1,075
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Effect of the molecular structure and mechanical properties of plant-based hydrogels in food systems to deliver probiotics: an updated review

ORCID Icon, , , , & ORCID Icon

References

  • Ahmad, Z. S, and M. S. A. Munaim. 2018. Effect of time, moisture content, and substrate amount on sorbitol production using entrapment of Lactobacillus plantarum (BAA-793) in sodium alginate beads. Food Bioscience 21:27–33. doi:10.1016/j.fbio.2017.11.002.
  • Al-Ismail, K. M., G. Mehyar, H. S. Al-Khatib, and M. Al-Dabbas. 2015. Effect of microencapsulation of cardamom’s essential oil in gum Arabic and whey protein isolate using spray drying on its stability during storage. Quality Assurance and Safety of Crops & Foods 7 (5):613–20. doi: 10.3920/QAS2014.0422.
  • Alehosseini, A., E.-M. Gomez Del Pulgar, L. G. Gómez-Mascaraque, M. Martínez-Sanz, M. J. Fabra, Y. Sanz, M. Sarabi-Jamab, B. Ghorani, and A. Lopez-Rubio. 2018. Unpurified Gelidium-extracted carbohydrate-rich fractions improve probiotic protection during storage. LWT 96:694–703. doi:10.1016/j.lwt.2018.06.043.
  • Alehosseini, A., E.-M. Gomez Del Pulgar, M. J. Fabra, L. G. Gómez-Mascaraque, A. Benítez-Páez, M. Sarabi-Jamab, B. Ghorani, and A. Lopez-Rubio. 2019. Agarose-based freeze-dried capsules prepared by the oil-induced biphasic hydrogel particle formation approach for the protection of sensitive probiotic bacteria. Food Hydrocolloids. 87:487–96. doi:10.1016/j.foodhyd.2018.08.032.
  • Alehosseini, A., M. Sarabi-Jamab, B. Ghorani, and R. Kadkhodaee. 2019. Electro-encapsulation of Lactobacillus casei in high-resistant capsules of whey protein containing transglutaminase enzyme. LWT 102:150–8. doi:10.1016/j.lwt.2018.12.022.
  • Alizadeh, A. M., F. Hashempour-Baltork, M. Alizadeh-Sani, M. Maleki, M. Azizi-Lalabadi, and K. Khosravi-Darani. 2020. Inhibition of Clostridium botulinum and its toxins by probiotic bacteria and their metabolites: An update review. Quality Assurance and Safety of Crops & Foods 12 (SP1):59–68. doi: 10.15586/qas.v12iSP1.823.
  • Altamirano‐Ríos, A. V., A. Y. Guadarrama‐Lezama, I. J. Arroyo‐Maya, A. Hernández‐Álvarez, and J. Orozco‐Villafuerte. 2022. Effect of encapsulation methods and materials on the survival and viability of Lactobacillus acidophilus: A review. International Journal of Food Science & Technology 57 (7):4027–40. doi: 10.1111/ijfs.15779.
  • Amiri, S., R. R. Mokarram, M. Sowti Khiabani, M. R. Bari, and M. Alizadeh Khaledabad. 2020. In situ production of conjugated linoleic acid by Bifidobacterium lactis BB12 and Lactobacillus acidophilus LA5 in milk model medium. LWT - Food Science and Technology 132:109933. doi: 10.1016/j.lwt.2020.109933.
  • Anselmo, A. C, and S. Mitragotri. 2017. Impact of particle elasticity on particle-based drug delivery systems. Advanced Drug Delivery Reviews 108:51–67. doi: 10.1016/j.addr.2016.01.007.
  • Arenales-Sierra, I. M., C. Lobato-Calleros, E. J. Vernon-Carter, L. Hernández-Rodríguez, and J. Alvarez-Ramirez. 2019. Calcium alginate beads loaded with Mg(OH)2 improve L. casei viability under simulated gastric condition. LWT 112:108220 doi:10.1016/j.lwt.2019.05.118.
  • Arikibe, J. E., R. Lata, K. Kuboyama, T. Ougizawa, and D. Rohindra. 2019. pH‐responsive studies of bacterial cellulose/chitosan hydrogels crosslinked with Genipin: Swelling and drug release behaviour. ChemistrySelect 4 (34):9915–26. doi: 10.1002/slct.201902290.
  • Arslan-Tontul, S., M. Erbas, and A. Gorgulu. 2019. The use of probiotic-loaded single-and double-layered microcapsules in cake production. Probiotics and Antimicrobial Proteins 11 (3):840–9. doi: 10.1007/s12602-018-9467-y.
  • Arunraj, B.S. Talasila, V. Rajesh, and R. N. 2019. Removal of Europium from aqueous solution using Saccharomyces cerevisiae immobilized in glutaraldehyde cross-linked chitosan. Separation Science and Technology 54 (10):1620–31. doi:10.1080/01496395.2018.1556303.
  • Astrini, N. J., T. Rakhmawati, S. Sumaedi, and I. G. M. Y. Bakti. 2020. Identifying objective quality attributes of functional foods. Quality Assurance and Safety of Crops & Foods 12 (2):24–39. doi: 10.15586/QAS2020.663.
  • Axpe, E., D. Chan, G. S. Offeddu, Y. Chang, D. Merida, H. L. Hernandez, and E. A. Appel. 2019. A multiscale model for solute diffusion in hydrogels. Macromolecules 52 (18):6889–97. doi: 10.1021/acs.macromol.9b00753.
  • Ayyash, M. M., A. K. Abdalla, N. S. AlKalbani, M. A. Baig, M. S. Turner, S.-Q. Liu, and N. P. Shah. 2021. Invited review: Characterization of new probiotics from dairy and nondairy products—Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. Journal of Dairy Science 104 (8):8363–79. doi: 10.3168/jds.2021-20398.
