917
Views
4
CrossRef citations to date
0
Altmetric
Reviews

The gut microbiota and celiac disease: Pathophysiology, current perspective and new therapeutic approaches

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Adebola, O. O., O. Corcoran, and W. A. Morgan. 2014. Synbiotics: The impact of potential prebiotics inulin, lactulose and lactobionic acid on the survival and growth of lactobacilli probiotics. Journal of Functional Foods 10:75–84. doi: 10.1016/j.jff.2014.05.010.
  • Aguilar-Toalá, J., R. Garcia-Varela, H. Garcia, V. Mata-Haro, A. González-Córdova, B. Vallejo-Cordoba, and A. Hernández-Mendoza. 2018. Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology 75:105–14. doi: 10.1016/j.tifs.2018.03.009.
  • Akobeng, A. K., P. Singh, M. Kumar, and S. Al Khodor. 2020. Role of the gut microbiota in the pathogenesis of coeliac disease and potential therapeutic implications. European Journal of Nutrition 59 (8):3369–90.
  • Aktas, B, and B. Aslim. 2020. Gut-lung axis and dysbiosis in COVID-19. Turkish Journal of Biology = Turk Biyoloji Dergisi 44 (3):265–72. doi: 10.3906/biy-2005-102.
  • Alexander, C, and E. T. Rietschel. 2001. Invited review: Bacterial lipopolysaccharides and innate immunity. Journal of Endotoxin Research 7 (3):167–202. doi: 10.1177/09680519010070030101.
  • Alihosseini, S., R. Ghotaslou, F. S. Heravi, Z. Ahmadian, and H. E. Leylabadlo. 2020. Management of antibiotic-resistant Helicobacter pylori infection: Current perspective in Iran. Journal of Chemotherapy (Florence, Italy) 32 (6):273–85. doi: 10.1080/1120009X.2020.1790889.
  • Antonini, M., M. Lo Conte, C. Sorini, and M. Falcone. 2019. How the interplay between the commensal microbiota, gut barrier integrity, and mucosal immunity regulates brain autoimmunity? Frontiers in Immunology 10:1937. doi: 10.3389/fimmu.2019.01937.
  • Bannazadeh Baghi, H., B. Naghili, D. Shanehbandi, and H. Ebrahimzadeh Leylabadlo. 2022. Evaluation of a human gut-associated phage and gut dominant microbial phyla in the metabolic syndrome. Clinical Nutrition ESPEN 50:133–7. doi: 10.1016/j.clnesp.2022.06.009.
  • Barreiro, C, and J. L. Barredo. 2021. Worldwide clinical demand for antibiotics: Is it a real countdown? Methods in Molecular Biology (Clifton, N.J.) 2296:3–15. doi: 10.1007/978-1-0716-1358-0_1.
  • Bascuñán, K. A., M. Araya, L. Roncoroni, L. Doneda, and L. Elli. 2020. Dietary gluten as a conditioning factor of the gut microbiota in celiac disease. Advances in Nutrition (Bethesda, Md.) 11 (1):160–74. doi: 10.1093/advances/nmz080.
  • Becattini, S., Y. Taur, and E. G. Pamer. 2016. Antibiotic-induced changes in the intestinal microbiota and disease. Trends in Molecular Medicine 22 (6):458–78. doi: 10.1016/j.molmed.2016.04.003.
  • Benítez-Páez, A., M. Olivares, H. Szajewska, M. Pieścik-Lech, I. Polanco, G. Castillejo, M. Nuñez, C. Ribes-Koninckx, I. R. Korponay-Szabó, S. Koletzko, et al. 2020. Breast-milk microbiota linked to celiac disease development in children: A pilot study from the PreventCD cohort. Frontiers in Microbiology 11:1335. doi: 10.3389/fmicb.2020.01335.
  • Bermudez-Brito, M., J. Plaza-Díaz, S. Muñoz-Quezada, C. Gómez-Llorente, and A. Gil. 2012. Probiotic mechanisms of action. Annals of Nutrition & Metabolism 61 (2):160–74.
  • Bertani, B, and N. Ruiz. 2018. Function and biogenesis of lipopolysaccharides. EcoSal Plus 8 (1) doi: 10.1128/ecosalplus.ESP-0001-2018.
  • Bethune, M. T, and C. Khosla. 2012. Oral enzyme therapy for celiac sprue. Methods in Enzymology 502:241–71. doi: 10.1016/b978-0-12-416039-2.00013-6.
  • Bodkhe, R., S. A. Shetty, D. P. Dhotre, A. K. Verma, K. Bhatia, A. Mishra, G. Kaur, P. Pande, D. K. Bangarusamy, B. P. Santosh, et al. 2019. Comparison of small gut and whole gut microbiota of first-degree relatives with adult celiac disease patients and controls. Frontiers in Microbiology 10:164. doi: 10.3389/fmicb.2019.00164.
  • Bonder, M. J., E. F. Tigchelaar, X. Cai, G. Trynka, M. C. Cenit, B. Hrdlickova, H. Zhong, T. Vatanen, D. Gevers, C. Wijmenga, et al. 2016. The influence of a short-term gluten-free diet on the human gut microbiome. Genome Medicine 8 (1):45. doi: 10.1186/s13073-016-0295-y.
  • Caio, G., U. Volta, A. Sapone, D. A. Leffler, R. De Giorgio, C. Catassi, and A. Fasano. 2019. Celiac disease: A comprehensive current review. BMC Medicine 17 (1):142. doi: 10.1186/s12916-019-1380-z.
  • Caliskan, A. R., M. Gul, I. Yılmaz, B. Otlu, N. Uremis, M. M. Uremis, I. Kilicaslan, S. Gul, D. Tikici, O. Saglam, et al. 2021. Effects of larazotide acetate, a tight junction regulator, on the liver and intestinal damage in acute liver failure in rats. Human & Experimental Toxicology 40 (12_suppl):S693–s701. doi: 10.1177/09603271211058882.
  • Camilleri, M. 2021. Human intestinal barrier: Effects of stressors, diet, prebiotics, and probiotics. Clinical and Translational Gastroenterology 12 (1):e00308. doi: 10.14309/ctg.0000000000000308.
  • Caminero, A., H. J. Galipeau, J. L. McCarville, C. W. Johnston, S. P. Bernier, A. K. Russell, J. Jury, A. R. Herran, J. Casqueiro, J. A. Tye-Din, et al. 2016. Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology 151 (4):670–83. doi: 10.1053/j.gastro.2016.06.041.
  • Caminero, A., A. R. Herrán, E. Nistal, J. Pérez-Andrés, L. Vaquero, S. Vivas, J. M. G. Ruiz de Morales, S. M. Albillos, and J. Casqueiro. 2014. Diversity of the cultivable human gut microbiome involved in gluten metabolism: Isolation of microorganisms with potential interest for coeliac disease. FEMS Microbiology Ecology 88 (2):309–19. doi: 10.1111/1574-6941.12295.
