. Huang, J. Kou, B. Liu, et al. 2016. Quercetin oppositely regulates insulin-mediated glucose disposal in skeletal muscle under normal and inflammatory conditions: the dual roles of ampk activation. Molecular Nutrition & Food Research 60 (3):551–65. doi: 10.1002/mnfr.201500509.
  • Liu, L., Y. Wang, R. Yan, L. Liang, X. Zhou, H. Liu, X. Zhang, Y. Mao, W. Peng, Y. Xiao, et al. 2019. Bmp-7 inhibits renal fibrosis in diabetic nephropathy via mir-21 downregulation. Life Sciences 238:116957. doi: 10.1016/j.lfs.2019.116957.
  • Liu, W., Q. Ao, Q. Guo, W. He, L. Peng, J. Jiang, and X. Hu. 2017. Mir-9 mediates calhm1-activated atp-p2x7r signal in painful diabetic neuropathy rats. Molecular Neurobiology 54 (2):922–9. doi: 10.1007/s12035-016-9700-1.
  • Liu, X. S., B. Fan, A. Szalad, L. Jia, L. Wang, X. Wang, W. Pan, L. Zhang, R. Zhang, J. Hu, et al. 2017. Microrna-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice. Diabetes 66 (12):3111–21. doi: 10.2337/db16-1182.
  • Liu, Y., G. Gao, C. Yang, K. Zhou, B. Shen, H. Liang, and X. Jiang. 2014. The role of circulating microrna-126 (mir-126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus. International Journal of Molecular Sciences 15 (6):10567–77. doi: 10.3390/ijms150610567.
  • Liu, Y., Y. Wang, X. Miao, S. Zhou, Y. Tan, G. Liang, Y. Zheng, Q. Liu, J. Sun, and L. Cai. 2014. Inhibition of jnk by compound c66 prevents pathological changes of the aorta in stz-induced diabetes. Journal of Cellular and Molecular Medicine 18 (6):1203–12. doi: 10.1111/jcmm.12267.
  • Liu, Y., J. Xiao, Y. Zhao, C. Zhao, Q. Yang, X. Du, and X. Wang. 2020. Microrna-216a protects against human retinal microvascular endothelial cell injury in diabetic retinopathy by suppressing the nos2/jak/stat axis. Experimental and Molecular Pathology 115:104445. doi: 10.1016/j.yexmp.2020.104445.
  • Loeffler, I, and G. Wolf. 2015. Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? Cells 4 (4):631–52. doi: 10.3390/cells4040631.
  • Lorenzo-Almorós, A., J. M. Cepeda-Rodrigo, and Ó. Lorenzo. 2020. Diabetic cardiomyopathy. Revista Clinica Espanola 124 (8):1160–62. doi: 10.1016/j.rce.2019.10.013.
  • Lou, Z., Q. Li, C. Wang, and Y. Li. 2020. The effects of microrna-126 reduced inflammation and apoptosis of diabetic nephropathy through pi3k/akt signalling pathway by vegf. Archives of Physiology and Biochemistry 216:1–10. doi: 10.1080/13813455.2020.1767146.
  • Ma, S., L. Fan, J. Li, B. Zhang, and Z. Yan. 2020. Resveratrol promoted the m2 polarization of microglia and reduced neuroinflammation after cerebral ischemia by inhibiting mir-155. The International Journal of Neuroscience 130 (8):817–25. doi: 10.1080/00207454.2019.1707817.
  • Madhyastha, R., H. Madhyastha, Y. Nakajima, S. Omura, and M. Maruyama. 2012. Microrna signature in diabetic wound healing: promotive role of mir-21 in fibroblast migration. International Wound Journal 9 (4):355–61. doi: 10.1111/j.1742-481X.2011.00890.x.
  • Malik, S., K. Suchal, S. I. Khan, J. Bhatia, K. Kishore, A. K. Dinda, and D. S. Arya. 2017. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via mapk-nf-κb-tnf-α and tgf-β1-mapk-fibronectin pathways. American Journal of Physiology. Renal Physiology 313 (2):F414–f422. doi: 10.1152/ajprenal.00393.2016.
