1,654
Views
20
CrossRef citations to date
0
Altmetric
Review

Short-chain fatty acid: An updated review on signaling, metabolism, and therapeutic effects

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Abumrad, N. A, and N. O. Davidson. 2012. Role of the gut in lipid homeostasis. Physiological Reviews 92 (3):1061–85. doi: 10.1152/physrev.00019.2011.
  • Ahmad, S. Y., J. Friel, and D. Mackay. 2020. The effects of non-nutritive artificial sweeteners, aspartame and sucralose, on the gut microbiome in healthy adults: Secondary outcomes of a randomized double-blinded crossover clinical trial. Nutrients 12 (11):3408. doi: 10.3390/nu12113408.
  • Aich, U., M. A. Meledeo, S. G. Sampathkumar, J. Fu, M. B. Jones, C. A. Weier, S. Y. Chung, B. C. Tang, M. Yang, J. Hanes, et al. 2010. Development of delivery methods for carbohydrate-based drugs: Controlled release of biologically-active short chain fatty acid-hexosamine analogs. Glycoconjugate Journal 27 (4):445–59. doi: 10.1007/s10719-010-9292-3.
  • Al-Harbi, N. O., A. Nadeem, S. F. Ahmad, M. R. Alotaibi, A. F. AlAsmari, W. A. Alanazi, M. M. Al Harbi, A. M. El-Sherbeeny, and K. E. Ibrahim. 2018. Short chain fatty acid, acetate ameliorates sepsis-induced acute kidney injury by inhibition of NADPH oxidase signalling in T cells. International Immunopharmacology 58:24–31. doi: 10.1016/j.intimp.2018.02.023.
  • Ali, I., C. Li, L. Li, M. Kuang, M. Shafiq, Y. Wang, M. Yang, and G. Wang. 2021. Effect of acetate, β-hydroxybutyrate and their interaction on lipogenic gene expression, triglyceride contents and lipid droplet formation in dairy cow mammary epithelial cells. In Vitro Cellular & Developmental Biology. Animal 57 (1):66–75. doi: 10.1007/s11626-020-00538-2.
  • Aoyama, M., J. Kotani, and M. Usami. 2010. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition (Burbank, Los Angeles County, Calif.) 26 (6):653–61. doi: 10.1016/j.nut.2009.07.006.
  • Bachem, A., C. Makhlouf, K. J. Binger, D. P. de Souza, D. Tull, K. Hochheiser, P. G. Whitney, D. Fernandez-Ruiz, S. Dähling, W. Kastenmüller, et al. 2019. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51 (2):285–97.e5. doi: 10.1016/j.immuni.2019.06.002.
  • Ball, D. R., B. Rowlands, M. S. Dodd, L. Le Page, V. Ball, C. A. Carr, K. Clarke, and D. J. Tyler. 2014. Hyperpolarized butyrate: A metabolic probe of short chain fatty acid metabolism in the heart. Magnetic Resonance in Medicine 71 (5):1663–9. doi: 10.1002/mrm.24849.
  • Bartolomaeus, H., A. Balogh, M. Yakoub, S. Homann, L. Markó, S. Höges, D. Tsvetkov, A. Krannich, S. Wundersitz, E. G. Avery, et al. 2019. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 139 (11):1407–21. doi: 10.1161/CIRCULATIONAHA.118.036652.
  • Battson, M. L., D. M. Lee, L. C. Li Puma, K. E. Ecton, K. N. Thomas, H. P. Febvre, A. J. Chicco, T. L. Weir, and C. L. Gentile. 2019. Gut microbiota regulates cardiac ischemic tolerance and aortic stiffness in obesity. American Journal of Physiology. Heart and Circulatory Physiology 317 (6):H1210–H1220. doi: 10.1152/ajpheart.00346.2019.
  • Bellahcene, M., J. F. O’Dowd, E. T. Wargent, M. S. Zaibi, D. C. Hislop, R. A. Ngala, D. M. Smith, M. A. Cawthorne, C. J. Stocker, J. R. S. Arch, et al. 2013. Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. The British Journal of Nutrition 109 (10):1755–64. doi: 10.1017/S0007114512003923.
  • Bian, X., L. Yang, W. Wu, L. Lv, X. Jiang, Q. Wang, J. Wu, Y. Li, J. Ye, D. Fang, et al. 2020. Pediococcuspentosaceus LI05 alleviates DSS-induced colitis by modulating immunological profiles, the gut microbiota and short-chain fatty acid levels in a mouse model. Microbial Biotechnology 13 (4):1228–44. doi: 10.1111/1751-7915.13583.
  • Bier, A., T. Braun, R. Khasbab, A. Di Segni, E. Grossman, Y. Haberman, and A. Leibowitz. 2018. A high salt diet modulates the gut microbiota and short chain fatty acids production in a salt-sensitive hypertension rat model. Nutrients 10 (9):1154. doi: 10.3390/nu10091154.
  • Birkeland, E., S. Gharagozlian, K. I. Birkeland, J. Valeur, I. Måge, I. Rud, and A. M. Aas. 2020. Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: A randomised controlled trial. European Journal of Nutrition 59 (7):3325–38. doi: 10.1007/s00394-020-02282-5.
  • Bloemen, J. G., S. W. Olde Damink, K. Venema, W. A. Buurman, R. Jalan, and C. H. Dejong. 2010. Short chain fatty acids exchange: Is the cirrhotic, dysfunctional liver still able to clear them? Clinical Nutrition (Edinburgh, Scotland) 29 (3):365–9. doi: 10.1016/j.clnu.2009.10.002.
  • Bojović, K., Ð. I. Ignjatović, S. SokovićBajić, et al. 2020. Gut microbiota dysbiosis associated with altered production of short chain fatty acids in children with neurodevelopmental disorders. Frontiers in Cellular and Infection Microbiology. 10:223. doi: 10.3389/fcimb.2020.00223.