  • Caminero, A., E. Nistal, A. R. Herrán, J. Pérez-Andrés, M. A. Ferrero, L. Vaquero Ayala, S. Vivas, J. M. G. Ruiz de Morales, S. M. Albillos, and F. J. Casqueiro. 2015. Differences in gluten metabolism among healthy volunteers, coeliac disease patients and first-degree relatives. The British Journal of Nutrition 114 (8):1157–67. doi: 10.1017/s0007114515002767.
  • Candelli, M., L. Franza, G. Pignataro, V. Ojetti, M. Covino, A. Piccioni, A. Gasbarrini, and F. Franceschi. 2021. Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases. International Journal of Molecular Sciences 22 (12):6242. doi: 10.3390/ijms22126242.
  • Canfora, E. E., R. C. R. Meex, K. Venema, and E. E. Blaak. 2019. Gut microbial metabolites in obesity, NAFLD and T2DM. Nature Reviews. Endocrinology 15 (5):261–73. doi: 10.1038/s41574-019-0156-z.
  • Cenit, M. C., M. Olivares, P. Codoñer-Franch, and Y. Sanz. 2015. Intestinal microbiota and celiac disease: Cause, consequence or co-evolution? Nutrients 7 (8):6900–23. doi: 10.3390/nu7085314.
  • Chen, K. F., C. H. Chaou, J. Y. Jiang, H. W. Yu, Y. H. Meng, W. C. Tang, and C. C. Wu. 2016. Diagnostic accuracy of lipopolysaccharide-binding protein as biomarker for sepsis in adult patients: A systematic review and meta-analysis. PloS One 11 (4):e0153188. doi: 10.1371/journal.pone.0153188.
  • Chibbar, R, and L. A. Dieleman. 2019. The gut microbiota in celiac disease and probiotics. Nutrients 11 (10):2375. doi: 10.3390/nu11102375.
  • Conte, M., F. Nigro, M. Porpora, C. Bellomo, F. Furone, A. L. Budelli, R. Nigro, M. V. Barone, and M. Nanayakkara. 2022. Gliadin peptide P31-43 induces mTOR/NFkβ activation and reduces autophagy: The role of lactobacillus paracasei CBA L74 postbiotc. International Journal of Molecular Sciences 23 (7):3655. doi: 10.3390/ijms23073655.
  • Conte, M., M. Porpora, F. Nigro, R. Nigro, A. L. Budelli, M. V. Barone, and M. Nanayakkara. 2021. Pro-pre and postbiotic in celiac disease. Applied Sciences 11 (17):8185. doi: 10.3390/app11178185.
  • Cristofori, F., F. Indrio, V. L. Miniello, M. De Angelis, and R. Francavilla. 2018. Probiotics in celiac disease. Nutrients 10 (12):1824. doi: 10.3390/nu10121824.
  • Cukrowska, B., A. Sowińska, J. B. Bierła, E. Czarnowska, A. Rybak, and U. Grzybowska-Chlebowczyk. 2017. Intestinal epithelium, intraepithelial lymphocytes and the gut microbiota – Key players in the pathogenesis of celiac disease. World Journal of Gastroenterology 23 (42):7505–18. doi: 10.3748/wjg.v23.i42.7505.
  • D’Argenio, V., G. Casaburi, V. Precone, C. Pagliuca, R. Colicchio, D. Sarnataro, V. Discepolo, S. M. Kim, I. Russo, G. Del Vecchio Blanco, et al. 2016. Metagenomics reveals dysbiosis and a potentially pathogenic N. flavescens strain in duodenum of adult celiac patients. American Journal of Gastroenterology 111 (6):879–90. doi: 10.1038/ajg.2016.95.
  • Darwish, G., E. J. Helmerhorst, D. Schuppan, F. G. Oppenheim, and G. Wei. 2019. Pharmaceutically modified subtilisins withstand acidic conditions and effectively degrade gluten in vivo. Scientific Reports 9 (1):7505. doi: 10.1038/s41598-019-43837-9.
  • De Angelis, M., C. G. Rizzello, A. Fasano, M. G. Clemente, C. De Simone, M. Silano, M. De Vincenzi, I. Losito, and M. Gobbetti. 2006. VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for celiac sprue. Biochimica et Biophysica Acta 1762 (1):80–93. doi: 10.1016/j.bbadis.2005.09.008.
  • de Meij, T. G., A. E. Budding, M. E. Grasman, C. M. Kneepkens, P. H. Savelkoul, and M. L. Mearin. 2013. Composition and diversity of the duodenal mucosa-associated microbiome in children with untreated coeliac disease. Scandinavian Journal of Gastroenterology 48 (5):530–6. doi: 10.3109/00365521.2013.775666.
  • De Palma, G., I. Nadal, M. C. Collado, and Y. Sanz. 2009. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. The British Journal of Nutrition 102 (8):1154–60. doi: 10.1017/s0007114509371767.
  • De Palma, G., I. Nadal, M. Medina, E. Donat, C. Ribes-Koninckx, M. Calabuig, and Y. Sanz. 2010. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiology 10 (1):1–7. doi: 10.1186/1471-2180-10-63.
  • Del Chierico, F., P. Vernocchi, A. Petrucca, P. Paci, S. Fuentes, G. Praticò, G. Capuani, A. Masotti, S. Reddel, A. Russo, et al. 2015. Phylogenetic and metabolic tracking of gut microbiota during perinatal development. PloS One 10 (9):e0137347. doi: 10.1371/journal.pone.0137347.
  • Di Cagno, R., M. De Angelis, I. De Pasquale, M. Ndagijimana, P. Vernocchi, P. Ricciuti, F. Gagliardi, L. Laghi, C. Crecchio, M. E. Guerzoni, et al. 2011. Duodenal and faecal microbiota of celiac children: Molecular, phenotype and metabolome characterization. BMC Microbiology 11:219. doi: 10.1186/1471-2180-11-219.
  • Di Cagno, R., C. G. Rizzello, F. Gagliardi, P. Ricciuti, M. Ndagijimana, R. Francavilla, M. E. Guerzoni, C. Crecchio, M. Gobbetti, and M. De Angelis. 2009. Different fecal microbiotas and volatile organic compounds in treated and untreated children with celiac disease. Applied and Environmental Microbiology 75 (12):3963–71. doi: 10.1128/aem.02793-08.
  • Dias, R., C. B. Pereira, R. Pérez-Gregorio, N. Mateus, and V. Freitas. 2021. Recent advances on dietary polyphenol’s potential roles in celiac disease. Trends in Food Science & Technology 107:213–25. doi: 10.1016/j.tifs.2020.10.033.
  • Dominguez-Bello, M. G., M. J. Blaser, R. E. Ley, and R. Knight. 2011. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 140 (6):1713–9. doi: 10.1053/j.gastro.2011.02.011.
  • Drabińska, N., E. Jarocka-Cyrta, L. H. Markiewicz, and U. Krupa-Kozak. 2018. The effect of oligofructose-enriched inulin on faecal bacterial counts and microbiota-associated characteristics in celiac disease children following a gluten-free diet: Results of a randomized, placebo-controlled trial. Nutrients 10 (2):201. doi: 10.3390/nu10020201.