  • Bekhit, M., L. Sánchez-González, G. Ben Messaoud, and S. Desobry. 2016. Encapsulation of Lactococcus lactis subsp. lactis on alginate/pectin composite microbeads: Effect of matrix composition on bacterial survival and nisin release. Journal of Food Engineering 180:1–9. doi:10.1016/j.jfoodeng.2016.01.031.
  • Bhattarai, N., J. Gunn, and M. Zhang. 2010. Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews 62 (1):83–99. doi:10.1016/j.addr.2009.07.019. 19799949
  • Çabuk, B, and Ş. Harsa. 2015. Whey Protein-Pullulan (WP/Pullulan) Polymer Blend for Preservation of Viability of Lactobacillus acidophilus. Drying Technology 33 (10):1223–33. doi:10.1080/07373937.2015.1021008.
  • Cano-Sarmiento, C. T. D. I., D. I. Téllez-Medina, R. Viveros-Contreras, M. Cornejo-Mazón, C. Y. Figueroa-Hernández, E. García-Armenta, L. Alamilla-Beltrán, H. S. García, and G. F. Gutiérrez-López. 2018. Zeta potential of food matrices. Food Engineering Reviews 10 (3):113–38. doi: 10.1007/s12393-018-9176-z.
  • Carlson, J, and J. Slavin. 2016. Health benefits of fibre, prebiotics and probiotics: A review of intestinal health and related health claims. Quality Assurance and Safety of Crops & Foods 8 (4):539–54. doi: 10.3920/QAS2015.0791.
  • Centurion, F., A. W. Basit, J. Liu, S. Gaisford, M. A. Rahim, and K. Kalantar-Zadeh. 2021. Nanoencapsulation for probiotic delivery. ACS Nano 15 (12):18653–60. doi: 10.1021/acsnano.1c09951.
  • Chanda, S., R. Kumar Tiwari, A. Kumar, and K. Singh. 2019. Nutraceuticals inspiring the current therapy for lifestyle diseases. Advances in Pharmacological Sciences 2019:6908716. doi: 10.1155/2019/6908716.
  • Chang, Y., Y. Yang, N. Xu, H. Mu, H. Zhang, and J. Duan. 2020. Improved viability of Akkermansia muciniphila by encapsulation in spray dried succinate-grafted alginate doped with epigallocatechin-3-gallate. International Journal of Biological Macromolecules 159:373–82. doi:10.1016/j.ijbiomac.2020.05.055.
  • Chang, C., J. Li, Y. Su, L. Gu, Y. Yang, and J. Zhai. 2022. Protein particle-based vehicles for encapsulation and delivery of nutrients: Fabrication, digestion, and release properties. Food Hydrocolloids. 123:106963. doi: 10.1016/j.foodhyd.2021.106963.
  • Chen, L., T. Yang, Y. Song, G. Shu, and H. Chen. 2017. Effect of xanthan-chitosan-xanthan double layer encapsulation on survival of Bifidobacterium BB01 in simulated gastrointestinal conditions, bile salt solution and yogurt. LWT- Food Science and Technology 81:274–80. doi:10.1016/j.lwt.2017.04.005.
  • Chen, J, and L. Hu. 2020. Nanoscale delivery system for nutraceuticals: Preparation, application, characterization, safety, and future trends. Food Engineering Reviews 12 (1):14–31. doi: 10.1007/s12393-019-09208-w.
  • Chia, P. X., L. J. Tan, C. M. Ying Huang, E. W. Chiang Chan, and S. Y. Wei Wong. Hydrogel beads from sugar cane bagasse and palm kernel cake, and the viability of encapsulated Lactobacillus acidophilus. e-Polymers 15 (6):411–8. doi:10.1515/epoly-2015-0133.
  • Chowdhuri, S., C. M. Cole, and N. K. Devaraj. 2016. Encapsulation of Living Cells within Giant Phospholipid Liposomes Formed by the Inverse‐Emulsion Technique. Chembiochem : a European Journal of Chemical Biology 17 (10):886–9. doi: 10.1002/cbic.201500643.
  • Dafe, A., H. Etemadi, A. Dilmaghani, and G. R. Mahdavinia. 2017. Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. International Journal of Biological Macromolecules 97:536–43. doi:10.1016/j.ijbiomac.2017.01.060.
  • Dafe, A., H. Etemadi, H. Zarredar, and G. R. Mahdavinia. 2017. Development of novel carboxymethyl cellulose/k-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. International Journal of Biological Macromolecules 97:299–307. doi:10.1016/j.ijbiomac.2017.01.016. 28064052
  • Deol, P. K., P. Khare, D. P. Singh, G. Soman, M. Bishnoi, K. K. Kondepudi, and I. P. Kaur. 2017. Managing colonic inflammation associated gut derangements by systematically optimised and targeted ginger extract-Lactobacillus acidophilus loaded pharmacobiotic alginate beads. International Journal of Biological Macromolecules 105 (Pt 1):81–91. doi:10.1016/j.ijbiomac.2017.06.117. 28690172
  • Dimida, S., C. Demitri, V. M. De Benedictis, F. Scalera, F. Gervaso, and A. Sannino. 2015. Genipin‐cross‐linked chitosan‐based hydrogels: Reaction kinetics and structure‐related characteristics. Journal of Applied Polymer Science 132 (28):42256. https://doi.org/10.1002/app.42256.
  • Do, N. H., Q. T. Truong, P. K. Le, and A. C. Ha. 2022. Recent developments in chitosan hydrogels carrying natural bioactive compounds. Carbohydrate Polymers 294:119726. doi: 10.1016/j.carbpol.2022.119726.
  • Silva, e., K. Kássia de Paiva, M. de Souza Queirós, A. P. Badan Ribeiro, and M. Lúcia Gigante. 2022. Modified milk fat as encapsulating material for the probiotic microorganism Lactobacillus acidophilus LA3. International Dairy Journal 125:105237. doi: 10.1016/j.idairyj.2021.105237.