  • Mastropasqua, R., R. D’Aloisio, E. Costantini, A. Porreca, G. Ferro, D. Libertini, M. Reale, M. Di Nicola, P. Viggiano, G. Falconio, et al. 2021. Serum microrna levels in diabetes mellitus. Diagnostics 11 (2):284. doi: 10.3390/diagnostics11020284.
  • Matos, A. L., D. F. Bruno, A. F. Ambrósio, and P. F. Santos. 2020. The benefits of flavonoids in diabetic retinopathy. Nutrients 12 (10):3169. doi: 10.3390/nu12103169.
  • Matsushima, S, and J. Sadoshima. 2015. The role of sirtuins in cardiac disease. American Journal of Physiology. Heart and Circulatory Physiology 309 (9):H1375–1389. doi: 10.1152/ajpheart.00053.2015.
  • McClelland, A. D, and P. Kantharidis. 2014. Microrna in the development of diabetic complications. Clinical Science (London, England: 1979) 126 (2):95–110. doi: 10.1042/cs20130079.
  • Melman, Y. F., R. Shah, and S. Das. 2014. Micrornas in heart failure: is the picture becoming less mirky? Circulation. Heart Failure 7 (1):203–14. doi: 10.1161/CIRCHEARTFAILURE.113.000266.
  • Meng, J. M., S. Y. Cao, X. L. Wei, R. Y. Gan, Y. F. Wang, S. X. Cai, X. Y. Xu, P. Z. Zhang, and H. B. Li. 2019. Effects and mechanisms of tea for the prevention and management of diabetes mellitus and diabetic complications: an updated review. Antioxidants (Basel, Switzerland) 8 (6):170. doi: 10.3390/antiox8060170.
  • Meng, S., J. T. Cao, B. Zhang, Q. Zhou, C. X. Shen, and C. Q. Wang. 2012. Downregulation of microrna-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene spred-1. Journal of Molecular and Cellular Cardiology 53 (1):64–72. doi: 10.1016/j.yjmcc.2012.04.003.
  • Mokhtari, M., R. Razzaghi, and M. Momen-Heravi. 2021. The effects of curcumin intake on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Phytotherapy Research 35 (4):2099–107. doi: 10.1002/ptr.6957.
  • Ni, T., N. Lin, W. Lu, Z. Sun, H. Lin, J. Chi, and H. Guo. 2020. Dihydromyricetin prevents diabetic cardiomyopathy via mir-34a suppression by activating autophagy. Cardiovascular Drugs and Therapy 34 (3):291–301. doi: 10.1007/s10557-020-06968-0.
  • Orhan, I. E., S. F. Nabavi, M. Daglia, G. C. Tenore, K. Mansouri, and S. M. Nabavi. 2015. Naringenin and atherosclerosis: a review of literature. Current Pharmaceutical Biotechnology 16 (3):245–51. doi: 10.2174/1389201015666141202110216.
  • Ozdemir, D, and M. W. Feinberg. 2019. Micrornas in diabetic wound healing: pathophysiology and therapeutic opportunities. Trends in Cardiovascular Medicine 29 (3):131–7. doi: 10.1016/j.tcm.2018.08.002.
  • Pan, L., K. S. Cho, I. Yi, C. H. To, D. F. Chen, and C. W. Do. 2021. Baicalein, baicalin, and wogonin: protective effects against ischemia-induced neurodegeneration in the brain and retina. Oxidative Medicine and Cellular Longevity 2021:8377362. doi: 10.1155/2021/8377362.
  • Pan, Y., X. Zhang, Y. Wang, L. Cai, L. Ren, L. Tang, J. Wang, Y. Zhao, Y. Wang, Q. Liu, et al. 2013. Targeting jnk by a new curcumin analog to inhibit nf-kb-mediated expression of cell adhesion molecules attenuates renal macrophage infiltration and injury in diabetic mice. PloS One 8 (11):e79084. doi: 10.1371/journal.pone.0079084.
  • Park, S., S. Moon, K. Lee, I. B. Park, D. H. Lee, and S. Nam. 2018. Urinary and blood microrna-126 and -770 are potential noninvasive biomarker candidates for diabetic nephropathy: a meta-analysis. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology 46 (4):1331–40. doi: 10.1159/000489148.
  • Petkovic, M., A. E. Sørensen, E. C. Leal, E. Carvalho, and L. T. Dalgaard. 2020. Mechanistic actions of micrornas in diabetic wound healing. Cells 9 (10):2228. doi: 10.3390/cells9102228.