  • Bolduc, J. F., L. Hany, C. Barat, M. Ouellet, and M. J. Tremblay. 2017. Epigenetic metabolite acetate inhibits class I/II histone deacetylases, promotes histone acetylation, and increases HIV-1 integration in CD4+ T cells. Journal of Virology 91 (16):e01943–16. doi: 10.1128/JVI.01943-16.
  • Brody, L. P., M. Sahuri-Arisoylu, J. R. Parkinson, H. G. Parkes, P. W. So, N. Hajji, E. L. Thomas, G. S. Frost, A. D. Miller, and J. D. Bell. 2017. Cationic lipid-based nanoparticles mediate functional delivery of acetate to tumor cells in vivo leading to significant anticancer effects. International Journal of Nanomedicine 12:6677–85. doi: 10.2147/IJN.S135968.
  • Calder, P. C. 2015. Functional roles of fatty acids and their effects on human health. JPEN. Journal of Parenteral and Enteral Nutrition 39 (1 Suppl):18S–32S. doi: 10.1177/0148607115595980.
  • Calderón-Pérez, L., M. J. Gosalbes, S. Yuste, R. M. Valls, A. Pedret, E. Llauradó, N. Jimenez-Hernandez, A. Artacho, L. Pla-Pagà, J. Companys, et al. 2020. Gut metagenomic and short chain fatty acids signature in hypertension: A cross-sectional study. Scientific Reports 10 (1):6436. doi: 10.1038/s41598-020-63475-w.
  • Canfora, E. E., J. W. Jocken, and E. E. Blaak. 2015. Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews. Endocrinology 11 (10):577–91. doi: 10.1038/nrendo.2015.128.
  • Canfora, E. E., C. M. van der Beek, J. W. E. Jocken, G. H. Goossens, J. J. Holst, S. W. M. Olde Damink, K. Lenaerts, C. H. C. Dejong, and E. E. Blaak. 2017. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: A randomized crossover trial. Scientific Reports 7 (1):2360. doi: 10.1038/s41598-017-02546-x.
  • Carley, A. N., S. K. Maurya, M. Fasano, Y. Wang, C. H. Selzman, S. G. Drakos, and E. D. Lewandowski. 2021. Short-chain fatty acids outpace ketone oxidation in the failing heart. Circulation 143 (18):1797–808. doi: 10.1161/CIRCULATIONAHA.120.052671.
  • Castro, P. R., L. F. F. Bittencourt, S. Larochelle, S. P. Andrade, C. R. Mackay, M. Slevin, V. J. Moulin, and L. S. Barcelos. 2021. GPR43 regulates sodium butyrate-induced angiogenesis and matrix remodeling. American Journal of Physiology. Heart and Circulatory Physiology 320 (3):H1066–H1079. doi: 10.1152/ajpheart.00515.2019.
  • Chambers, E. S., D. J. Morrison, and G. Frost. 2015. Control of appetite and energy intake by SCFA: What are the potential underlying mechanisms? The Proceedings of the Nutrition Society 74 (3):328–36. doi: 10.1017/S0029665114001657.
  • Chang, P. V., L. Hao, S. Offermanns, and R. Medzhitov. 2014. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences of the United States of America 111 (6):2247–52. doi: 10.1073/pnas.1322269111.
  • Chen, G., X. Ran, B. Li, Y. Li, D. He, B. Huang, S. Fu, J. Liu, and W. Wang. 2018. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. EBioMedicine 30:317–25. doi: 10.1016/j.ebiom.2018.03.030.
  • Chen, J., F. M. Ghazawi, W. Bakkar, and Q. Li. 2006. Valproic acid and butyrate induce apoptosis in human cancer cells through inhibition of gene expression of Akt/protein kinase B. Molecular Cancer 5:71. 5:doi: 10.1186/1476-4598-5-71.
  • Chen, R., Y. Xu, P. Wu, H. Zhou, Y. Lasanajak, Y. Fang, L. Tang, L. Ye, X. Li, Z. Cai, et al. 2019. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacological Research 148:104403. doi: 10.1016/j.phrs.2019.104403.
  • Cho, T., C. Lee, N. Lee, Y. R. Hong, and J. Koo. 2019. Small-chain fatty acid activates astrocytic odorant receptor Olfr920. Biochemical and Biophysical Research Communications 510 (3):383–7. doi: 10.1016/j.bbrc.2019.01.106.
  • Chriett, S., O. Zerzaihi, H. Vidal, and L. Pirola. 2017. The histone deacetylase inhibitor sodium butyrate improves insulin signalling in palmitate-induced insulin resistance in L6 rat muscle cells through epigenetically-mediated up-regulation of Irs1. Molecular and Cellular Endocrinology 439:224–32. doi: 10.1016/j.mce.2016.09.006.
  • Cyr, A. R., and F. E. Domann. 2011. The redox basis of epigenetic modifications: From mechanisms to functional consequences. Antioxidants & Redox Signaling 15 (2):551–89. doi: 10.1089/ars.2010.3492.
  • Dangana, E. O., T. E. Omolekulo, E. D. Areola, K. S. Olaniyi, A. O. Soladoye, and L. A. Olatunji. 2020. Sodium acetate protects against nicotine-induced excess hepatic lipid in male rats by suppressing xanthine oxidase activity. Chemico-Biological Interactions 316:108929. doi: 10.1016/j.cbi.2019.108929.
  • de la Cuesta-Zuluaga, J., N. T. Mueller, R. Álvarez-Quintero, E. P. Velásquez-Mejía, J. A. Sierra, V. Corrales-Agudelo, J. A. Carmona, J. M. Abad, and J. S. Escobar. 2018. Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients 11 (1):51. doi: 10.3390/nu11010051.
  • den Besten, G., A. Bleeker, A. Gerding, K. van Eunen, R. Havinga, T. H. van Dijk, M. H. Oosterveer, J. W. Jonker, A. K. Groen, D. J. Reijngoud, et al. 2015a. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 64 (7):2398–408. doi: 10.2337/db14-1213.