  • Eslami, M., A. Bahar, M. Keikha, M. Karbalaei, N. M. Kobyliak, and B. Yousefi. 2020. Probiotics function and modulation of the immune system in allergic diseases. Allergologia et Immunopathologia 48 (6):771–88. doi: 10.1016/j.aller.2020.04.005.
  • Farahmand, A., B. Ghorani, B. Emadzadeh, M. Sarabi-Jamab, M. Emadzadeh, A. Modiri, and N. Tucker. 2022. Millifluidic-assisted ionic gelation technique for encapsulation of probiotics in double-layered polysaccharide structure. Food Research International 160:111699. doi: 10.1016/j.foodres.2022.111699.
  • Fareez, I. M., S. M. Lim, N. A. A. Zulkefli, R. K. Mishra, and K. Ramasamy. 2018. Cellulose derivatives enhanced stability of alginate-based beads loaded with lactobacillus plantarum LAB12 against low ph, high temperature and prolonged storage. Probiotics and Antimicrobial Proteins 10 (3):543–57. doi:10.1007/s12602-017-9284-8.
  • Fathi, M., F. Donsi, and D. J. McClements. 2018. Protein‐based delivery systems for the nanoencapsulation of food ingredients. Comprehensive Reviews in Food Science and Food Safety 17 (4):920–36. doi: 10.1111/1541-4337.12360.
  • Feng, Y., S. R. Kilker, and Y. Lee. 2020. Surface charge (zeta-potential) of nanoencapsulated food ingredients. In Characterization of nanoencapsulated food ingredients, 213–41. New York, NY: Elsevier.
  • Frakolaki, G., M. Katsouli, V. Giannou, and C. Tzia. 2020. Novel encapsulation approach for Bifidobacterium subsp. lactis (BB-12) viability enhancement through its incorporation into a double emulsion prior to the extrusion process. LWT - Food Science and Technology 130:109671. doi: 10.1016/j.lwt.2020.109671.
  • Gao, Y., X. Wang, C. Xue, and Z. Wei. 2021. Latest developments in food-grade delivery systems for probiotics: A systematic review. Critical Reviews in Food Science and Nutrition 2021:1–18. doi: 10.1080/10408398.2021.2001640.
  • Garcia-Brand, A. J., V. Quezada, C. Gonzalez-Melo, A. D. Bolaños-Barbosa, J. C. Cruz, and L. H. Reyes. 2022. Novel developments on stimuli-responsive probiotic encapsulates: From smart hydrogels to nanostructured platforms. Fermentation 8 (3):117. doi: 10.3390/fermentation8030117.
  • Ghasemi, L., L. Nouri, A. M. Nafchi, and A. A. Al‐Hassan. 2022. The effects of encapsulated probiotic bacteria on the physicochemical properties, staling, and viability of probiotic bacteria in gluten‐free bread. Food Processing and Preservation 46 (3):e16359. doi: 10.1111/jfpp.16359.
  • Ghasemnezhad, R., V. Razavilar, H. Pourjafar, K. Khosravi-Darani, and K. Ala. 2017. The viability of free and encapsulated Lactobacillus casei and Bifidobacterium animalis in chocolate milk, and evaluation of its pH changes and sensory properties during storage. Annual Research & Review in Biology 21 (3):1–8. doi: 10.9734/ARRB/2017/37885.
  • Ghibaudo, F., E. Gerbino, V. Campo Dall’ Orto, and A. Gómez-Zavaglia. 2017. P ectin-iron capsules: Novel system to stabilise and deliver lactic acid bacteria. Journal of Functional Foods 39:299–305. doi:10.1016/j.jff.2017.10.028.
  • Ghorbani-Choboghlo, H., T. Zahraei-Salehi, J. Ashrafi-Helan, R. Yahyaraeyat, H. Pourjafar, D. Nikaein, A. Balal, and A. -R. Khosravi. 2015. Microencapsulation of saccharomyces cerevisiae and its evaluation to protect in simulated gastric conditions. Iranian Journal of Microbiology 7 (6):338. http://ijm.tums.ac.ir.
  • Gong, P., W. Di, H. Yi, J. Sun, L. Zhang, and X. Han. 2019. Improved viability of spray-dried Lactobacillus bulgaricus sp1.1 embedded in acidic-basic proteins treated with transglutaminase. Food Chemistry 281:204–12. doi:10.1016/j.foodchem.2018.12.095.
  • Haghshenas, B., N. Abdullah, Y. Nami, D. Radiah, R. Rosli, and A. Yari Khosroushahi. 2015. Microencapsulation of probiotic bacteria Lactobacillus plantarum 15HN using alginate-psyllium-fenugreek polymeric blends. Journal of Applied Microbiology 118 (4):1048–57. doi:10.1111/jam.12762.
  • Han, C., Y. Xiao, E. Liu, Z. Su, X. Meng, and B. Liu. 2020. Preparation of Ca-alginate-whey protein isolate microcapsules for protection and delivery of L. bulgaricus and L. paracasei. International Journal of Biological Macromolecules 163:1361–8. doi:10.1016/j.ijbiomac.2020.07.247.
  • Hoare, T. R, and D. S. Kohane. 2008. Hydrogels in drug delivery: Progress and challenges. Polymer 49 (8):1993–2007. doi: 10.1016/j.polymer.2008.01.027.
  • Hosseini, S. F., B. Ansari, and A. Gharsallaoui. 2022. Polyelectrolytes-stabilized liposomes for efficient encapsulation of Lactobacillus rhamnosus and improvement of its survivability under adverse conditions. Food Chemistry 372:131358. doi: 10.1016/j.foodchem.2021.131358.
  • Hyman, M, and E. Bradley. 2022. Food, medicine, and function: Food is medicine part 1. Physical Medicine and Rehabilitation Clinics 33 (3):553–70. doi: 10.1016/j.pmr.2022.04.001.