  • Drabińska, N., E. Jarocka-Cyrta, N. M. Ratcliffe, and U. Krupa-Kozak. 2019. The profile of urinary headspace volatile organic compounds after 12-week intake of oligofructose-enriched inulin by children and adolescents with celiac disease on a gluten-free diet: Results of a pilot, randomized, placebo-controlled clinical trial. Molecules 24 (7):1341. doi: 10.3390/molecules24071341.
  • Drabińska, N., U. Krupa-Kozak, P. Abramowicz, and E. Jarocka-Cyrta. 2018. Beneficial effect of oligofructose-enriched inulin on vitamin D and E status in children with celiac disease on a long-term gluten-free diet: A preliminary randomized, placebo-controlled nutritional intervention study. Nutrients 10 (11):1768. doi: 10.3390/nu10111768.
  • Drabińska, N., U. Krupa-Kozak, E. Ciska, and E. Jarocka-Cyrta. 2018. Plasma profile and urine excretion of amino acids in children with celiac disease on gluten-free diet after oligofructose-enriched inulin intervention: Results of a randomised placebo-controlled pilot study. Amino Acids 50 (10):1451–60. doi: 10.1007/s00726-018-2622-7.
  • Duar, R. M., K. J. Clark, P. B. Patil, C. Hernández, S. Brüning, T. E. Burkey, N. Madayiputhiya, S. L. Taylor, and J. Walter. 2015. Identification and characterization of intestinal lactobacilli strains capable of degrading immunotoxic peptides present in gluten. Journal of Applied Microbiology 118 (2):515–27. doi: 10.1111/jam.12687.
  • Durante-Mangoni, E., P. Iardino, M. Resse, G. Cesaro, A. Sica, B. Farzati, G. Ruggiero, and L. E. Adinolfi. 2004. Silent celiac disease in chronic hepatitis C: Impact of interferon treatment on the disease onset and clinical outcome. Journal of Clinical Gastroenterology 38 (10):901–5. doi: 10.1097/00004836-200411000-00014.
  • Dydensborg Sander, S., A. M. Nybo Andersen, J. A. Murray, Ø. Karlstad, S. Husby, and K. Størdal. 2019. Association between antibiotics in the first year of life and celiac disease. Gastroenterology 156 (8):2217–29. doi: 10.1053/j.gastro.2019.02.039.
  • Ebrahimzadeh Leylabadlo, H., R. Ghotaslou, H. Samadi Kafil, M. M. Feizabadi, S. Y. Moaddab, S. Farajnia, E. Sheykhsaran, S. Sanaie, D. Shanehbandi, and H. Bannazadeh Baghi. 2020. Non-alcoholic fatty liver diseases: From role of gut microbiota to microbial-based therapies. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology 39 (4):613–27. doi: 10.1007/s10096-019-03746-1.
  • Ebrahimzadeh Leylabadlo, H., F. S. Heravi, E. Soltani, A. Abbasi, H. S. Kafil, M. Parsaei, S. Sanaie, Z. Ahmadian, and R. Ghotaslou. 2022. The role of gut microbiota in the treatment of irritable bowel syndrome. Reviews in Medical Microbiology 33 (1):e89–e104. doi: 10.1097/MRM.0000000000000284.
  • Ebrahimzadeh Leylabadlo, H., H. Samadi Kafil, S. Farajnia, D. Shanehbandi, S. Yaghoub Moaddab, M. M. Feizabadi, and R. Ghotaslou. 2021. Gut microbiota in nonalcoholic fatty liver diseases with and without type-2 diabetes mellitus. European Journal of Gastroenterology & Hepatology 33 (1S Suppl 1):e548–e554. doi: 10.1097/meg.0000000000002140.
  • Ebrahimzadeh Leylabadlo, H., S. Sanaie, F. Sadeghpour Heravi, Z. Ahmadian, and R. Ghotaslou. 2020. From role of gut microbiota to microbial-based therapies in type 2-diabetes. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases 81:104268. doi: 10.1016/j.meegid.2020.104268.
  • Ehren, J., B. Morón, E. Martin, M. T. Bethune, G. M. Gray, and C. Khosla. 2009. A food-grade enzyme preparation with modest gluten detoxification properties. PloS One 4 (7):e6313.
  • Ehsanifar, M. 2021. Airborne aerosols particles and COVID-19 transition. Environmental Research 200:111752. doi: 10.1016/j.envres.2021.111752.
  • Fasano, A., T. Not, W. Wang, S. Uzzau, I. Berti, A. Tommasini, and S. E. Goldblum. 2000. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet (London, England) 355 (9214):1518–9. doi: 10.1016/S0140-6736(00)02169-3.
  • Ferreira, S., J. Masi, V. Giménez, M.-M. Carpinelli, O. Laterza, M. Hermoso, J. Ortiz-Villalba, M.-E. Chamorro, and P. Langjahr. 2021. Effect of gluten-free diet on levels of soluble CD14 and lipopolysaccharide-binding protein in adult patients with celiac disease. Central-European Journal of Immunology 46 (2):225–30. doi: 10.5114/ceji.2021.107012.
  • Feruś, K., N. Drabińska, U. Krupa-Kozak, and E. Jarocka-Cyrta. 2018. A randomized, placebo-controlled, pilot clinical trial to evaluate the effect of supplementation with prebiotic Synergy 1 on iron homeostasis in children and adolescents with celiac disease treated with a gluten-free diet. Nutrients 10 (11):1818. doi: 10.3390/nu10111818.
  • Fouhy, F., C. M. Guinane, S. Hussey, R. Wall, C. A. Ryan, E. M. Dempsey, B. Murphy, R. P. Ross, G. F. Fitzgerald, C. Stanton, et al. 2012. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrobial Agents and Chemotherapy 56 (11):5811–20. doi: 10.1128/aac.00789-12.
  • Francavilla, R., M. Piccolo, A. Francavilla, L. Polimeno, F. Semeraro, F. Cristofori, S. Castellaneta, M. Barone, F. Indrio, M. Gobbetti, et al. 2019. Clinical and microbiological effect of a multispecies probiotic supplementation in celiac patients with persistent IBS-type symptoms: A randomized, double-blind, placebo-controlled, multicenter trial. Journal of Clinical Gastroenterology 53 (3):e117–e125. doi: 10.1097/MCG.0000000000001023.
  • Freire, R., L. Ingano, G. Serena, M. Cetinbas, A. Anselmo, A. Sapone, R. I. Sadreyev, A. Fasano, and S. Senger. 2019. Human gut derived-organoids provide model to study gluten response and effects of microbiota-derived molecules in celiac disease. Scientific Reports 9 (1):7029. doi: 10.1038/s41598-019-43426-w.
  • Furrie, E., S. Macfarlane, A. Kennedy, J. H. Cummings, S. V. Walsh, D. A. O’neil, and G. T. Macfarlane. 2005. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: A randomised controlled pilot trial. Gut 54 (2):242–9. doi: 10.1136/gut.2004.044834.