  • den Besten, G., A. Gerding, T. H. van Dijk, J. Ciapaite, A. Bleeker, K. van Eunen, R. Havinga, A. K. Groen, D. J. Reijngoud, and B. M. Bakker. 2015b. Protection against the metabolic syndrome by guar gum-derived short-chain fatty acids depends on peroxisome proliferator-activated receptor γ and glucagon-like peptide-1. PLoS One 10 (8):e0136364. doi: 10.1371/journal.pone.0136364.
  • den Besten, G., K. van Eunen, A. K. Groen, K. Venema, D. J. Reijngoud, and B. M. Bakker. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research 54 (9):2325–40. doi: 10.1194/jlr.R036012.
  • Deng, M., F. Qu, L. Chen, C. Liu, M. Zhang, F. Ren, H. Guo, H. Zhang, S. Ge, C. Wu, et al. 2020. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD. The Journal of Endocrinology 245 (3):425–37. doi: 10.1530/JOE-20-0018.
  • Dou, X., N. Gao, J. Lan, J. Han, Y. Yang, and A. Shan. 2020. TLR2/EGFR are two sensors for pBD3 and pEP2C induction by sodium butyrate independent of HDAC inhibition. Journal of Agricultural and Food Chemistry 68 (2):512–22. doi: 10.1021/acs.jafc.9b06569.
  • Drozdowski, L. A., W. T. Dixon, M. I. McBurney, and A. B. Thomson. 2002. Short-chain fatty acids and total parenteral nutrition affect intestinal gene expression. JPEN. Journal of Parenteral and Enteral Nutrition 26 (3):145–50. doi: 10.1177/0148607102026003145.
  • D’Souza, W. N., J. Douangpanya, S. Mu, P. Jaeckel, M. Zhang, J. R. Maxwell, J. B. Rottman, K. Labitzke, A. Willee, H. Beckmann, et al. 2017. Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses. PLoS One 12 (7):e0180190. doi: 10.1371/journal.pone.0180190.
  • Du, Y., G. Tang, and W. Yuan. 2020. Suppression of HDAC2 by sodium butyrate alleviates apoptosis of kidney cells in db/db mice and HG-induced NRK-52E cells. International Journal of Molecular Medicine 45 (1):210–22. doi: 10.3892/ijmm.2019.4397.
  • El Hage, R., E. Hernandez-Sanabria, M. Calatayud Arroyo, and T. Van de Wiele. 2020. Supplementation of a propionate-producing consortium improves markers of insulin resistance in an in vitro model of gut-liveraxis. American Journal of Physiology. Endocrinology and Metabolism 318 (5):E742–E749. doi: 10.1152/ajpendo.00523.2019.
  • Erdbrügger, P., and F. Fröhlich. 2020. The role of very long chain fatty acids in yeast physiology and human diseases. Biological Chemistry 402 (1):25–38. doi: 10.1515/hsz-2020-0234.
  • Erny, D., A. L. Hrabě de Angelis, D. Jaitin, P. Wieghofer, O. Staszewski, E. David, H. Keren-Shaul, T. Mahlakoiv, K. Jakobshagen, T. Buch, et al. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience 18 (7):965–77. doi: 10.1038/nn.4030.
  • Fechner, A., M. Kiehntopf, and G. Jahreis. 2014. The formation of short-chain fatty acids is positively associated with the blood lipid-lowering effect of lupin kernel fiber in moderately hypercholesterolemic adults. The Journal of Nutrition 144 (5):599–607. doi: 10.3945/jn.113.186858.
  • Felizardo, R. J. F., D. C. de Almeida, R. L. Pereira, I. K. M. Watanabe, N. T. S. Doimo, W. R. Ribeiro, M. A. Cenedeze, M. I. Hiyane, M. T. Amano, T. T. Braga, et al. 2019. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms. FASEB Journal 33 (11):11894–908. doi: 10.1096/fj.201901080R.
  • Ferrer-Picón, E., I. Dotti, A. M. Corraliza, A. Mayorgas, M. Esteller, J. C. Perales, E. Ricart, M. C. Masamunt, A. Carrasco, E. Tristán, et al. 2020. Intestinal inflammation modulates the epithelial response to butyrate in patients with inflammatory bowel disease. Inflammatory Bowel Diseases 26 (1):43–55. doi: 10.1093/ibd/izz119.
  • Flint, H. J., S. H. Duncan, K. P. Scott, and P. Louis. 2015. Links between diet, gut microbiota composition and gut metabolism. The Proceedings of the Nutrition Society 74 (1):13–22. doi: 10.1017/S0029665114001463.
  • Flock, T., A. S. Hauser, N. Lund, D. E. Gloriam, S. Balaji, and M. M. Babu. 2017. Selectivity determinants of GPCR-G-protein binding. Nature 545 (7654):317–22. doi: 10.1038/nature22070.
  • Freeland, K. R., and T. M. Wolever. 2010. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha. British Journal of Nutrition 103 (3):460–6. doi: 10.1017/S0007114509991863.
  • Frost, G., M. L. Sleeth, M. Sahuri-Arisoylu, B. Lizarbe, S. Cerdan, L. Brody, J. Anastasovska, S. Ghourab, M. Hankir, S. Zhang, et al. 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communications 5:3611. doi: 10.1038/ncomms4611.
  • Fuller, M., M. Priyadarshini, S. M. Gibbons, A. R. Angueira, M. Brodsky, M. G. Hayes, P. Kovatcheva-Datchary, F. Bäckhed, J. A. Gilbert, W. L. Lowe, Jr, et al. 2015. The short-chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis. American Journal of Physiology. Endocrinology and Metabolism 309 (10):E840–E851. doi: 10.1152/ajpendo.00171.2015.
  • Geirnaert, A., M. Calatayud, C. Grootaert, D. Laukens, S. Devriese, G. Smagghe, M. De Vos, N. Boon, and T. Van de Wiele. 2017. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrateproduction and enhanced intestinal epithelial barrier integrity. Scientific Reports 7 (1):11450. doi: 10.1038/s41598-017-11734-8.