  • Platania, C. B. M., R. Maisto, M. C. Trotta, M. D'Amico, S. Rossi, C. Gesualdo, G. D'Amico, C. Balta, H. Herman, A. Hermenean, et al. 2019. Retinal and circulating mirna expression patterns in diabetic retinopathy: an in silico and in vivo approach. British Journal of Pharmacology 176 (13):2179–94. doi: 10.1111/bph.14665.
  • Podgórski, P., A. Konieczny, Ł. Lis, W. Witkiewicz, and Z. Hruby. 2019. Glomerular podocytes in diabetic renal disease. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University 28 (12):1711–5. doi: 10.17219/acem/104534.
  • Pop-Busui, R., L. Ang, C. Holmes, K. Gallagher, and E. L. Feldman. 2016. Inflammation as a therapeutic target for diabetic neuropathies. Current Diabetes Reports 16 (3):29. doi: 10.1007/s11892-016-0727-5.
  • Qihui, L., D. Shuntian, Z. Xin, Y. Xiaoxia, and C. Zhongpei. 2020. Protection of curcumin against streptozocin-induced pancreatic cell destruction in t2d rats. Planta Medica 86 (2):113–20. doi: 10.1055/a-1046-1404.
  • Rahigude, A., P. Bhutada, S. Kaulaskar, M. Aswar, and K. Otari. 2012. Participation of antioxidant and cholinergic system in protective effect of naringenin against type-2 diabetes-induced memory dysfunction in rats. Neuroscience 226:62–72. doi: 10.1016/j.neuroscience.2012.09.026.
  • Rao, P. K., Y. Toyama, H. R. Chiang, S. Gupta, M. Bauer, R. Medvid, F. Reinhardt, R. Liao, M. Krieger, R. Jaenisch, et al. 2009. Loss of cardiac microrna-mediated regulation leads to dilated cardiomyopathy and heart failure. Circulation Research 105 (6):585–94. doi: 10.1161/CIRCRESAHA.109.200451.
  • Raut, S. K., G. B. Singh, B. Rastogi, U. N. Saikia, A. Mittal, N. Dogra, S. Singh, R. Prasad, and M. Khullar. 2016. Mir-30c and mir-181a synergistically modulate p53-p21 pathway in diabetes induced cardiac hypertrophy. Molecular and Cellular Biochemistry 417 (1-2):191–203. doi: 10.1007/s11010-016-2729-7.
  • Regazzi, R. 2018. Micrornas as therapeutic targets for the treatment of diabetes mellitus and its complications. Expert Opinion on Therapeutic Targets 22 (2):153–60. doi: 10.1080/14728222.2018.1420168.
  • Rizzo, M. R., R. Marfella, M. Barbieri, V. Boccardi, F. Vestini, B. Lettieri, S. Canonico, and G. Paolisso. 2010. Relationships between daily acute glucose fluctuations and cognitive performance among aged type 2 diabetic patients. Diabetes Care 33 (10):2169–74. doi: 10.2337/dc10-0389.
  • Roy, D., A. Modi, M. Khokhar, S. Sankanagoudar, D. Yadav, S. Sharma, P. Purohit, and P. Sharma. 2021. Microrna 21 emerging role in diabetic complications: a critical update. Current Diabetes Reviews 17 (2):122–35. doi: 10.2174/1573399816666200503035035.
  • Rubler, S., J. Dlugash, Y. Z. Yuceoglu, T. Kumral, A. W. Branwood, and A. Grishman. 1972. New type of cardiomyopathy associated with diabetic glomerulosclerosis. The American Journal of Cardiology 30 (6):595–602. doi: 10.1016/0002-9149(72)90595-4.
  • Samsu, N. 2021. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. BioMed Research International 2021:1–17. doi: 10.1155/2021/1497449.
  • Sanders, J. L, and A. B. Newman. 2013. Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiologic Reviews 35 (1):112–31. doi: 10.1093/epirev/mxs008.
  • Shao, Y., C. Lv, C. Wu, Y. Zhou, and Q. Wang. 2016. Mir-217 promotes inflammation and fibrosis in high glucose cultured rat glomerular mesangial cells via sirt1/hif-1α signaling pathway. Diabetes/Metabolism Research and Reviews 32 (6):534–43. doi: 10.1002/dmrr.2788.