  • Galipeau, H. J, and E. F. Verdu. 2014. Gut microbes and adverse food reactions: Focus on gluten related disorders. Gut Microbes 5 (5):594–605. doi: 10.4161/19490976.2014.969635.
  • Gallo, M., F. Nigro, F. Passannanti, M. Nanayakkara, G. Lania, F. Parisi, D. Salameh, A. Budelli, M. V. Barone, and R. Nigro. 2019. Effect of pH control during rice fermentation in preventing a gliadin P31–43 entrance in epithelial cells. International Journal of Food Sciences and Nutrition 70 (8):950–8. doi: 10.1080/09637486.2019.1599827.
  • Gao, J., Y. Li, Y. Wan, T. Hu, L. Liu, S. Yang, Z. Gong, Q. Zeng, Y. Wei, W. Yang, et al. 2019. A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Frontiers in Microbiology 10:477. doi: 10.3389/fmicb.2019.00477.
  • García-Santisteban, I., A. Cilleros-Portet, E. Moyua-Ormazabal, A. Kurilshikov, A. Zhernakova, K. Garcia-Etxebarria, N. Fernandez-Jimenez, and J. R. Bilbao. 2020. A two-sample Mendelian randomization analysis investigates associations between gut microbiota and celiac disease. Nutrients 12 (5):1420. doi: 10.3390/nu12051420.
  • George, P. M., A. U. Wells, and R. G. Jenkins. 2020. Pulmonary fibrosis and COVID-19: The potential role for antifibrotic therapy. The Lancet. Respiratory Medicine 8 (8):807–15. doi: 10.1016/S2213-2600(20)30225-3.
  • Ghaffari, S., A. Abbasi, M. H. Somi, S. Y. Moaddab, L. Nikniaz, H. S. Kafil, and H. Ebrahimzadeh Leylabadlo. 2022. Akkermansia muciniphila: From its critical role in human health to strategies for promoting its abundance in human gut microbiome. Critical Reviews in Food Science and Nutrition 1–21. doi: 10.1080/10408398.2022.2045894.
  • Gholam-Mostafaei, F. S., T. Didari, M. Ramandi, R. Vafaee, and M. Rostami-Nejad. 2021. Gut microbiota, angiotensin-converting enzyme, celiac disease, and risk of COVID-19 infection: A review. Gastroenterology and Hepatology from Bed to Bench 14 (Suppl1):S24–S31.
  • Ghotaslou, R., H. E. Leylabadlo, M. T. Akhi, J. Sadeghi, L. Yousefi, A. Z. Bialvaei, and M. H. Somi. 2017. The importance of Helicobacter pylori tnpA, tnpB, and cagA genes in various gastrointestinal diseases. Molecular Genetics, Microbiology and Virology 32 (1):62–5. doi: 10.3103/S0891416817010049.
  • Gibson, G. R., H. M. Probert, J. V. Loo, R. A. Rastall, and M. B. Roberfroid. 2004. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutrition Research Reviews 17 (2):259–75. doi: 10.1079/nrr200479.
  • Gokden, Y., S. Hot, M. Adas, D. O. Koc, S. Atak, and A. Hot. 2020. Celiac disease and COVID-19 pandemic: Should we worry? Acta Gastro Enterol. Belg 83:517–25.
  • Golfetto, L., F. D. de Senna, J. Hermes, B. T. S. Beserra, F. d S. França, and F. Martinello. 2014. Lower bifidobacteria counts in adult patients with celiac disease on a gluten-free diet. Arquivos de Gastroenterologia 51 (2):139–43. doi: 10.1590/s0004-28032014000200013.
  • Goodwin, C. S., M. M. Mendall, and T. C. Northfield. 1997. Helicobacter pylori infection. The Lancet 349 (9047):265–9. doi: 10.1016/S0140-6736(96)07023-7.
  • Gordon, S. R., E. J. Stanley, S. Wolf, A. Toland, S. J. Wu, D. Hadidi, J. H. Mills, D. Baker, I. S. Pultz, and J. B. Siegel. 2012. Computational design of an α-gliadin peptidase. Journal of the American Chemical Society 134 (50):20513–20. doi: 10.1021/ja3094795.
  • Gujral, N., H. J. Freeman, and A. B. Thomson. 2012. Celiac disease: Prevalence, diagnosis, pathogenesis and treatment. World Journal of Gastroenterology 18 (42):6036–59. doi: 10.3748/wjg.v18.i42.6036.
  • Gungor, S, and A. A. Köylü. 2020. Effects of Helicobacter pylori infection on serology and intestinal mucosal changes in pediatric patients with celiac disease: A retrospective cohort study. Cureus 12 (10):e11134. doi: 10.7759/cureus.11134.
  • Håkansson, Å., C. Andrén Aronsson, C. Brundin, E. Oscarsson, G. Molin, and D. Agardh. 2019. Effects of Lactobacillus plantarum and Lactobacillus paracasei on the peripheral immune response in children with celiac disease autoimmunity: A randomized, double-blind, placebo-controlled clinical trial. Nutrients 11 (8):1925. doi: 10.3390/nu11081925.
  • Hamann, L., V. El-Samalouti, A. J. Ulmer, H.-D. Flad, and E. T. Rietschel. 1998. Components of gut bacteria as immunomodulators. International Journal of Food Microbiology 41 (2):141–54. doi: 10.1016/S0168-1605(98)00047-6[PMC].[9704863.
  • Harrison, A. G., T. Lin, and P. Wang. 2020. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends in Immunology 41 (12):1100–15. doi: 10.1016/j.it.2020.10.004.
  • Helmerhorst, E. J, and G. Wei. 2014. Experimental strategy to discover microbes with gluten-degrading enzyme activities. Proceedings of SPIE – The International Society for Optical Engineering, 9112. doi: 10.1117/12.2058730.
  • Helmerhorst, E. J., M. Zamakhchari, D. Schuppan, and F. G. Oppenheim. 2010. Discovery of a novel and rich source of gluten-degrading microbial enzymes in the oral cavity. PloS One 5 (10):e13264. doi: 10.1371/journal.pone.0013264.
  • Herrán, A. R., J. Pérez-Andrés, A. Caminero, E. Nistal, S. Vivas, J. M. R. de Morales, and J. Casqueiro. 2017. Gluten-degrading bacteria are present in the human small intestine of healthy volunteers and celiac patients. Research in Microbiology 168 (7):673–84.
  • Heyman, M., J. Abed, C. Lebreton, and N. Cerf-Bensussan. 2012. Intestinal permeability in coeliac disease: Insight into mechanisms and relevance to pathogenesis. Gut 61 (9):1355–64. doi: 10.1136/gutjnl-2011-300327.
  • Hoilat, G. J., A. K. Altowairqi, M. F. Ayas, N. T. Alhaddab, R. A. Alnujaidi, H. A. Alharbi, N. Alyahyawi, A. Kamal, H. Alhabeeb, E. Albazee, et al. 2022. Larazotide acetate for treatment of celiac disease: A systematic review and meta-analysis of randomized controlled trials. Clinics and Research in Hepatology and Gastroenterology 46 (1):101782. doi: 10.1016/j.clinre.2021.101782.