  • Glick, N. R., and M. H. Fischer. 2013. The role of essential fatty acids in human health. Journal of Evidence-Based Complementary & Alternative Medicine 18 (4):268–89. doi: 10.1177/2156587213488788.
  • Granado-Serrano, A. B., M. Martín-Garí, V. Sánchez, M. Riart Solans, R. Berdún, I. A. Ludwig, L. Rubió, E. Vilaprinyó, M. Portero-Otín, J. C. E. Serrano, et al. 2019. Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Scientific Reports 9 (1):1772. doi: 10.1038/s41598-019-38874-3.
  • Guo, W.-L., J.-B. Guo, B.-Y. Liu, J.-Q. Lu, M. Chen, B. Liu, W.-D. Bai, P.-F. Rao, L. Ni, X.-C. Lv, et al. 2020. Ganoderic acid A from Ganoderma lucidum ameliorates lipid metabolism and alters gut microbiota composition in hyperlipidemic mice fed a high-fat diet. Food & Function 11 (8):6818–33. doi: 10.1039/d0fo00436g.
  • Hald, S., A. G. Schioldan, M. E. Moore, A. Dige, H. N. Laerke, J. Agnholt, K. E. Bach Knudsen, K. Hermansen, M. L. Marco, S. Gregersen, et al. 2016. Effects of arabinoxylan and resistant starch on intestinal microbiota and short-chain fatty acids in subjects with metabolic syndrome: A randomised crossover study. PLoS One 11 (7):e0159223. doi: 10.1371/journal.pone.0159223.
  • Han, A., N. Bennett, B. Ahmed, J. Whelan, and D. R. Donohoe. 2018. Butyrate decreases its own oxidation in colorectal cancer cells through inhibition of histone deacetylases. Oncotarget 9 (43):27280–92. doi: 10.18632/oncotarget.25546.
  • He, J., P. Zhang, L. Shen, L. Niu, Y. Tan, L. Chen, Y. Zhao, L. Bai, X. Hao, X. Li, et al. 2020. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. International Journal of Molecular Sciences 21 (17):6356. doi: 10.3390/ijms21176356.
  • Hernández, M. A. G., E. E. Canfora, J. W. E. Jocken, and E. E. Blaak. 2019. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 11 (8):1943. doi: 10.3390/nu11081943.
  • Higashimura, Y., Y. Naito, T. Takagi, K. Uchiyama, K. Mizushima, and T. Yoshikawa. 2015. Propionate promotes fatty acid oxidation through the up-regulation of peroxisome proliferator-activated receptor α in intestinal epithelial cells. Journal of Nutritional Science and Vitaminology 61 (6):511–5. doi: 10.3177/jnsv.61.511.
  • Høgh, R. I., S. H. Møller, S. D. Jepsen, M. Mellergaard, A. Lund, M. Pejtersen, E. Fitzner, L. Andresen, and S. Skov. 2020. Metabolism of short-chain fatty acid propionate induces surface expression of NKG2D ligands on cancer cells. FASEB Journal 34 (11):15531–46. doi: 10.1096/fj.202000162R.
  • Holota, Y., T. Dovbynchuk, I. Kaji, I. Vareniuk, N. Dzyubenko, T. Chervinska, L. Zakordonets, V. Stetska, L. Ostapchenko, T. Serhiychuk, et al. 2019. The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity. PLoS One 14 (8):e0220642. doi: 10.1371/journal.pone.0220642.
  • Hu, J., S. Lin, B. Zheng, and P. C. K. Cheung. 2018. Short-chain fatty acids in control of energy metabolism. Critical Reviews in Food Science and Nutrition 58 (8):1243–9. doi: 10.1080/10408398.2016.1245650.
  • Hu, L., S. Zhu, X. Peng, K. Li, W. Peng, Y. Zhong, C. Kang, X. Cao, Z. Liu, and B. Zhao. 2020. High salt elicits brain inflammation and cognitive dysfunction, accompanied by alternations in the gut microbiota and decreased SCFA production. Journal of Alzheimer’s Disease: JAD 77 (2):629–40. doi: 10.3233/JAD-200035.
  • Hu, M., D. Eviston, P. Hsu, E. Mariño, A. Chidgey, B. Santner-Nanan, K. Wong, J. L. Richards, Y. A. Yap, F. Collier, et al. 2019. Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia. Nature Communications 10 (1):3031. doi: 10.1038/s41467-019-10703-1.
  • Hu, S., R. Kuwabara, B. J. de Haan, A. M. Smink, and P. de Vos. 2020. Acetate and butyrate improve β-cell metabolism and mitochondrial respiration under oxidative stress. International Journal of Molecular Sciences 21 (4):1542. doi: 10.3390/ijms21041542.
  • Huang, W., Y. Man, C. Gao, L. Zhou, J. Gu, H. Xu, Q. Wan, Y. Long, L. Chai, Y. Xu, et al. 2020. Short-chain fatty acids ameliorate diabetic nephropathy via GPR43-mediated inhibition of oxidative stress and NF-κB signalling. Oxidative Medicine and Cellular Longevity 2020:4074832. doi: 10.1155/2020/4074832.
  • Huart, J., J. Leenders, B. Taminiau, J. Descy, A. Saint-Remy, G. Daube, J.-M. Krzesinski, P. Melin, P. de Tullio, F. Jouret, et al. 2019. Gut microbiota and fecal levels of short-chain fatty acids differ upon 24-hour blood pressure levels in men. Hypertension (Dallas, Tex. : 1979) 74 (4):1005–13. doi: 10.1161/HYPERTENSIONAHA.118.12588.
  • Hung, T. V, and T. Suzuki. 2018. Dietary fermentable fibers attenuate chronic kidney disease in mice by protecting the intestinal barrier. The Journal of Nutrition 148 (4):552–61. doi: 10.1093/jn/nxy008.