  • Iravani, S., H. Korbekandi, and S. V. Mirmohammadi. 2015. Technology and potential applications of probiotic encapsulation in fermented milk products. Journal of Food Science and Technology 52 (8):4679–96. doi: 10.1007/s13197-014-1516-2.
  • Islam, M., Y. Huang, M. S. Islam, N. Lei, L. Shan, B. Fan, L. Tong, and F. Wang. 2022. Effect of high-moisture extrusion on soy meat analog: study on its morphological and physiochemical properties. Italian Journal of Food Science 34 (2):9–20. doi:10.15586/ijfs.v34i2.2141.
  • Jan, K.-C., T.-Y. Wang, L. S. Hwang, and M. Gavahian. 2022. Biotransformation of sesaminol triglycoside by intestinal microflora of swine supplemented with probiotic or antibiotic diet. Quality Assurance and Safety of Crops & Foods 14 (3):19–29. doi: 10.15586/qas.v14i3.1027.
  • Johnson, V. R., T. B. Washington, S. Chhabria, E. H.-C. Wang, K. Czepiel, K. J. C. Reyes, and F. C. Stanford. 2022. Food as Medicine for Obesity Treatment and Management. Clinical Therapeutics 44 (5):671–81. doi: 10.1016/j.clinthera.2022.05.001.
  • Khorasani, S., M. Danaei, and M. R. Mozafari. 2018. Nanoliposome technology for the food and nutraceutical industries. Trends in Food Science & Technology 79:106–15. doi: 10.1016/j.tifs.2018.07.009.
  • Kim, J. U., B. Kim, H. M. Shahbaz, S. H. Lee, D. Park, and J. Park. 2017. Encapsulation of probiotic Lactobacillus acidophilus by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage. International Journal of Food Science & Technology 52 (2):519–30. doi:10.1111/ijfs.13308.
  • Kim, M., D.-G. Nam, P. Im, J.-S. Choe, and A.-J. Choi. 2020. Optimal conditions for the encapsulation of Weissella cibaria JW15 using alginate and chicory root and evaluation of capsule stability in a simulated gastrointestinal system. Journal of Food Science 85 (2):394–403. doi:10.1111/1750-3841.15013.
  • Kwiecień, I, and M. Kwiecień. 2018. Application of Polysaccharide-Based Hydrogels as Probiotic Delivery Systems. Gels 4 (2):47 doi:10.3390/gels4020047.
  • Le, N., L. Bach, D. Nguyen, T. Le, K. Pham, D. Nguyen, T. Hoang Thi. 2019. Evaluation of factors affecting antimicrobial activity of bacteriocin from lactobacillus plantarum microencapsulated in alginate-gelatin capsules and its application on pork meat as a bio-preservative. International Journal of Environmental Research and Public Health 16 (6):1017. doi:10.3390/ijerph16061017.
  • Lei, J., Z. Li, S. Xu, and Z. Liu. 2021. Recent advances of hydrogel network models for studies on mechanical behaviors. Acta Mechanica Sinica 37 (3):367–86. doi: 10.1007/s10409-021-01058-2.
  • Li, W., X. Luo, R. Song, Y. Zhu, B. Li, and S. Liu. 2016. Porous cellulose microgel particle: a fascinating host for the encapsulation, protection, and delivery of lactobacillus plantarum. Journal of Agricultural and Food Chemistry 64 (17):3430–6. doi:10.1021/acs.jafc.6b00481.
  • Li, W., L. Liu, H. Tian, X. Luo, and S. Liu. 2019. Encapsulation of Lactobacillus plantarum in cellulose based microgel with controlled release behavior and increased long-term storage stability. Carbohydrate Polymers 223:115065 doi:10.1016/j.carbpol.2019.115065. PMC: 31426953
  • Li, H.-Y., D.-D. Zhou, R.-Y. Gan, S.-Y. Huang, C.-N. Zhao, A. Shang, X.-Y. Xu, and H.-B. Li. 2021. Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: A narrative review. Nutrients 13 (9):3211. doi: 10.3390/nu13093211.
  • Liu, J., X. Yao, D. Yun, M. Zhang, C. Qian, and J. Liu. 2021. Development of active packaging films based on quaternary ammonium chitosan, polyvinyl alcohol and litchi (Litchi chinensis Sonn.) pericarp extract. Quality Assurance and Safety of Crops & Foods 13 (SP2):9–19. doi:10.15586/qas.v13iSP2.945.
  • Liu, K., Y.-Y. Chen, X.-Q. Zha, Q.-M. Li, L.-H. Pan, and J.-P. Luo. 2021. Research progress on polysaccharide/protein hydrogels: Preparation method, functional property and application as delivery systems for bioactive ingredients. Food Research International (Ottawa, Ont.) 147:110542. doi: 10.1016/j.foodres.2021.110542.
  • Liu, W., S. Li, N. Han, H. Bian, and D. Song. 2022. Effects of germinated and ungerminated grains on the production of non-dairy probiotic-fermented beverages. Quality Assurance and Safety of Crops & Foods 14 (2):32–9. doi: 10.15586/qas.v14i2.911.
  • Mahmoudi, P., Z. Khoshkhoo, A. Akhondzadeh Basti, P. Mahasti Shotorbani, and A. Khanjari. 2021. Effect of Bunium persicum essential oil, NaCl, Bile Salts, and their combinations on the viability of Lactobacillus acidophilus in probiotic yogurt. Quality Assurance and Safety of Crops & Foods 13 (1):37–48. doi: 10.15586/qas.v13i1.858.
  • Mao, T., Y. Peng, R. Peng, and X. Wei. 2021. Angelica sinensis polysaccharide promotes the proliferation and osteogenic differentiation of human dental pulp stem cells (hDPSCs) by activating the wnt/β-catenin pathway. Quality Assurance and Safety of Crops & Foods 13 (4):31–7. doi:10.15586/qas.v13i4.989.
  • McClements, D. J. 2020. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnology Advances 38:107287. doi: 10.1016/j.biotechadv.2018.08.004.