  • Shishodia, S., H. M. Amin, R. Lai, and B. B. Aggarwal. 2005. Curcumin (diferuloylmethane) inhibits constitutive nf-kappab activation, induces g1/s arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochemical Pharmacology 70 (5):700–13. doi: 10.1016/j.bcp.2005.04.043.
  • Simeoli, R, and A. Fierabracci. 2019. Insights into the role of micrornas in the onset and development of diabetic neuropathy. International Journal of Molecular Sciences 20 (18):4627. doi: 10.3390/ijms20184627.
  • Simpson, K., A. Wonnacott, D. J. Fraser, and T. Bowen. 2016. Micrornas in diabetic nephropathy: from biomarkers to therapy. Current Diabetes Reports 16 (3):35. doi: 10.1007/s11892-016-0724-8.
  • Singh, P., S. Bansal, A. Kuhad, A. Kumar, and K. Chopra. 2020. Naringenin ameliorates diabetic neuropathic pain by modulation of oxidative-nitrosative stress, cytokines and mmp-9 levels. Food & Function 11 (5):4548–60. doi: 10.1039/c9fo00881k.
  • Smit-McBride, Z, and L. S. Morse. 2021. Microrna and diabetic retinopathy—biomarkers and novel therapeutics. Annals of Translational Medicine 9 (15):1280– doi: 10.21037/atm-20-5189.
  • Su, H. C., L. M. Hung, and J. K. Chen. 2006. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. American Journal of Physiology. Endocrinology and Metabolism 290 (6):E1339–1346. doi: 10.1152/ajpendo.00487.2005.
  • Sulaiman, M., M. J. Matta, N. R. Sunderesan, M. P. Gupta, M. Periasamy, and M. Gupta. 2010. Resveratrol, an activator of sirt1, upregulates sarcoplasmic calcium atpase and improves cardiac function in diabetic cardiomyopathy. American Journal of Physiology. Heart and Circulatory Physiology 298 (3):H833–843. doi: 10.1152/ajpheart.00418.2009.
  • Sun, Q., J. Zeng, Y. Liu, J. Chen, Q. C. Zeng, Y. Q. Chen, L. L. Tu, P. Chen, F. Yang, and M. Zhang. 2020. Microrna-9 and -29a regulate the progression of diabetic peripheral neuropathy via isl1-mediated sonic hedgehog signaling pathway. Aging 12 (12):11446–65. doi: 10.18632/aging.103230.
  • Sundaresan, N. R., V. B. Pillai, and M. P. Gupta. 2011. Emerging roles of sirt1 deacetylase in regulating cardiomyocyte survival and hypertrophy. Journal of Molecular and Cellular Cardiology 51 (4):614–8. doi: 10.1016/j.yjmcc.2011.01.008.
  • SunYM, S. 2013. Recentadvancesinunderstandingthe biochemicalandmolecularmechanism ofdiabeticnephropathy. Biochemical & Biophysical Research Communications 433 (4):359G361.
  • Takiyama, Y., T. Harumi, J. Watanabe, Y. Fujita, J. Honjo, N. Shimizu, Y. Makino, and M. Haneda. 2011. Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of hif-1α expression and oxygen metabolism. Diabetes 60 (3):981–92. doi: 10.2337/db10-0655.
  • Tang, L., K. Li, Y. Zhang, H. Li, A. Li, Y. Xu, and B. Wei. 2020. Quercetin liposomes ameliorate streptozotocin-induced diabetic nephropathy in diabetic rats. Scientific Reports 10 (1):2440. doi: 10.1038/s41598-020-59411-7.
  • Tiboni, M., S. Coppari, L. Casettari, M. Guescini, M. Colomba, D. Fraternale, A. Gorassini, G. Verardo, S. Ramakrishna, L. Guidi, et al. 2020. Prunus spinosa extract loaded in biomimetic nanoparticles evokes in vitro anti-inflammatory and wound healing activities. Nanomaterials (Basel, Switzerland) 11 (1):36. doi: 10.3390/nano11010036.
  • Tili, E., J. J. Michaille, B. Adair, H. Alder, E. Limagne, C. Taccioli, M. Ferracin, D. Delmas, N. Latruffe, and C. M. Croce. 2010. Resveratrol decreases the levels of mir-155 by upregulating mir-663, a microrna targeting junb and jund. Carcinogenesis 31 (9):1561–6. doi: 10.1093/carcin/bgq143.