  • Hustoft, T. N., T. Hausken, S. O. Ystad, J. Valeur, K. Brokstad, J. G. Hatlebakk, and G. A. Lied. 2017. Effects of varying dietary content of fermentable short-chain carbohydrates on symptoms, fecal microenvironment, and cytokine profiles in patients with irritable bowel syndrome. Neurogastroenterology & Motility 29 (4):e12969. doi: 10.1111/nmo.12969.
  • Iannucci, L. F., J. Sun, B. K. Singh, J. Zhou, V. A. Kaddai, A. Lanni, P. M. Yen, and R. A. Sinha. 2016. Short chain fatty acids induce UCP2-mediated autophagy in hepatic cells. Biochemical and Biophysical Research Communications 480 (3):461–7. doi: 10.1016/j.bbrc.2016.10.072.
  • Imoto, Y., A. Kato, T. Takabayashi, M. Sakashita, J. E. Norton, L. A. Suh, R. G. Carter, A. R. Weibman, K. E. Hulse, W. Stevens, et al. 2018. Short-chain fatty acids induce tissue plasminogen 48activator in airway epithelial cells via GPR41&43. Clinical and Experimental Allergy 48 (5):544–54. doi: 10.1111/cea.13119.
  • Inoue, D., I. Kimura, M. Wakabayashi, H. Tsumoto, K. Ozawa, T. Hara, Y. Takei, A. Hirasawa, Y. Ishihama, G. Tsujimoto, et al. 2012. Short-chain fatty acid receptor GPR41-mediated activation of sympathetic neurons involves synapsin 2b phosphorylation. FEBS Letters 586 (10):1547–54. doi: 10.1016/j.febslet.2012.04.021.
  • Jalanka, J., G. Major, K. Murray, G. Singh, A. Nowak, C. Kurtz, I. Silos-Santiago, J. M. Johnston, W. M. de Vos, and R. Spiller. 2019. The effect of psyllium husk on intestinal microbiota in constipated patients and healthy controls. International Journal of Molecular Sciences 20 (2):433. doi: 10.3390/ijms20020433.
  • Jaworska, K., M. Konop, K. Bielinska, T. Hutsch, M. Dziekiewicz, A. Banaszkiewicz, and M. Ufnal. 2019. Inflammatory bowel disease is associated with increased gut-to-blood penetration of short-chain fatty acids: A new, non-invasive marker of a functional intestinal lesion. Experimental Physiology 104 (8):1226–36. doi: 10.1113/EP087773.
  • Jiang, X. W., Y. T. Li, J. Z. Ye, L. X. Lv, L. Y. Yang, X. Y. Bian, W. R. Wu, J. J. Wu, D. Shi, Q. Wang, et al. 2020. New strain of Pediococcus pentosaceus alleviates ethanol-induced liver injury by modulating the gut microbiota and short-chain fatty acid metabolism. World Journal of Gastroenterology 26 (40):6224–40. doi: 10.3748/wjg.v26.i40.6224.
  • Jiang, Y., K. Li, X. Li, L. Xu, and Z. Yang. 2021. Sodium butyrate ameliorates the impairment of synaptic plasticity by inhibiting the neuroinflammation in 5XFAD mice. Chemico-Biological Interactions 341:109452. doi: 10.1016/j.cbi.2021.109452.
  • Kaji, I., T. Iwanaga, M. Watanabe, P. H. Guth, E. Engel, J. D. Kaunitz, and Y. Akiba. 2015. SCFA transport in rat duodenum. American Journal of Physiology. Gastrointestinal and Liver Physiology 308 (3):G188–97. doi: 10.1152/ajpgi.00298.2014.
  • Khan, S, and G. B. Jena. 2014. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: Study in juvenile diabetic rat. Chemico-Biological Interactions 213:1–12. doi: 10.1016/j.cbi.2014.02.001.
  • Kibbie, J. J., S. M. Dillon, T. A. Thompson, C. M. Purba, M. D. McCarter, and C. C. Wilson. 2021. Butyrate directly decreases human gut lamina propria CD4 T cell function through histone deacetylase (HDAC) inhibition and GPR43 signalling. Immunobiology 226 (5):152126. doi: 10.1016/j.imbio.2021.152126.
  • Kihara, A. 2012. Very long-chain fatty acids: Elongation, physiology and related disorders. Journal of Biochemistry 152 (5):387–95. doi: 10.1093/jb/mvs105.
  • Kim, K., O. Kwon, T. Y. Ryu, C. R. Jung, J. Kim, J. K. Min, D. S. Kim, M. Y. Son, and H. S. Cho. 2019. Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer. Molecular Medicine Reports 20 (2):1569–74. doi: 10.3892/mmr.2019.10431.
  • Kim, M. H., S. G. Kang, J. H. Park, M. Yanagisawa, and C. H. Kim. 2013. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145 (2):396–406.e10. doi: 10.1053/j.gastro.2013.04.056.
  • Kimura, I., A. Ichimura, R. Ohue-Kitano, and M. Igarashi. 2020. Free fatty acid receptors in health and disease. Physiological Reviews 100 (1):171–210. doi: 10.1152/physrev.00041.2018.
  • Kimura, I., D. Inoue, T. Maeda, T. Hara, A. Ichimura, S. Miyauchi, M. Kobayashi, A. Hirasawa, and G. Tsujimoto. 2011. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proceedings of the National Academy of Sciences of the United States of America 108108 (19):8030–5. doi: 10.1073/pnas.1016088108.
  • Kindt, A., G. Liebisch, T. Clavel, D. Haller, G. Hörmannsperger, H. Yoon, D. Kolmeder, A. Sigruener, S. Krautbauer, C. Seeliger, et al. 2018. The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nature Communications 9 (1):3760. doi: 10.1038/s41467-018-05767-4.