  • Misra, S., P. Pandey, and H. N. Mishra. 2021. Novel approaches for co-encapsulation of probiotic bacteria with bioactive compounds, their health benefits and functional food product development: A review. Trends in Food Science & Technology 109:340–51. doi: 10.1016/j.tifs.2021.01.039.
  • Mizielińska, M., and L. Łopusiewicz. 2018. Encapsulation and ­evaluation of probiotic bacteria survival in simulated gastrointestinal conditions. Rom Biotechnol Lett 23:13690–13696.
  • Moghaddas Kia, E., Z. Ghasempour, S. Ghanbari, R. Pirmohammadi, and A. Ehsani. 2018. Development of probiotic yogurt by incorporation of milk protein concentrate (MPC) and microencapsulated Lactobacillus paracasei in gellan-caseinate mixture. British Food Journal 120 (7):1516–28. doi:10.1108/BFJ-12-2017-0668.
  • Mohammadi, K., M. A. Sani, M. Azizi-Lalabadi, and D. J. McClements. 2022. Recent progress in the application of plant-based colloidal drug delivery systems in the pharmaceutical sciences. Advances in Colloid and Interface Science 307:102734. doi: 10.1016/j.cis.2022.102734.
  • Mokhtari, S., S. M. Jafari, M. Khomeiri, Y. Maghsoudlou, and M. Ghorbani. 2017. The cell wall compound of Saccharomyces cerevisiae as a novel wall material for encapsulation of probiotics. Food Research International 96:19–26. doi:10.1016/j.foodres.2017.03.014.
  • Neekhra, S., J. Ahmad Pandith, N. A. Mir, A. Manzoor, S. Ahmad, R. Ahmad, and R. A. Sheikh. 2022. Innovative approaches for microencapsulating bioactive compounds and probiotics: An updated review. Food Processing and Preservation 2022:e16935. doi: 10.1111/jfpp.16935.
  • Niamah, A. K., S. T. G. Al-Sahlany, S. A. Ibrahim, D. K. Verma, M. Thakur, S. Singh, A. R. Patel, C. N. Aguilar, and G. L. Utama. 2021. Electro-hydrodynamic processing for encapsulation of probiotics: A review on recent trends, technological development, challenges and future prospect. Food Bioscience 44 (101458):101458. doi: 10.1016/j.fbio.2021.101458.
  • Nikkhah, M., Z. Khoshkhoo, S. E. Hosseini, P. M. Shotorbani, and A. A. Basti. 2020. Physical stability of microliposomes in bene (Pistacia atlantica) oil with different formulations. Quality Assurance and Safety of Crops & Foods 12 (SP1):41–9. doi: 10.15586/qas.v12iSP1.827.
  • O’Neill, G. J., T. Egan, J. C. Jacquier, M. O’Sullivan, and E. Dolores O’Riordan. 2014. Whey microbeads as a matrix for the encapsulation and immobilisation of riboflavin and peptides. Food Chemistry 160:46–52. doi: 10.1016/j.foodchem.2014.03.002.
  • Obradovic, N., I. Pajic-Lijakovic, T. Krunic, M. Belovic, M. Rakin, and B. Bugarski. 2020. Effect of encapsulated probiotic starter culture on rheological and structural properties of natural hydrogel carriers affected by fermentation and gastrointestinal conditions. Food Biophysics 15 (1):18–31. doi: 10.1007/s11483-019-09598-8.
  • Okay, O. 2009. General properties of hydrogels. In Hydrogel sensors and actuators, 1–14. Berlin, Heidelberg: Springer.
  • Ozturk, B., M. Elvan, M. Ozer, and S. Tellioglu Harsa. 2021. Effect of different microencapsulating materials on the viability of S. thermophilus CCM4757 incorporated into dark and milk chocolates. Food Bioscience 44:101413. doi: 10.1016/j.fbio.2021.101413.
  • Pandhi, S., A. Kumar, and T. Alam. 2019. Probiotic edible films and coatings: Concerns, applications and future prospects. Journal of Packaging Technology and Research 3 (3):261–8. doi: 10.1007/s41783-019-00069-6.
  • Panghal, A., S. Jaglan, N. Sindhu, V. Anshid, M. Veera Sai Charan, V. Surendran, and N. Chhikara. 2019. Microencapsulation for delivery of probiotic bacteria. In Nanobiotechnology in bioformulations, 135–60. Berlin, Heidelberg: Springer.
  • Patarroyo, J. L., J. S. Florez-Rojas, D. Pradilla, J. D. Valderrama-Rincón, J. C. Cruz, and L. H. Reyes. 2020. Formulation and characterization of gelatin-based hydrogels for the encapsulation of Kluyveromyces lactis—applications in packed-bed reactors and probiotics delivery in humans. Polymers 12 (6):1287. doi: 10.3390/polym12061287.
  • Paz‐Samaniego, R., A. Rascón‐Chu, F. Brown‐Bojorquez, E. Carvajal‐Millan, M. Pedroza‐Montero, E. Silva‐Campa, N. Sotelo‐Cruz, Y. L. López‐Franco, and J. Lizardi‐Mendoza. 2018. Electrospray‐assisted fabrication of core‐shell arabinoxylan gel particles for insulin and probiotics entrapment. Journal of Applied Polymer Science 135 (26):46411, doi:10.1002/app.46411.
  • Pedroso, D. L., M. Dogenski, M. Thomazini, R. J. B. Heinemann, and C. S. Fávaro-Trindade. 2013. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology. Brazilian Journal of Microbiology : [Publication of the Brazilian Society for Microbiology] 44 (3):777–83. doi: 10.1590/s1517-83822013000300017.
  • Peppas, N. A., J. Z. Hilt, A. Khademhosseini, and R. Langer. 2006. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Advanced Materials 18 (11):1345–60. doi: 10.1002/adma.200501612.