  • Tomé-Carneiro, J., M. Larrosa, M. J. Yáñez-Gascón, A. Dávalos, J. Gil-Zamorano, M. Gonzálvez, F. J. García-Almagro, J. A. Ruiz Ros, F. A. Tomás-Barberán, J. C. Espín, et al. 2013. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related micrornas and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacological Research 72:69–82. doi: 10.1016/j.phrs.2013.03.011.
  • Tuttolomondo, A., C. Maida, and A. Pinto. 2015. Diabetic foot syndrome as a possible cardiovascular marker in diabetic patients. Journal of Diabetes Research 2015:268390. doi: 10.1155/2015/268390.
  • ValdezGuerrero, A. S., J. C. Quintana-Pérez, M. G. Arellano-Mendoza, F. J. Castañeda-Ibarra, F. Tamay-Cach, and D. Alemán-González-Duhart. 2021. Diabetic retinopathy: important biochemical alterations and the main treatment strategies. Canadian Journal of Diabetes 45 (6):504–11. doi: 10.1016/j.jcjd.2020.10.009.
  • Venkat, P., C. Cui, M. Chopp, A. Zacharek, F. Wang, J. Landschoot-Ward, Y. Shen, and J. Chen. 2019. Mir-126 mediates brain endothelial cell exosome treatment-induced neurorestorative effects after stroke in type 2 diabetes mellitus mice. Stroke 50 (10):2865–74. doi: 10.1161/strokeaha.119.025371.
  • Verzola, D., M. T. Gandolfo, G. Gaetani, A. Ferraris, R. Mangerini, F. Ferrario, B. Villaggio, F. Gianiorio, F. Tosetti, U. Weiss, et al. 2008. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. American Journal of Physiology-Renal Physiology 295 (5):F1563–F1573. doi: 10.1152/ajprenal.90302.2008.
  • Viard, P., A. J. Butcher, G. Halet, A. Davies, B. Nürnberg, F. Heblich, and A. C. Dolphin. 2004. Pi3k promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nature Neuroscience 7 (9):939–46. doi: 10.1038/nn1300.
  • Wang, J., L. Duan, L. Tian, J. Liu, S. Wang, Y. Gao, and J. Yang. 2016. Serum mir-21 may be a potential diagnostic biomarker for diabetic nephropathy. Experimental and Clinical Endocrinology & Diabetes: Official Journal, German Society of Endocrinology [and] German Diabetes Association 124 (7):417–23. doi: 10.1055/s-0035-1565095.
  • Wang, L., M. Chopp, A. Szalad, Y. Zhang, X. Wang, R. L. Zhang, X. S. Liu, L. Jia, and Z. G. Zhang. 2014. The role of mir-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy. Neuroscience 259:155–63. doi: 10.1016/j.neuroscience.2013.11.057.
  • Wang, Q., S. Navitskaya, H. Chakravarthy, C. Huang, N. Kady, T. A. Lydic, Y. E. Chen, K. J. Yin, F. L. Powell, P. M. Martin, et al. 2016. Dual anti-inflammatory and anti-angiogenic action of mir-15a in diabetic retinopathy. EBioMedicine 11:138–50. doi: 10.1016/j.ebiom.2016.08.013.
  • Wang, W., Y. Zheng, M. Wang, M. Yan, J. Jiang, and Z. Li. 2019. Exosomes derived mir-126 attenuates oxidative stress and apoptosis from ischemia and reperfusion injury by targeting errfi1. Gene 690:75–80. doi: 10.1016/j.gene.2018.12.044.
  • Wang, X., H. Li, H. Wang, and J. Shi. 2020. Quercetin attenuates high glucose-induced injury in human retinal pigment epithelial cell line arpe-19 by up-regulation of mir-29b. Journal of Biochemistry 167 (5):495–502. doi: 10.1093/jb/mvaa001.
  • Wang, Y., A. M. Schmeichel, H. Iida, J. D. Schmelzer, and P. A. Low. 2006. Enhanced inflammatory response via activation of nf-κb in acute experimental diabetic neuropathy subjected to ischemia–reperfusion injury. Journal of the Neurological Sciences 247 (1):47–52. doi: 10.1016/j.jns.2006.03.011.