  • Kobayashi, M., D. Mikami, H. Kimura, K. Kamiyama, Y. Morikawa, S. Yokoi, K. Kasuno, N. Takahashi, T. Taniguchi, M. Iwano, et al. 2017. Short-chain fatty acids, GPR41 and GPR43 ligands, inhibit TNF-α-induced MCP-1 expression by modulating p38 and JNK signalling pathways in human renal cortical epithelial cells. Biochemical and Biophysical Research Communications 486 (2):499–505. doi: 10.1016/j.bbrc.2017.03.071.
  • Kobayashi, M., D. Mikami, J. Uwada, T. Yazawa, K. Kamiyama, H. Kimura, T. Taniguchi, and M. Iwano. 2018. A short-chain fatty acid, propionate, enhances the cytotoxic effect of cisplatin by modulating GPR41 signalling pathways in HepG2 cells. Oncotarget 9 9 (59):31342–54. doi: 10.18632/oncotarget.25809.
  • Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Bäckhed. 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165 (6):1332–45. doi: 10.1016/j.cell.2016.05.041.
  • Lagerström, M. C., and H. B. Schiöth. 2008. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nature Reviews. Drug Discovery 7 (4):339–57. doi: 10.1038/nrd2518.
  • Langhorst, J., A. K. Koch, P. Voiss, G. J. Dobos, and A. Rueffer. 2020. Distinct patterns of short-chain fatty acids during flare in patients with ulcerative colitis under treatment with mesalamine or a herbal combination of myrrh, chamomile flowers, and coffee charcoal: Secondary analysis of a randomized controlled trial. European Journal of Gastroenterology & Hepatology 32 (2):175–80. doi: 10.1097/MEG.0000000000001582.
  • Le, H. D., S. M. Loveday, H. Singh, and A. Sarkar. 2020. Gastrointestinal digestion of Pickering emulsions stabilised by hydrophobically modified cellulose nanocrystals: Release of short-chain fatty acids. Food Chemistry 320:126650. doi: 10.1016/j.foodchem.2020.126650.
  • Lee, J., J. d’Aigle, L. Atadja, V. Quaicoe, P. Honarpisheh, B. P. Ganesh, A. Hassan, J. Graf, J. Petrosino, N. Putluri, et al. 2020. Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice. Circulation Research 127 (4):453–65. doi: 10.1161/CIRCRESAHA.119.316448.
  • Lewandowski, E. D., R. K. Kudej, L. T. White, J. M. O’Donnell, and S. F. Vatner. 2002. Mitochondrial preference for short chain fatty acid oxidation during coronary artery constriction. Circulation 105 (3):367–72. doi: 10.1161/hc0302.102594.
  • Li, B., X. He, H.-Y. Jin, H.-Y. Wang, F.-C. Zhou, N.-Y. Zhang, D.-Y. Jie, L.-Z. Li, J. Su, X. Zheng, et al. 2021. Beneficial effects of Dendrobium officinale on metabolic hypertensive rats by triggering the enteric-origin SCFA-GPCR43/41 pathway. Food & Function 12 (12):5524–38. doi: 10.1039/d0fo02890h.
  • Li, C., Y. Cao, L. Zhang, J. Li, H. Wu, F. Ling, J. Zheng, J. Wang, B. Li, J. He, et al. 2020. LncRNA IGFBP4-1 promotes tumor development by activating Janus kinase-signal transducer and activator of transcription pathway in bladder urothelial carcinoma. International Journal of Biological Sciences 16 (13):2271–82. doi: 10.7150/ijbs.46986.
  • Li, J. M., R. Yu, L. P. Zhang, S. Y. Wen, S. J. Wang, X. Y. Zhang, Q. Xu, and L. D. Kong. 2019. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: A benefit of short-chain fatty acids. Microbiome 7 (1):98. doi: 10.1186/s40168-019-0713-7.
  • Li, L., M. He, H. Xiao, X. Liu, K. Wang, and Y. Zhang. 2018a. Acetic acid influences BRL-3A cell lipid metabolism via the AMPK signalling pathway. Cellular Physiology and Biochemistry 45 (5):2021–30. doi: 10.1159/000487980.
  • Li, L., M. Pan, S. Pan, W. Li, Y. Zhong, J. Hu, and S. Nie. 2020. Effects of insoluble and soluble fibers isolated from barley on blood glucose, serum lipids, liver function and caecal short-chain fatty acids in type 2 diabetic and normal rats. Food and Chemical Toxicology 135:110937. doi: 10.1016/j.fct.2019.110937.
  • Li, M., B. C. A. M. van Esch, P. A. J. Henricks, G. Folkerts, and J. Garssen. 2018b. The anti-inflammatory effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-stimulated endothelial cells via activation of GPR41/43 and inhibition of HDACs. Frontiers in Pharmacology 9:533. doi: 10.3389/fphar.2018.00533.
  • Li, Q., H. Chen, M. Zhang, T. Wu, and R. Liu. 2019. Altered short-chain fatty acid profiles induced by dietary fiber intervention regulate AMPK levels and intestinal homeostasis. Food & Function 10 (11):7174–87. doi: 10.1039/c9fo01465a.
  • Li, Q., C. Ding, T. Meng, W. Lu, W. Liu, H. Hao, and L. Cao. 2017. Butyrate suppresses motility of colorectal cancer cells via deactivating Akt/ERK signalling in histone deacetylase dependent manner. Journal of Pharmacological Sciences 135 (4):148–55. doi: 10.1016/j.jphs.2017.11.004.
  • Li, Y. J., X. Chen, T. K. Kwan, Y. W. Loh, J. Singer, Y. Liu, J. Ma, J. Tan, L. Macia, C. R. Mackay, et al. 2020. Dietary fiber protects against diabetic nephropathy through short-chain fatty acid-mediated activation of G protein-coupled receptors GPR43 and GPR109A. Journal of the American Society of Nephrology: JASN 31 (6):1267–81. doi: 10.1681/ASN.2019101029.