  • Pettinelli, N., S. Rodríguez-Llamazares, V. Abella, L. Barral, R. Bouza, Y. Farrag, and F. Lago. 2019. Entrapment of chitosan, pectin or κ-carrageenan within methacrylate based hydrogels: Effect on swelling and mechanical properties. Materials Science & Engineering. C, Materials for Biological Applications 96:583–90. doi:10.1016/j.msec.2018.11.071.
  • Picone, C. S. F., A. C. Bueno, M. Michelon, and R. L. Cunha. 2017. Development of a probiotic delivery system based on gelation of water-in-oil emulsions. LWT 86:62–8. doi:10.1016/j.lwt.2017.07.045.
  • Pires, R. C., M. R. Portinari, G. Z. Moraes, A. M. Khaneghah, B. L. Gonçalves, R. E. Rosim, C. A. Oliveira, and C. H. Corassin. 2022. Evaluation of Anti-Aflatoxin M1 effects of heat-killed cells of Saccharomyces cerevisiae in Brazilian commercial yogurts. Quality Assurance and Safety of Crops & Foods 14 (1):75–81. doi: 10.15586/qas.v14i1.1006.
  • Pitigraisorn, P., K. Srichaisupakit, N. Wongpadungkiat, and S. Wongsasulak. 2017. Encapsulation of Lactobacillus acidophilus in moist-heat-resistant multilayered microcapsules. Journal of Food Engineering 192:11–8. doi: 10.1016/j.jfoodeng.2016.07.022.
  • Polat, T. G., O. Duman, and S. Tunç. 2020. Preparation and characterization of environmentally friendly agar/κ-carrageenan/montmorillonite nanocomposite hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects 602:124987. doi: 10.1016/j.colsurfa.2020.124987.
  • Praepanitchai, O.-A., A. Noomhorm, and A. K. Anal. 2019. Survival and Behavior of Encapsulated Probiotics (Lactobacillus plantarum) in Calcium-Alginate-Soy Protein Isolate-Based Hydrogel Beads in Different Processing Conditions (pH and Temperature) and in Pasteurized Mango Juice. BioMed Research International 2019:9768152 doi:10.1155/2019/9768152. PMC: 30895197
  • Qi, X., S. Simsek, B. Chen, and J. Rao. 2020. Alginate-based double-network hydrogel improves the viability of encapsulated probiotics during simulated sequential gastrointestinal digestion: Effect of biopolymer type and concentrations. International Journal of Biological Macromolecules 165 (Pt B):1675–85. doi: 10.1016/j.ijbiomac.2020.10.028.
  • Raise, A., S. Dupont, C. Iaconelli, C. Caliri, A. Charriau, P. Gervais, O. Chambin, and L. Beney. 2020. Comparison of two encapsulation processes to protect the commensal gut probiotic bacterium Faecalibacterium prausnitzii from the digestive tract. Journal of Drug Delivery Science and Technology 56:101608 doi:10.1016/j.jddst.2020.101608.
  • Ramos, P. E., P. Silva, M. M. Alario, L. M. Pastrana, J. A. Teixeira, M. A. Cerqueira, and A. A. Vicente. 2018. Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocolloids. 77:8–16. doi:10.1016/j.foodhyd.2017.08.031.
  • Razavi, S., S. Janfaza, N. Tasnim, D. L. Gibson, and M. Hoorfar. 2021a. Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocolloids. 120:106882. doi: 10.1016/j.foodhyd.2021.106882.
  • Razavi, S., S. Janfaza, N. Tasnim, D. L. Gibson, and M. Hoorfar. 2021b. Nanomaterial-based encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria. Nanoscale Advances 3 (10):2699–709. doi: 10.1039/D0NA00952K.
  • Reque, P. M, and A. Brandelli. 2021. Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends in Food Science & Technology 114:1–10. doi: 10.1016/j.tifs.2021.05.022.
  • Rezaei, A., M. Fathi, and S. M. Jafari. 2019. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids. 88:146–62. doi: 10.1016/j.foodhyd.2018.10.003.
  • Rezazadeh-Bari, M., Y. Najafi-Darmian, M. Alizadeh, and S. Amiri. 2019. Numerical optimization of probiotic Ayran production based on whey containing transglutaminase and Aloe vera gel. Food Science and Technology 56 (7):3502–12. doi: 10.1007/s13197-019-03841-3.
  • Riaz, T., M. W. Iqbal, M. Saeed, I. Yasmin, H. A. M. Hassanin, S. Mahmood, and A. Rehman. 2019. In vitro survival of Bifidobacterium bifidum microencapsulated in zein-coated alginate hydrogel microbeads. Journal of Microencapsulation 36 (2):192–203. doi:10.1080/02652048.2019.1618403.
  • Ribeiro, F. d C, Junqueira, J. C, Dos Santos, J. D, De, P. P, Rossoni, R. D, Shukla, S, Fuchs, B. B, Shukla, A, and , Mylonakis, E. Development of probiotic formulations for oral candidiasis prevention: Gellan gum as a carrier to deliver Lactobacillus paracasei 28.4. Antimicrobial Agents and Chemotherapy 2020. 64 (6):e02323–19. doi:10.1128/AAC.02323-19
  • Roy, A., M. Patra, S. Sarkhel, S. Sengupta, S. Saha, S. Jha, G. Sarkhel, and S. L. Shrivastava. 2022. Fucose-containing Abroma augusta mucilage hydrogel as a potential probiotic carrier with prebiotic function. Food Chemistry 387:132941. doi: 10.1016/j.foodchem.2022.132941.
  • Sbehat, M., M. Altamimi, M. Sabbah, and G. Mauriello. 2022. Layer-by-layer coating of single-cell Lacticaseibacillus rhamnosus to increase viability under simulated gastrointestinal conditions and use in film formation. Frontiers in Microbiology 13:838416. doi: 10.3389/fmicb.2022.838416.