  • Wong, T. Y., C. M. Cheung, M. Larsen, S. Sharma, and R. Simó. 2016. Diabetic retinopathy. Nature Reviews. Disease Primers 2:16012. doi: 10.1038/nrdp.2016.12.
  • Wu, B., J. Lin, J. Luo, D. Han, M. Fan, T. Guo, L. Tao, M. Yuan, and F. Yi. 2017. Dihydromyricetin protects against diabetic cardiomyopathy in streptozotocin-induced diabetic mice. BioMed Research International 2017:3764370. doi: 10.1155/2017/3764370.
  • Wu, D., N. Luo, L. Wang, Z. Zhao, H. Bu, G. Xu, Y. Yan, X. Che, Z. Jiao, T. Zhao, et al. 2017. Hydrogen sulfide ameliorates chronic renal failure in rats by inhibiting apoptosis and inflammation through ros/mapk and nf-κb signaling pathways. Scientific Reports 7 (1):455. doi: 10.1038/s41598-017-00557-2.
  • Wu, H., L. Kong, Y. Tan, P. N. Epstein, J. Zeng, J. Gu, G. Liang, M. Kong, X. Chen, L. Miao, et al. 2016. C66 ameliorates diabetic nephropathy in mice by both upregulating nrf2 function via increase in mir-200a and inhibiting mir-21. Diabetologia 59 (7):1558–68. doi: 10.1007/s00125-016-3958-8.
  • Wu, H., L. Kong, S. Zhou, W. Cui, F. Xu, M. Luo, X. Li, Y. Tan, and L. Miao. 2014. The role of micrornas in diabetic nephropathy. Journal of Diabetes Research 2014:920134. doi: 10.1155/2014/920134.
  • Wu, L., Q. Wang, F. Guo, X. Ma, J. Wang, Y. Zhao, Y. Yan, and G. Qin. 2021. Involvement of mir-27a-3p in diabetic nephropathy via affecting renal fibrosis, mitochondrial dysfunction, and endoplasmic reticulum stress. Journal of Cellular Physiology 236 (2):1454–68. doi: 10.1002/jcp.29951.
  • Xiao, J. R., C. W. Do, and C. H. To. 2014. Potential therapeutic effects of baicalein, baicalin, and wogonin in ocular disorders. Journal of Ocular Pharmacology and Therapeutics: The Official Journal of the Association for Ocular Pharmacology and Therapeutics 30 (8):605–14. doi: 10.1089/jop.2014.0074.
  • Xin, Y., H. Zhang, Z. Jia, X. Ding, Y. Sun, Q. Wang, and T. Xu. 2018. Resveratrol improves uric acid-induced pancreatic β-cells injury and dysfunction through regulation of mir-126. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 102:1120–6. doi: 10.1016/j.biopha.2018.03.172.
  • Xu, J., W. Wu, L. Zhang, W. Dorset-Martin, M. W. Morris, M. E. Mitchell, and K. W. Liechty. 2012. The role of microrna-146a in the pathogenesis of the diabetic wound-healing impairment: correction with mesenchymal stem cell treatment. Diabetes 61 (11):2906–12. doi: 10.2337/db12-0145.
  • Xu, X. H., D. F. Ding, H. J. Yong, C. L. Dong, N. You, X. L. Ye, M. L. Pan, J. H. Ma, Q. You, and Y. B. Lu. 2017. Resveratrol transcriptionally regulates mirna-18a-5p expression ameliorating diabetic nephropathy via increasing autophagy. European Review for Medical and Pharmacological Sciences 21 (21):4952–65.
  • Yan, N., L. Wen, R. Peng, H. Li, H. Liu, H. Peng, Y. Sun, T. Wu, L. Chen, Q. Duan, et al. 2016. Naringenin ameliorated kidney injury through let-7a/tgfbr1 signaling in diabetic nephropathy. Journal of Diabetes Research 2016:8738760. doi: 10.1155/2016/8738760.
  • Yang, B., S. Ma, Y. B. Wang, B. Xu, H. Zhao, Y. Y. He, C. W. Li, J. Zhang, Y. K. Cao, and Q. Z. Feng. 2016. Resveratrol exerts protective effects on anoxia/reoxygenation injury in cardiomyocytes via mir-34a/sirt1 signaling pathway. European Review for Medical and Pharmacological Sciences 20 (12):2734–41.