  • Liu, J., H. Li, T. Gong, W. Chen, S. Mao, Y. Kong, J. Yu, and J. Sun. 2020. Anti-neuroinflammatory effect of short-chain fatty acid acetate against Alzheimer’s disease via upregulating GPR41 and inhibiting ERK/JNK/NF-κB. Journal of Agricultural and Food Chemistry 68 (27):7152–61. doi: 10.1021/acs.jafc.0c02807.
  • Liu, L., C. Fu, and F. Li. 2019a. Acetate affects the process of lipid metabolism in rabbit liver, skeletal muscle and adipose tissue. Animals (Basel) 9 (10):799. doi: 10.3390/ani9100799.
  • Liu, S., E. Li, Z. Sun, D. Fu, G. Duan, M. Jiang, Y. Yu, L. Mei, P. Yang, Y. Tang, et al. 2019. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Scientific Reports 9 (1):287. doi: 10.1038/s41598-018-36430-z.
  • Liu, X., C. Jiang, G. Liu, P. Wang, M. Shi, M. Yang, Z. Zhong, S. Ding, Y. Li, B. Liu, et al. 2020. Sodium butyrate protects against oxidative stress in human nucleus pulposus cells via elevating PPARγ-regulated Klotho expression. International Immunopharmacology 85:106657. doi: 10.1016/j.intimp.2020.106657.
  • Liu, Y., X. Jin, H. G. Hong, L. Xiang, Q. Jiang, Y. Ma, Z. Chen, L. Cheng, Z. Jian, Z. Wei, et al. 2020. The relationship between gut microbiota and short chain fatty acids in the renal calcium oxalate stones disease. FASEB Journal 34 (8):11200–14. doi: 10.1096/fj.202000786R.
  • Liu, Y., Y. J. Li, Y. W. Loh, J. Singer, W. Zhu, L. Macia, C. R. Mackay, W. Wang, S. J. Chadban, and H. Wu. 2021. Fiber derived microbial metabolites prevent acute kidney injury through G-protein coupled receptors and HDAC inhibition. Frontiers in Cell and Developmental Biology 9:648639. doi: 10.3389/fcell.2021.648639.
  • Liu, Z., X. Dai, H. Zhang, R. Shi, Y. Hui, J. X. Zhang, W. Wang, L. Wang, Q. Wang, D. Wang, et al. 2020. X. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nature Communications 11 (1):855. doi: 10.1038/s41467-020-14676-4.
  • Louis, P., G. L. Hold, and H. J. Flint. 2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews. Microbiology 12 (10):661–72. doi: 10.1038/nrmicro3344.
  • Lu, S., S. Yin, C. Zhao, L. Fan, and H. Hu. 2020. Synergistic anti-colon cancer effect of glycyrol and butyrate is associated with the enhanced activation of caspase-3 and structural features of glycyrol. Food and Chemical Toxicology 136:110952. doi: 10.1016/j.fct.2019.110952.
  • Lu, Y., C. Fan, P. Li, Y. Lu, X. Chang, and K. Qi. 2016. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G Protein-coupled receptors and gut microbiota. Scientific Reports 6:37589. doi: 10.1038/srep37589.
  • Luu, M., S. Pautz, V. Kohl, R. Singh, R. Romero, S. Lucas, J. Hofmann, H. Raifer, N. Vachharajani, L. C. Carrascosa, et al. 2019. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nature Communications 10 (1):760. doi: 10.1038/s41467-019-08711-2.
  • Lymperopoulos, A., M. S. Suster, and J. I. Borges. 2022. Short-chain fatty acid receptors and cardiovascular function. International Journal of Molecular Sciences 23 (6):3303. doi: 10.3390/ijms23063303.
  • Machado, A. M., N. B. M. da Silva, R. M. P. de Freitas, M. B. D. de Freitas, J. B. P. Chaves, L. L. Oliveira, H. S. D. Martino, and R. de Cássia Gonçalves Alfenas. 2021. Effects of yacon flour associated with an energy restricted diet on intestinal permeability, fecal short chain fatty acids, oxidative stress and inflammation markers levels in adults with obesity or overweight: A randomized, double blind, placebo controlled clinical trial. Archives of Endocrinology and Metabolism 64 (5):597–607. doi: 10.20945/2359-3997000000225.
  • Machiels, K., M. Joossens, J. Sabino, V. De Preter, I. Arijs, V. Eeckhaut, V. Ballet, K. Claes, F. Van Immerseel, K. Verbeke, et al. 2014. S. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63 (8):1275–83. doi: 10.1136/gutjnl-2013-304833.
  • Macia, L., J. Tan, A. T. Vieira, K. Leach, D. Stanley, S. Luong, M. Maruya, C. Ian McKenzie, A. Hijikata, C. Wong, et al. 2015. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nature Communications 6:6734. doi: 10.1038/ncomms7734.
  • Mandaliya, D. K., and S. Seshadri. 2019. Short chain fatty acids, pancreatic dysfunction and type 2 diabetes. Pancreatology 19 (2):280–4. doi: 10.1016/j.pan.2019.01.021.
  • Mangian, H. F., and K. A. Tappenden. 2009. Butyrate increases GLUT2 mRNA abundance by initiating transcription in Caco2-BBe cells. Journal of Parenteral and Enteral Nutrition 33 (6):607–17. doi: 10.1177/0148607109336599.
  • Mariamenatu, A. H, and E. M. Abdu. 2021. Overconsumption of omega-6 polyunsaturated fatty acids (PUFAs) versus deficiency of omega-3 PUFAs in modern-day diets: The disturbing factor for their “balanced antagonistic metabolic functions” in the human body. Journal of Lipids 2021:8848161. doi: 10.1155/2021/8848161.
  • Maslowski, K. M., A. T. Vieira, A. Ng, J. Kranich, F. Sierro, D. Yu, H. C. Schilter, M. S. Rolph, F. Mackay, D. Artis, et al. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461 (7268):1282–6. doi: 10.1038/nature08530.