  • Hollon, J., E. L. Puppa, B. Greenwald, E. Goldberg, A. Guerrerio, and A. Fasano. 2015. Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with non-celiac gluten sensitivity. Nutrients 7 (3):1565–76. doi: 10.3390/nu7031565.
  • Iebba, V., V. Totino, A. Gagliardi, F. Santangelo, F. Cacciotti, M. Trancassini, C. Mancini, C. Cicerone, E. Corazziari, F. Pantanella, et al. 2016. Eubiosis and dysbiosis: The two sides of the microbiota. The New Microbiologica 39 (1):1–12.
  • Inagaki, T., A. Moschetta, Y.-K. Lee, L. Peng, G. Zhao, M. Downes, R. T. Yu, J. M. Shelton, J. A. Richardson, J. J. Repa, et al. 2006. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proceedings of the National Academy of Sciences of the United States of America 103 (10):3920–5. doi: 10.1073/pnas.0509592103.
  • Kagnoff, M. F., R. K. Austin, J. J. Hubert, J. E. Bernardin, and D. D. Kasarda. 1984. Possible role for a human adenovirus in the pathogenesis of celiac disease. The Journal of Experimental Medicine 160 (5):1544–57.
  • Kagnoff, M. F., Y. J. Paterson, P. J. Kumar, D. D. Kasarda, F. R. Carbone, D. J. Unsworth, and R. K. Austin. 1987. Evidence for the role of a human intestinal adenovirus in the pathogenesis of coeliac disease. Gut 28 (8):995–1001. doi: 10.1136/gut.28.8.995.
  • Kalliomäki, M., R. Satokari, H. Lähteenoja, S. Vähämiko, J. Grönlund, T. Routi, and S. Salminen. 2012. Expression of microbiota, toll-like receptors, and their regulators in the small intestinal mucosa in celiac disease. Journal of Pediatric Gastroenterology and Nutrition 54 (6):727–32. doi: 10.1097/MPG.0b013e318241cfa8.
  • Kelly, E., G. Cullen, A. R. Aftab, and G. Courtney. 2006. Coeliac crisis presenting with cytomegalovirus hepatitis. European Journal of Gastroenterology & Hepatology 18 (7):793–5. doi: 10.1097/01.meg.0000224471.28626.a6.
  • Khaleghi, S., J. M. Ju, A. Lamba, and J. A. Murray. 2016. The potential utility of tight junction regulation in celiac disease: Focus on larazotide acetate. Therapeutic Advances in Gastroenterology 9 (1):37–49. doi: 10.1177/1756283x15616576.
  • Kim, S. J, and H. M. Kim. 2017. Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14. BMB Reports 50 (2):55–7.
  • Klemenak, M., J. Dolinšek, T. Langerholc, D. Di Gioia, and D. Mičetić-Turk. 2015. Administration of bifidobacterium breve decreases the production of TNF-α in children with celiac disease. Digestive Diseases and Sciences 60 (11):3386–92.
  • Kõiv, V, and T. Tenson. 2021. Gluten-degrading bacteria: Availability and applications. Applied Microbiology and Biotechnology 105 (8):3045–59. doi: 10.1007/s00253-021-11263-5.
  • Krishnareddy, S. 2019. The microbiome in celiac disease. Gastroenterology Clinics of North America 48 (1):115–26. doi: 10.1016/j.gtc.2018.09.008.
  • Labruna, G., M. Nanayakkara, C. Pagliuca, M. Nunziato, L. Iaffaldano, V. D’Argenio, R. Colicchio, A. L. Budelli, R. Nigro, P. Salvatore, et al. 2019. Celiac disease‐associated Neisseria flavescens decreases mitochondrial respiration in CaCo‐2 epithelial cells: Impact of Lactobacillus paracasei CBA L74 on bacterial‐induced cellular imbalance. Cellular Microbiology 21 (8):e13035. doi: 10.1111/cmi.13035.
  • Lebwohl, B., Y. R. Nobel, P. H. Green, M. J. Blaser, and J. F. Ludvigsson. 2017. Risk of Clostridium difficile infection in patients with celiac disease: A population-based study. American Journal of Gastroenterology 112 (12):1878–84. doi: 10.1038/ajg.2017.400.
  • Leffler, D. A., C. P. Kelly, P. H. R. Green, R. N. Fedorak, A. DiMarino, W. Perrow, H. Rasmussen, C. Wang, P. Bercik, N. M. Bachir, et al. 2015. Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: A randomized controlled trial. Gastroenterology 148 (7):1311–1319.e1316. doi: 10.1053/j.gastro.2015.02.008.
  • Leonard, M. M., S. Camhi, T. B. Huedo-Medina, and A. Fasano. 2015. Celiac disease genomic, environmental, microbiome, and metabolomic (CDGEMM) study design: Approach to the future of personalized prevention of celiac disease. Nutrients 7 (11):9325–36. doi: 10.3390/nu7115470.
  • Lerner, A., M. Arleevskaya, A. Schmiedl, and T. Matthias. 2017. Microbes and viruses are bugging the gut in celiac disease. Are they friends or foes? Frontiers in Microbiology 8:1392. doi: 10.3389/fmicb.2017.01392.
  • Lerner, A., J. Patricia, and T. Matthias. 2016. Nutrients, bugs and us: The short-chain fatty acids story in celiac disease. International Journal of Celiac Disease 4:92–4. doi: 10.12691/ijcd-4-3-12.
  • Lionetti, E., S. Castellaneta, R. Francavilla, A. Pulvirenti, E. Tonutti, S. Amarri, M. Barbato, C. Barbera, G. Barera, A. Bellantoni, et al. 2014. Introduction of gluten, HLA status, and the risk of celiac disease in children. The New England Journal of Medicine 371 (14):1295–303. doi: 10.1056/NEJMoa1400697
  • Ludvigsson, J. F., J. Wahlstrom, J. Grunewald, A. Ekbom, and S. M. Montgomery. 2007. Coeliac disease and risk of tuberculosis: A population based cohort study. Thorax 62 (1):23–8. doi: 10.1136/thx.2006.059451.
  • Malamut, G, and C. Cellier. 2019. Refractory celiac disease. Gastroenterology Clinics of North America 48 (1):137–44. doi: 10.1016/j.gtc.2018.09.010.
  • Manka, P., S. Sydor, J. M. Schänzer-Ocklenburg, M. Brandenburg, J. Best, R. Vilchez-Vargas, A. Link, D. Heider, S. Brodesser, A. Figge, et al. 2022. A potential role for bile acid signaling in celiac disease-associated fatty liver. Metabolites 12 (2):130. doi: 10.3390/metabo12020130.
  • Marasco, G., G. G. Cirota, B. Rossini, L. Lungaro, A. R. Di Biase, A. Colecchia, U. Volta, R. De Giorgio, D. Festi, and G. Caio. 2020. Probiotics, prebiotics and other dietary supplements for gut microbiota modulation in celiac disease patients. Nutrients 12 (9):2674. doi: 10.3390/nu12092674.