  • Yang, J., X. Miao, F. J. Yang, J. F. Cao, X. Liu, J. L. Fu, and G. F. Su. 2021. Therapeutic potential of curcumin in diabetic retinopathy (review). International Journal of Molecular Medicine 47 (5):312–9. doi: 10.3892/ijmm.2021.4908.
  • Yang, Y., H. W. Cheng, Y. Qiu, D. Dupee, M. Noonan, Y. D. Lin, S. Fisch, K. Unno, K. I. Sereti, and R. Liao. 2015. Microrna-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circulation Research 117 (5):450–9. doi: 10.1161/circresaha.117.305962.
  • Yarahmadi, A., S. Z. Shahrokhi, Z. Mostafavi-Pour, and N. Azarpira. 2021. Micrornas in diabetic nephropathy: from molecular mechanisms to new therapeutic targets of treatment. Biochemical Pharmacology 189:114301. doi: 10.1016/j.bcp.2020.114301.
  • Yin, Z., Y. Zhao, M. He, H. Li, J. Fan, X. Nie, M. Yan, C. Chen, and D. W. Wang. 2019. Mir-30c/pgc-1β protects against diabetic cardiomyopathy via pparα. Cardiovascular Diabetology 18 (1):7. doi: 10.1186/s12933-019-0811-7.
  • Yoshida-Hata, N., Y. Mitamura, T. Oshitari, K. Namekata, C. Harada, T. Harada, and S. Yamamoto. 2010. Transcription factor, sp1, in epiretinal membranes of patients with proliferative diabetic retinopathy. Diabetes Research and Clinical Practice 87 (3):e26–8. doi: 10.1016/j.diabres.2009.12.008.
  • Yu, Y., F. Bai, N. Qin, W. Liu, Q. Sun, Y. Zhou, and J. Yang. 2018. Non-proximal renal tubule-derived urinary exosomal mir-200b as a biomarker of renal fibrosis. Nephron 139 (3):269–82. doi: 10.1159/000487104.
  • Zaidun, N. H., Z. C. Thent, and A. A. Latiff. 2018. Combating oxidative stress disorders with citrus flavonoid: naringenin. Life Sciences 208:111–22. doi: 10.1016/j.lfs.2018.07.017.
  • Zakin, E., R. Abrams, and D. M. Simpson. 2019. Diabetic neuropathy. Seminars in Neurology 39 (5):560–9. doi: 10.1055/s-0039-1688978.
  • Zarjou, A., S. Yang, E. Abraham, A. Agarwal, and G. Liu. 2011. Identification of a microrna signature in renal fibrosis: role of mir-21. American Journal of Physiology. Renal Physiology 301 (4):F793–801. doi: 10.1152/ajprenal.00273.2011.
  • Zeng, K., Y. Wang, N. Yang, D. Wang, S. Li, J. Ming, J. Wang, X. Yu, Y. Song, X. Zhou, et al. 2017. Resveratrol inhibits diabetic-induced müller cells apoptosis through microrna-29b/specificity protein 1 pathway. Molecular Neurobiology 54 (6):4000–14. doi: 10.1007/s12035-016-9972-5.
  • Zeng, Y., Z. Cui, J. Liu, J. Chen, and S. Tang. 2019. Microrna-29b-3p promotes human retinal microvascular endothelial cell apoptosis via blocking sirt1 in diabetic retinopathy. Frontiers in Physiology 10:1621. doi: 10.3389/fphys.2019.01621.
  • Zhang, F., K. Wang, F. Gao, Y. Xuan, X. Liu, and Z. Zhang. 2021. Resveratrol pretreatment improved heart recovery ability of hyperglycemic bone marrow stem cells transplantation in diabetic myocardial infarction by down-regulating microrna-34a. Frontiers in Pharmacology 12:632375. doi: 10.3389/fphar.2021.632375.
  • Zhang, J., Y. Chen, H. Luo, L. Sun, M. Xu, J. Yu, Q. Zhou, G. Meng, and S. Yang. 2018. Recent update on the pharmacological effects and mechanisms of dihydromyricetin. Frontiers in Pharmacology 9:1204. doi: 10.3389/fphar.2018.01204.