  • Schell, D, and C. Beermann. 2014. Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in-vitro gastro-intestinal survival. Food Research International 62:308–14. doi:10.1016/j.foodres.2014.03.016.
  • Semyonov, D., O. Ramon, A. Kovacs, L. Friedlander, and E. Shimoni. 2012. Air-suspension fluidized-bed microencapsulation of probiotics. Drying Technology 30 (16):1918–30. doi: 10.1080/07373937.2012.708692.
  • Sharifi-Rad, J., C. F. Rodrigues, F. Sharopov, A. O. Docea, A. Can Karaca, M. Sharifi-Rad, D. Kahveci Karıncaoglu, G. Gülseren, E. Şenol, E. Demircan, et al. 2020. Diet, lifestyle and cardiovascular diseases: Linking pathophysiology to cardioprotective effects of natural bioactive compounds. International Journal of Environmental Research and Public Health 17 (7):2326. doi: 10.3390/ijerph17072326.
  • Shi, L.-E., Z.-H. Li, D.-T. Li, M. Xu, H.-Y. Chen, Z.-L. Zhang, and Z.-X. Tang. 2013. Encapsulation of probiotic Lactobacillus bulgaricus in alginate–milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. Journal of Food Engineering 117 (1):99–104. doi:10.1016/j.jfoodeng.2013.02.012.
  • Shoukat, H., K. Buksh, S. Noreen, F. Pervaiz, and I. Maqbool. 2021. Hydrogels as potential drug-delivery systems: Network design and applications. Therapeutic Delivery 12 (5):375–96. doi: 10.4155/tde-2020-0114.
  • Siddiqui, S. A., T. Alvi, A. Biswas, S. Shityakov, T. Gusinskaia, F. Lavrentev, K. Dutta, M. Kashif Iqbal Khan, J. Stephen, and M. Radhakrishnan. 2022. Food gels: Principles, interaction mechanisms and its microstructure. Critical Reviews in Food Science and Nutrition 2022:1–22. doi: 10.1080/10408398.2022.2103087.
  • Silva, M. P., F. L. Tulini, E. Martins, M. Penning, C. S. Favaro-Trindade, and D. Poncelet. 2018. Comparison of extrusion and co-extrusion encapsulation techniques to protect Lactobacillus acidophilus LA3 in simulated gastrointestinal fluids. LWT - Food Science and Technology 89:392–9. doi: 10.1016/j.lwt.2017.11.008.
  • Singh, P., B. Medronho, L. Alves, G. J. Da Silva, M. G. Miguel, and B. Lindman. 2017. Development of carboxymethyl cellulose-chitosan hybrid micro- and macroparticles for encapsulation of probiotic bacteria. Carbohydrate Polymers 175:87–95. doi:10.1016/j.carbpol.2017.06.119.
  • Singh, P., B. Medronho, T. d. Santos, I. Nunes-Correia, P. Granja, M. G. Miguel, and B. Lindman. 2018. On the viability, cytotoxicity and stability of probiotic bacteria entrapped in cellulose-based particles. Food Hydrocolloids. 82:457–65. doi:10.1016/j.foodhyd.2018.04.027.
  • Šipailienė, A, and S. Petraitytė. 2018. Encapsulation of probiotics: Proper selection of the probiotic strain and the influence of encapsulation technology and materials on the viability of encapsulated microorganisms. Probiotics and Antimicrobial Proteins 10 (1):1–10. doi: 10.1007/s12602-017-9347-x.
  • Sobolestani, A. S., Rasoul, R, and Taheri-Kofrani, A. The Effect of Biofilm-like Structure, Sub-lethal Acid Stress, and Plant Gums on Culturability of Entrapped Lactobacillus Plantarum. Biological Journal of Microorganism 2019. 8 (32):95–108. doi:10.22108/BJM.2018.113507.1163.
  • Timilsena, Y. P., M. A. Haque, and B. Adhikari. 2020. Encapsulation in the food industry: A brief historical overview to recent developments. Food and Nutrition Sciences 11 (06):481–508. doi:10.4236/fns.2020.116035.
  • Vashi, R. S, and K. B. Shah. 2020. The effect of immobilization of lactic acid bacteria in alginate coated with chitosan on their resistance to laboratory model of human gut and on antibacterial activity. Mukt Shabd IX (VI):3542–50.
  • Vaziri, A. S., I. Alemzadeh, and M. Vossoughi. 2018. Improving survivability of Lactobacillus plantarum in alginate-chitosan beads reinforced by Na-tripolyphosphate dual cross-linking. LWT - Food Science and Technology 97:440–7. doi: 10.1016/j.lwt.2018.07.037.
  • Vigata, M., C. Meinert, D. W. Hutmacher, and N. Bock. 2020. Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics 12 (12):1188. doi: 10.3390/pharmaceutics12121188.
  • Wang, S.-Y., Y.-F. Ho, Y.-P. Chen, and M.-J. Chen. 2015. Effects of a novel encapsulating technique on the temperature tolerance and anti-colitis activity of the probiotic bacterium Lactobacillus kefiranofaciens M1. Food Microbiology 46:494–500. doi:10.1016/j.fm.2014.09.015.
  • Wang, L., M. Song, Z. Zhao, X. Chen, J. Cai, Y. Cao, and J. Xiao. 2020. Lactobacillus acidophilus loaded pickering double emulsion with enhanced viability and colon-adhesion efficiency. LWT 121:108928. doi:10.1016/j.lwt.2019.108928.
  • Wang, J., D. R. Korber, N. H. Low, and M. T. Nickerson. 2014. Entrapment, survival and release of Bifidobacterium adolescentis within chickpea protein-based microcapsules. Food Research International 55:20–7. doi: 10.1016/j.foodres.2013.09.018.
  • Wawryk-Gawda, E., E. Markut-Miotła, and A. Emeryk. 2021. Postnatal probiotics administration does not prevent asthma in children, but using prebiotics or synbiotics may be effective potential strategies to decrease the frequency of asthma in high-risk children–a meta-analysis of clinical trials. Allergologia et Immunopathologia 49 (4):4–14. doi: 10.15586/aei.v49i4.69.