  • Martorell, P., B. Alvarez, S. Llopis, V. Navarro, P. Ortiz, N. Gonzalez, F. Balaguer, A. Rojas, E. Chenoll, D. Ramón, et al. 2021. Heat-treated Bifidobacterium longum CECT-7347: A whole-cell postbiotic with antioxidant, anti-inflammatory, and gut-barrier protection properties. Antioxidants 10 (4):536. doi: 10.3390/antiox10040536.
  • McCarville, J. L., A. Caminero, and E. F. Verdu. 2015. Pharmacological approaches in celiac disease. Current Opinion in Pharmacology 25:7–12.
  • Mohammad, S, and C. Thiemermann. 2020. Role of metabolic endotoxemia in systemic inflammation and potential interventions. Frontiers in Immunology 11:594150. doi: 10.3389/fimmu.2020.594150.
  • Molnár, K., A. Vannay, E. Sziksz, N. F. Bánki, H. Győrffy, A. Arató, A. Dezsőfi, and G. Veres. 2012. Decreased mucosal expression of intestinal alkaline phosphatase in children with coeliac disease. Virchows Archiv: An International Journal of Pathology 460 (2):157–61. doi: 10.1007/s00428-011-1188-5.
  • Nadal, I., E. Donant, C. Ribes-Koninckx, M. Calabuig, and Y. Sanz. 2007. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. Journal of Medical Microbiology 56 (Pt 12):1669–74.
  • Natalia, C, and D. Leffler. 2014. Celiac disease as a model disorder for testing novel autoimmune therapeutics. In The value of BCG and TNF in autoimmunity, 126–39. Elsevier.
  • Nataraj, B. H., S. Ali, P. Behare, and H. Yadav. 2020. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microbial Cell Factories 19 (1):1–22. doi: 10.1186/s12934-020-01426-w.
  • Nistal, E., A. Caminero, A. R. Herrán, J. Pérez-Andres, S. Vivas, J. M. Ruiz de Morales, L. E. Sáenz de Miera, and J. Casqueiro. 2016. Study of duodenal bacterial communities by 16S rRNA gene analysis in adults with active celiac disease vs non‐celiac disease controls. Journal of Applied Microbiology 120 (6):1691–700. doi: 10.1111/jam.13111.
  • Nistal, E., A. Caminero, S. Vivas, J. M. Ruiz de Morales, L. E. Sáenz de Miera, L. B. Rodríguez-Aparicio, and J. Casqueiro. 2012. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie 94 (8):1724–9. doi: 10.1016/j.biochi.2012.03.025.
  • Oikarinen, M., L. Puustinen, J. Lehtonen, L. Hakola, S. Simell, J. Toppari, J. Ilonen, R. Veijola, S. M. Virtanen, M. Knip, et al. 2021. Enterovirus infections are associated with the development of celiac disease in a birth cohort study. Frontiers in Immunology 11:604529. doi: 10.3389/fimmu.2020.604529.
  • Okuda, S., D. J. Sherman, T. J. Silhavy, N. Ruiz, and D. Kahne. 2016. Lipopolysaccharide transport and assembly at the outer membrane: The PEZ model. Nature Reviews. Microbiology 14 (6):337–45. doi: 10.1038/nrmicro.2016.25.
  • Olivares, M., S. Albrecht, G. De Palma, M. D. Ferrer, G. Castillejo, H. A. Schols, and Y. Sanz. 2015. Human milk composition differs in healthy mothers and mothers with celiac disease. European Journal of Nutrition 54 (1):119–28. doi: 10.1007/s00394-014-0692-1.
  • Olivares, M., G. Castillejo, V. Varea, and Y. Sanz. 2014. Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed coeliac disease. The British Journal of Nutrition 112 (1):30–40.
  • Olivares, M., Laparra, M. s, and Sanz, Y. 2011. Influence of Bifidobacterium longum CECT 7347 and gliadin peptides on intestinal epithelial cell proteome. Journal of Agricultural and Food Chemistry 59 (14):7666–71.
  • Olivares, M., A. Neef, G. Castillejo, G. D. Palma, V. Varea, A. Capilla, F. Palau, E. Nova, A. Marcos, I. Polanco, et al. 2015. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut 64 (3):406–17. doi: 10.1136/gutjnl-2014-306931.
  • Olivares, M., A. W. Walker, A. Capilla, A. Benítez-Páez, F. Palau, J. Parkhill, G. Castillejo, and Y. Sanz. 2018. Gut microbiota trajectory in early life may predict development of celiac disease. Microbiome 6 (1):36. doi: 10.1186/s40168-018-0415-6.
  • Olshan, K. L., M. M. Leonard, G. Serena, A. R. Zomorrodi, and A. Fasano. 2020. Gut microbiota in celiac disease: Microbes, metabolites, pathways and therapeutics. Expert Review of Clinical Immunology 16 (11):1075–92.
  • Païssé, S., C. Valle, F. Servant, M. Courtney, R. Burcelin, J. Amar, and B. Lelouvier. 2016. Comprehensive description of blood microbiome from healthy donors assessed by 16 S targeted metagenomic sequencing. Transfusion 56 (5):1138–47. doi: 10.1111/trf.13477.
  • Panelli, S., E. Capelli, G. F. D. Lupo, A. Schiepatti, E. Betti, E. Sauta, S. Marini, R. Bellazzi, A. Vanoli, A. Pasi, et al. 2020. Comparative study of salivary, duodenal, and fecal microbiota composition across adult celiac disease. Journal of Clinical Medicine 9 (4):1109. doi: 10.3390/jcm9041109.
  • Park, B. S, and J. O. Lee. 2013. Recognition of lipopolysaccharide pattern by TLR4 complexes. Experimental & Molecular Medicine 45 (12):e66. doi: 10.1038/emm.2013.97.
  • Paterson, B. M., K. M. Lammers, M. C. Arrieta, A. Fasano, and J. B. Meddings. 2007. The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: A proof of concept study. Alimentary Pharmacology & Therapeutics 26 (5):757–66. doi: 10.1111/j.1365-2036.2007.03413.x.
  • Pecora, F., F. Persico, P. Gismondi, F. Fornaroli, S. Iuliano, G. L. de’Angelis, and S. Esposito. 2020. Gut microbiota in celiac disease: Is there any role for probiotics? Frontiers in Immunology 11:957. doi: 10.3389/fimmu.2020.00957.
  • Pinto-Sánchez, M. I., E. F. Verdu, E. Liu, P. Bercik, P. H. Green, J. A. Murray, S. Guandalini, and P. Moayyedi. 2016. Gluten introduction to infant feeding and risk of celiac disease: Systematic review and meta-analysis. The Journal of Pediatrics 168:132–43. e133. doi: 10.1016/j.jpeds.2015.09.032.
  • Plot, L, and H. Amital. 2009. Infectious associations of celiac disease. Autoimmunity Reviews 8 (4):316–9.