  • Zhang, J., H. Fu, Y. Xu, Y. Niu, and X. An. 2016. Hyperoside reduces albuminuria in diabetic nephropathy at the early stage through ameliorating renal damage and podocyte injury. Journal of Natural Medicines 70 (4):740–8. doi: 10.1007/s11418-016-1007-z.
  • Zhang, J., L. Wu, J. Chen, S. Lin, D. Cai, C. Chen, and Z. Chen. 2018. Downregulation of microrna 29a/b exacerbated diabetic retinopathy by impairing the function of müller cells via forkhead box protein o4. Diabetes & Vascular Disease Research 15 (3):214–22. doi: 10.1177/1479164118756239.
  • Zhang, L., Q. Dai, L. Hu, H. Yu, J. Qiu, J. Zhou, M. Long, S. Zhou, and K. Zhang. 2020. Hyperoside alleviates high glucose-induced proliferation of mesangial cells through the inhibition of the erk/creb/mirna-34a signaling pathway. International Journal of Endocrinology 2020:1361924. doi: 10.1155/2020/1361924.
  • Zhang, L., S. He, F. Yang, H. Yu, W. Xie, Q. Dai, D. Zhang, X. Liu, S. Zhou, and K. Zhang. 2016. Hyperoside ameliorates glomerulosclerosis in diabetic nephropathy by downregulating mir-21. Canadian Journal of Physiology and Pharmacology 94 (12):1249–56. doi: 10.1139/cjpp-2016-0066.
  • Zhang, M., X. Wang, M. Liu, D. Liu, J. Pan, J. Tian, T. Jin, Y. Xu, and F. An. 2020. Inhibition of phlpp1 ameliorates cardiac dysfunction via activation of the pi3k/akt/mtor signalling pathway in diabetic cardiomyopathy. Journal of Cellular and Molecular Medicine 24 (8):4612–23. doi: 10.1111/jcmm.15123.
  • Zhang, S., L. Xu, R. Liang, C. Yang, and P. Wang. 2020. Baicalin suppresses renal fibrosis through microrna-124/tlr4/nf-κb axis in streptozotocin-induced diabetic nephropathy mice and high glucose-treated human proximal tubule epithelial cells. Journal of Physiology and Biochemistry 76 (3):407–16. doi: 10.1007/s13105-020-00747-z.
  • Zhang, S., R. Xue, and R. Hu. 2020. The neuroprotective effect and action mechanism of polyphenols in diabetes mellitus-related cognitive dysfunction. European Journal of Nutrition 59 (4):1295–311. doi: 10.1007/s00394-019-02078-2.
  • Zhang, Z.-Z., X.-H. Qin, and J. Zhang. 2019. Microrna-183 inhibition exerts suppressive effects on diabetic retinopathy by inactivating btg1-mediated pi3k/akt/vegf signaling pathway. American Journal of Physiology. Endocrinology and Metabolism 316 (6):E1050–E1060. doi: 10.1152/ajpendo.00444.2018.
  • Zheng, D., J. Ma, Y. Yu, M. Li, R. Ni, G. Wang, R. Chen, J. Li, G. C. Fan, J. C. Lacefield, et al. 2015. Silencing of mir-195 reduces diabetic cardiomyopathy in c57bl/6 mice. Diabetologia 58 (8):1949–58. doi: 10.1007/s00125-015-3622-8.
  • Zhou, H., W. J. Ni, X. M. Meng, and L. Q. Tang. 2020. Micrornas as regulators of immune and inflammatory responses: potential therapeutic targets in diabetic nephropathy. Frontiers in Cell and Developmental Biology 8:618536. doi: 10.3389/fcell.2020.618536.
  • Zhou, Q., D. Lv, P. Chen, T. Xu, S. Fu, J. Li, and Y. Bei. 2014. Micrornas in diabetic cardiomyopathy and clinical perspectives. Frontiers in Genetics 5:185. doi: 10.3389/fgene.2014.00185.
  • Zhou, Z., J. Wan, X. Hou, J. Geng, X. Li, and X. Bai. 2017. Microrna-27a promotes podocyte injury via pparγ-mediated β-catenin activation in diabetic nephropathy. Cell Death & Disease 8 (3):e2658. doi: 10.1038/cddis.2017.74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.