  • Xiao, Y., C. Han, H. Yang, M. Liu, X. Meng, and B. Liu. 2020. Layer (whey protein isolate)-by-layer (xanthan gum) microencapsulation enhances survivability of L. bulgaricus and L. paracasei under simulated gastrointestinal juice and thermal conditions. International Journal of Biological Macromolecules 148:238–47. doi: 10.1016/j.ijbiomac.2020.01.113.
  • Xu, M., F. Gagné-Bourque, M.-J. Dumont, and S. Jabaji. 2016. Encapsulation of Lactobacillus casei ATCC 393 cells and evaluation of their survival after freeze-drying, storage and under gastrointestinal conditions. Journal of Food Engineering 168:52–9. doi:10.1016/j.jfoodeng.2015.07.021.
  • Xu, C., Q. Ban, W. Wang, J. Hou, and Z. Jiang. 2022. Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. Journal of Controlled Release : official Journal of the Controlled Release Society 349:184–205. doi: 10.1016/j.jconrel.2022.06.061.
  • Yadav, A., N. Kumar, A. Upadhyay, A. Singh, R. K. Anurag, and R. Pandiselvam. 2022. Effect of mango kernel seed starch-based active edible coating functionalized with lemongrass essential oil on the shelf-life of guava fruit. Quality Assurance and Safety of Crops & Foods 14 (3):103–15. doi:10.15586/qas.v14i3.1094.
  • Yan, S., S. Ai, L. Huang, C. Qiu, F. Zhang, N. He, X. Zhuang, and J. Zheng. 2022. Systematic review and meta-analysis of probiotics in the treatment of allergic rhinitis. Allergologia et Immunopathologia 50 (3):24–37. doi: 10.15586/aei.v50i3.507.
  • Yan, W., X. Jia, Q. Zhang, H. Chen, Q. Zhu, and L. Yin. 2021. Interpenetrating polymer network hydrogels of soy protein isolate and sugar beet pectin as a potential carrier for probiotics. Food Hydrocolloids. 113:106453. doi: 10.1016/j.foodhyd.2020.106453.
  • Yao, M., J. Xie, H. Du, D. J. McClements, H. Xiao, and L. Li. 2020. Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety 19 (2):857–74. doi: 10.1111/1541-4337.12532.
  • Yasmin, I., M. Saeed, I. Pasha, and M. A. Zia. 2019. Development of whey protein concentrate-pectin-alginate based delivery system to improve survival of b. Longum bl-05 in simulated gastrointestinal conditions. Probiotics and Antimicrobial Proteins 11 (2):413–26. doi:10.1007/s12602-018-9407-x.
  • Yoha, K. S., J. A. Moses, and C. Anandharamakrishnan. 2020. Effect of encapsulation methods on the physicochemical properties and the stability of Lactobacillus plantarum (NCIM 2083) in synbiotic powders and in-vitro digestion conditions. Journal of Food Engineering 283 (110033):110033. doi: 10.1016/j.jfoodeng.2020.110033.
  • Yucel Falco, C., P. Falkman, J. Risbo, M. Cárdenas, and B. Medronho. 2017. Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics. Carbohydrate Polymers 172:175–83. doi:10.1016/j.carbpol.2017.04.047.
  • Yun, P., S. Devahastin, and N. Chiewchan. 2021. Microstructures of encapsulates and their relations with encapsulation efficiency and controlled release of bioactive constituents: A review. Comprehensive Reviews in Food Science and Food Safety 20 (2):1768–99. doi: 10.1111/1541-4337.12701.
  • Zaeim, D., M. Sarabi-Jamab, B. Ghorani, R. Kadkhodaee, W. Liu, and R. H. Tromp. 2020. Microencapsulation of probiotics in multi-polysaccharide microcapsules by electro-hydrodynamic atomization and incorporation into ice-cream formulation. Food Structure 25:100147. doi:10.1016/j.foostr.2020.100147.
  • Zanjani, M. A. K., M. R. Ehsani, B. G. Tarzi, and A. Sharifan. 2018. Promoting the probiotic survival by microencapsulation with Hylon starch and genipin cross-linked coatings in simulated gastro-intestinal condition and heat treatment. Iranian Journal of Pharmaceutical Research: IJPR 17 (2):753–766.
  • Zhang, Z., R. Zhang, L. Chen, Q. Tong, and D. J. McClements. 2015. Designing hydrogel particles for controlled or targeted release of lipophilic bioactive agents in the gastrointestinal tract. European Polymer Journal 72:698–716. doi:10.1016/j.eurpolymj.2015.01.013.
  • Zhang, Y., Y. Xie, H. Liu, D. J. McClements, C. Cheng, L. Zou, W. Liu, and W. Liu. 2022. Probiotic encapsulation in water-in-oil high internal phase emulsions: Enhancement of viability under food and gastrointestinal conditions. LWT - Food Science and Technology 163 (113499):113499. doi: 10.1016/j.lwt.2022.113499.
  • Zhang, Z., H. Fu, Z. Li, J. Huang, Z. Xu, Y. Lai, X. Qian, and S. Zhang. 2022. Hydrogel materials for sustainable water resources harvesting & treatment: Synthesis, mechanism and applications. Chemical Engineering Journal 439:135756. doi: 10.1016/j.cej.2022.135756.
  • Zhong, Q, and L. Zhang. 2019. Nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications. Advances in Colloid and Interface Science 273:102033. doi: 10.1016/j.cis.2019.102033.
  • Zhu, Y., Z. Wang, L. Bai, J. Deng, and Q. Zhou. 2021. Biomaterial-based encapsulated probiotics for biomedical applications: Current status and future perspectives. Materials & Design 210 (110018):110018. doi: 10.1016/j.matdes.2021.110018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.