  • Pozo-Rubio, T., G. de Palma, J. R. Mujico, M. Olivares, A. Marcos, M. D. Acuña, I. Polanco, Y. Sanz, and E. Nova. 2013. Influence of early environmental factors on lymphocyte subsets and gut microbiota in infants at risk of celiac disease; the PROFICEL study. Nutricion Hospitalaria 28 (2):464–73. doi: 10.3305/nh.2013.28.2.6310.
  • Prasad, K. K., B. R. Thapa, C. K. Nain, A. K. Sharma, and K. Singh. 2008. Brush border enzyme activities in relation to histological lesion in pediatric celiac disease. Journal of Gastroenterology and Hepatology 23 (8pt2):e348–e352. doi: 10.1111/j.1440-1746.2007.05248.x.
  • Quagliariello, A., I. Aloisio, N. Bozzi Cionci, D. Luiselli, G. D’Auria, L. Martinez-Priego, D. Pérez-Villarroya, T. Langerholc, M. Primec, D. Mičetić-Turk, et al. 2016. Effect of Bifidobacterium breve on the intestinal microbiota of coeliac children on a gluten free diet: A pilot study. Nutrients 8 (10):660. doi: 10.3390/nu8100660.
  • Rad, A. H., L. A. Maleki, H. S. Kafil, H. F. Zavoshti, and A. Abbasi. 2020. Postbiotics as novel health-promoting ingredients in functional foods. Health Promotion Perspectives 10 (1):3–4.
  • Raetz, C. R, and C. Whitfield. 2002. Lipopolysaccharide endotoxins. Annual Review of Biochemistry 71:635–700. doi: 10.1146/annurev.biochem.71.110601.135414.
  • Roncoroni, L., K. Bascuñán, L. Doneda, A. Scricciolo, V. Lombardo, F. Branchi, F. Ferretti, B. Dell’Osso, V. Montanari, M. Bardella, et al. 2018. A low FODMAP gluten-free diet improves functional gastrointestinal disorders and overall mental health of celiac disease patients: A randomized controlled trial. Nutrients 10 (8):1023. doi: 10.3390/nu10081023.
  • Sánchez, D., I. Hoffmanová, A. Szczepanková, V. Hábová, and H. Tlaskalová-Hogenová. 2021. Contribution of infectious agents to the development of celiac disease. Microorganisms 9 (3):547. doi: 10.3390/microorganisms9030547.
  • Sánchez, E., C. Ribes-Koninckx, M. Calabuig, and Y. Sanz. 2012. Intestinal Staphylococcus spp. and virulent features associated with coeliac disease. Journal of Clinical Pathology 65 (9):830–4.
  • Santos, G. M., S. Ismael, J. Morais, J. R. Araújo, A. Faria, C. Calhau, and C. Marques. 2022. Intestinal alkaline phosphatase: A review of this enzyme role in the intestinal barrier function. Microorganisms 10 (4):746. doi: 10.3390/microorganisms10040746.
  • Sarno, M., G. Lania, M. Cuomo, F. Nigro, F. Passannanti, A. Budelli, F. Fasano, R. Troncone, S. Auricchio, M. V. Barone, et al. 2014. Lactobacillus paracasei CBA L74 interferes with gliadin peptides entrance in Caco-2 cells. International Journal of Food Sciences and Nutrition 65 (8):953–9. doi: 10.3109/09637486.2014.940283.
  • Serek, P, and M. Oleksy-Wawrzyniak. 2021. The effect of bacterial infections, probiotics and zonulin on intestinal barrier integrity. International Journal of Molecular Sciences 22 (21):11359. doi: 10.3390/ijms222111359.
  • Serena, G., S. Camhi, C. Sturgeon, S. Yan, and A. Fasano. 2015. The role of gluten in celiac disease and type 1 diabetes. Nutrients 7 (9):7143–62. doi: 10.3390/nu7095329.
  • Serena, G., C. Davies, M. Cetinbas, R. I. Sadreyev, and A. Fasano. 2019. Analysis of blood and fecal microbiome profile in patients with celiac disease. Human Microbiome Journal 11:100049. doi: 10.1016/j.humic.2018.12.001.
  • Serena, G., S. Yan, S. Camhi, S. Patel, R. S. Lima, A. Sapone, M. M. Leonard, R. Mukherjee, B. J. Nath, K. M. Lammers, et al. 2017. Proinflammatory cytokine interferon-γ and microbiome-derived metabolites dictate epigenetic switch between forkhead box protein 3 isoforms in coeliac disease. Clinical and Experimental Immunology 187 (3):490–506. doi: 10.1111/cei.12911.
  • Shan, L., T. Marti, L. M. Sollid, G. M. Gray, and C. Khosla. 2004. Comparative biochemical analysis of three bacterial prolyl endopeptidases: Implications for coeliac sprue. The Biochemical Journal 383 (Pt 2):311–8. doi: 10.1042/bj20040907.
  • Sheykhsaran, E., A. Abbasi, H. Ebrahimzadeh Leylabadlo, J. Sadeghi, S. Mehri, F. Naeimi Mazraeh, H. Feizi, and H. Bannazadeh Baghi. 2022. Gut microbiota and obesity: An overview of microbiota to microbial-based therapies. Postgraduate Medical Journal postgradmedj–2021. doi: 10.1136/postgradmedj-2021-141311.
  • Silvester, J. A, and D. A. Leffler. 2017. Is autoimmunity infectious? The effect of gastrointestinal viral infections and vaccination on risk of celiac disease autoimmunity. Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association 15 (5):703–5. doi: 10.1016/j.cgh.2016.12.014.
  • Simons, M., L. A. Scott-Sheldon, Y. Risech-Neyman, S. F. Moss, J. F. Ludvigsson, and P. H. Green. 2018. Celiac disease and increased risk of pneumococcal infection: A systematic review and meta-analysis. The American Journal of Medicine 131 (1):83–9.
  • Slifer, Z. M., B. R. Krishnan, J. Madan, and A. T. Blikslager. 2021. Larazotide acetate: A pharmacological peptide approach to tight junction regulation. American Journal of Physiology, Gastrointestinal and Liver Physiology 320 (6):G983–g989. doi: 10.1152/ajpgi.00386.2020.
  • Smecuol, E., H. J. Hwang, E. Sugai, L. Corso, A. C. Cherñavsky, F. P. Bellavite, A. González, F. Vodánovich, M. L. Moreno, H. Vázquez, et al. 2013. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis Natren life start strain super strain in active celiac disease. Journal of Clinical Gastroenterology 47 (2):139–47. doi: 10.1097/MCG.0b013e31827759ac.
  • Stene, L. C., M. C. Honeyman, E. J. Hoffenberg, J. E. Haas, R. J. Sokol, L. Emery, I. Taki, J. M. Norris, H. A. Erlich, G. S. Eisenbarth, et al. 2006. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: A longitudinal study. The American Journal of Gastroenterology 101 (10):2333–40. doi: 10.1111/j.1572-0241.2006.00741.x.
  • Sun, M., W. Wu, Z. Liu, and Y. Cong. 2017. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. Journal of Gastroenterology 52 (1):1–8. doi: 10.1007/s00535-016-1242-9.
  • Szebeni, B., G. Veres, A. Dezsofi, K. Rusai, A. Vannay, G. Bokodi, B. Vásárhelyi, I. R. Korponay-Szabó, T. Tulassay, and A. Arató. 2007. Increased mucosal expression of toll-like receptor (TLR)2 and TLR4 in coeliac disease. Journal of Pediatric Gastroenterology and Nutrition 45 (2):187–93. doi: 10.1097/MPG.0b013e318064514a.
  • Thai, J. D, and K. E. Gregory. 2020. Bioactive factors in human breast milk attenuate intestinal inflammation during early life. Nutrients 12 (2):581. doi: 10.3390/nu12020581.
  • Tjellström, B., L. Stenhammar, L. Högberg, K. Fälth-Magnusson, K.-E. Magnusson, T. Midtvedt, T. Sundqvist, and E. Norin. 2005. Gut microflora associated characteristics in children with celiac disease. The American Journal of Gastroenterology 100 (12):2784–8. doi: 10.1111/j.1572-0241.2005.00313.x.
  • Tomasello, G., M. Mazzola, A. Leone, E. Sinagra, G. Zummo, F. Farina, P. Damiani, F. Cappello, A. Gerges Geagea, A. Jurjus, et al. 2016. Nutrition, oxidative stress and intestinal dysbiosis: Influence of diet on gut microbiota in inflammatory bowel diseases. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 160 (4):461–6. doi: 10.5507/bp.2016.052.
  • Tumgor, G., M. Agin, F. Doran, and S. Cetiner. 2018. Frequency of celiac disease in children with peptic ulcers. Digestive Diseases and Sciences 63 (10):2681–6. doi: 10.1007/s10620-018-5174-5.
  • Uusitalo, U., C. Andren Aronsson, X. Liu, K. Kurppa, J. Yang, E. Liu, J. Skidmore, C. Winkler, M. Rewers, W. Hagopian, et al. 2019. Early probiotic supplementation and the risk of celiac disease in children at genetic risk. Nutrients 11 (8):1790. doi: 10.3390/nu11081790.
  • Valitutti, F., S. Cucchiara, and A. Fasano. 2019. Celiac disease and the microbiome. Nutrients 11 (10):2403. doi: 10.3390/nu11102403.
  • van Beurden, Y. H., T. van Gils, N. A. van Gils, Z. Kassam, C. J. Mulder, and N. Aparicio-Pagés. 2016. Serendipity in refractory celiac disease: Full recovery of duodenal villi and clinical symptoms after fecal microbiota transfer. Journal of Gastrointestinal and Liver Diseases: JGLD 25 (3):385–8. doi: 10.15403/jgld.2014.1121.253.cel.
  • Vanderpool, C., F. Yan, and B. D. Polk. 2008. Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases. Inflammatory Bowel Diseases 14 (11):1585–96.
  • Verhaar, B. J. H., A. Prodan, M. Nieuwdorp, and M. Muller. 2020. Gut microbiota in hypertension and atherosclerosis: A review. Nutrients 12 (10):2982. doi: 10.3390/nu12102982.
  • Vindigni, S. M, and C. M. Surawicz. 2017. Fecal microbiota transplantation. Gastroenterology Clinics of North America 46 (1):171–85. doi: 10.1016/j.gtc.2016.09.012.
  • Voisine, J, and V. Abadie. 2021. Interplay between gluten, HLA, innate and adaptive immunity orchestrates the development of coeliac disease. Frontiers in Immunology 12:674313. doi: 10.3389/fimmu.2021.674313.
  • Vriezinga, S. L., R. Auricchio, E. Bravi, G. Castillejo, A. Chmielewska, P. Crespo Escobar, S. Kolaček, S. Koletzko, I. R. Korponay-Szabo, E. Mummert, et al. 2014. Randomized feeding intervention in infants at high risk for celiac disease. The New England Journal of Medicine 371 (14):1304–15. doi: 10.1056/nejmoa1404172.
  • Wacklin, P., P. Laurikka, K. Lindfors, P. Collin, T. Salmi, M.-L. Lähdeaho, P. Saavalainen, M. Mäki, J. Mättö, K. Kurppa, et al. 2014. Altered duodenal microbiota composition in celiac disease patients suffering from persistent symptoms on a long-term gluten-free diet. The American Journal of Gastroenterology 109 (12):1933–41. doi: 10.1038/ajg.2014.355.
  • Wahlström, A., S. I. Sayin, H.-U. Marschall, and F. Bäckhed. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metabolism 24 (1):41–50.
  • Wang, H., H. Wang, Y. Sun, Z. Ren, W. Zhu, A. Li, and G. Cui. 2021. Potential associations between microbiome and COVID-19. Frontiers in Medicine 8:785496. doi: 10.3389/fmed.2021.785496.
  • Wei, G., E. J. Helmerhorst, G. Darwish, G. Blumenkranz, and D. Schuppan. 2020. Gluten degrading enzymes for treatment of celiac disease. Nutrients 12 (7):2095. doi: 10.3390/nu12072095.
  • Wilkins, T, and J. Sequoia. 2017. Probiotics for gastrointestinal conditions: A summary of the evidence. American Family Physician 96 (3):170–8.
  • Wu, X., L. Qian, K. Liu, J. Wu, and Z. Shan. 2021. Gastrointestinal microbiome and gluten in celiac disease. Annals of Medicine 53 (1):1797–805. doi: 10.1080/07853890.2021.1990392.
  • Zamakhchari, M., G. Wei, F. Dewhirst, J. Lee, D. Schuppan, F. G. Oppenheim, and E. J. Helmerhorst. 2011. Identification of Rothia bacteria as gluten-degrading natural colonizers of the upper gastro-intestinal tract. PloS One 6 (9):e24455.
  • Zhang, J. H., J. D. Nolan, S. L. Kennie, I. M. Johnston, T. Dew, P. H. Dixon, C. Williamson, and J. R. F. Walters. 2013. Potent stimulation of fibroblast growth factor 19 expression in the human ileum by bile acids. American Journal of Physiology-Gastrointestinal and Liver Physiology 304 (10):G940–G948. doi: 10.1152/ajpgi.00398.2012.
  • Zhen, J., J. P. Stefanolo, M. d l P. Temprano, S. Tedesco, C. Seiler, A. F. Caminero, E. de-Madaria, M. M. Huguet, S. Vivas, S. I. Niveloni, et al. 2021. The risk of contracting COVID-19 is not increased in patients with celiac disease. Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association 19 (2):391–3. doi: 10.1016/j.cgh.2020.10.009.
  • Zingone, F., A. D’Odorico, G. Lorenzon, I. Marsilio, F. Farinati, and E. V. Savarino. 2020. Risk of COVID-19 in celiac disease patients. Autoimmunity Reviews 19 (10):102639. doi: 10.1016/j.autrev.2020.102639.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.