  • Matheus, V. A., L. Monteiro, R. B. Oliveira, D. A. Maschio, and C. B. Collares-Buzato. 2017. Butyrate reduces high-fat diet-induced metabolic alterations, hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice. Experimental Biology and Medicine (Maywood, N.J.) 242 (12):1214–26. doi: 10.1177/1535370217708188.
  • Michael, O. S., C. L. Dibia, O. A. Soetan, O. A. Adeyanju, A. L. Oyewole, O. O. Badmus, C. O. Adetunji, and A. O. Soladoye. 2020. Sodium acetate prevents nicotine-induced cardiorenal dysmetabolism through uric acid/creatine kinase-dependent pathway. Life Sciences 257:118127. doi: 10.1016/j.lfs.2020.118127.
  • Michels, N., T. Van de Wiele, and S. De Henauw. 2017. Chronic psychosocial stress and gut health in children: Associations with calprotectin and fecal short-chain fatty acids. Psychosomatic Medicine 79 (8):927–35. doi: 10.1097/PSY.0000000000000413.
  • Mikami, D., M. Kobayashi, J. Uwada, T. Yazawa, K. Kamiyama, K. Nishimori, Y. Nishikawa, S. Nishikawa, S. Yokoi, H. Kimura, et al. 2020a. Short-chain fatty acid mitigates adenine-induced chronic kidney disease via FFA2 and FFA3 pathways. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1865 (6):158666. doi: 10.1016/j.bbalip.2020.158666.
  • Mikami, D., M. Kobayashi, J. Uwada, T. Yazawa, K. Kamiyama, K. Nishimori, Y. Nishikawa, S. Nishikawa, S. Yokoi, T. Taniguchi, et al. 2020b. AR420626, a selective agonist of GPR41/FFA3, suppresses growth of hepatocellular carcinoma cells by inducing apoptosis via HDAC inhibition. Therapeutic Advances in Medical Oncology 12:1758835920913432. doi: 10.1177/1758835920913432.
  • Miletta, M. C., V. Petkovic, A. Eblé, R. A. Ammann, C. E. Flück, and P. E. Mullis. 2014. Butyrate increases intracellular calcium levels and enhances growth hormone release from rat anterior pituitary cells via the G-protein-coupled receptors GPR41 and 43. PLoS One 9 (10):e107388. doi: 10.1371/journal.pone.0107388.
  • Miyamoto, J., R. Ohue-Kitano, H. Mukouyama, A. Nishida, K. Watanabe, M. Igarashi, J. Irie, G. Tsujimoto, N. Satoh-Asahara, H. Itoh, et al. 2019. Ketone body receptor GPR43 regulates lipid metabolism under ketogenic conditions. Proceedings of the National Academy of Sciences of the United States of America 116 (47):23813–21. doi: 10.1073/pnas.1912573116.
  • Mizuta, K., H. Sasaki, Y. Zhang, A. Matoba, and C. W. Emala. Sr, 2020. The short-chain free fatty acid receptor FFAR3 is expressed and potentiates contraction in human airway smooth muscle. American Journal of Physiology. Lung Cellular and Molecular Physiology 318 (6):L1248–L1260. doi: 10.1152/ajplung.00357.2019.
  • Nakkarach, A., H. L. Foo, A. A.-L. Song, N. E. A. Mutalib, S. Nitisinprasert, and U. Withayagiat. 2021. Anti-cancer and anti-inflammatory effects elicited by short chain fatty acids produced by Escherichia coli isolated from healthy human gut microbiota. Microbial Cell Factories 20 (1):36. doi: 10.1186/s12934-020-01477-z.
  • Natarajan, N., D. Hori, S. Flavahan, J. Steppan, N. A. Flavahan, D. E. Berkowitz, and J. L. Pluznick. 2016. Microbial short-chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiological Genomics 48 (11):826–34. doi: 10.1152/physiolgenomics.00089.2016.
  • Nooromid, M., E. B. Chen, L. Xiong, K. Shapiro, Q. Jiang, F. Demsas, M. Eskandari, M. Priyadarshini, E. B. Chang, B. T. Layden, et al. 2020. Microbe-derived butyrate and its receptor, free fatty acid receptor 3, but not free fatty acid receptor 2, mitigate neointimal hyperplasia susceptibility after arterial injury. Journal of the American Heart Association 9 (13):e016235. doi: 10.1161/JAHA.120.016235.
  • Ohara, T, and T. Mori. 2019. Antiproliferative effects of short-chain fatty acids on human colorectal cancer cells via gene expression inhibition. Anticancer Research 39 (9):4659–66. doi: 10.21873/anticanres.13647.
  • Okabe, S., T. Okamoto, C. M. Zhao, D. Chen, and H. Matsui. 2014. Acetic acid induces cell death: An in vitro study using normal rat gastric mucosal cell line and rat and human gastric cancer and mesothelioma cell lines. Journal of Gastroenterology and Hepatology 29:65–9. doi: 10.1111/jgh.12775.
  • Olaniyi, K. S., O. A. Amusa, E. D. Areola, and L. A. Olatunji. 2020. Suppression of HDAC by sodium acetate rectifies cardiac metabolic disturbance in streptozotocin-nicotinamide-induced diabetic rats. Experimental Biology and Medicine (Maywood, N.J.) 245 (7):667–76. doi: 10.1177/1535370220913847.
  • Onyszkiewicz, M., M. Gawrys-Kopczynska, P. Konopelski, M. Aleksandrowicz, A. Sawicka, E. Koźniewska, E. Samborowska, and M. Ufnal. 2019. Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon-vagus nerve signalling and GPR41/43 receptors. Pflugers Archiv: European Journal of Physiology 471 (11–12):1441–53. doi: 10.1007/s00424-019-02322-y.
  • Onyszkiewicz, M., M. Gawrys-Kopczynska, M. Sałagaj, M. Aleksandrowicz, A. Sawicka, E. Koźniewska, E. Samborowska, and M. Ufnal. 2020. Valeric acid lowers arterial blood pressure in rats. European Journal of Pharmacology 875:173086. doi: 10.1016/j.ejphar.2020.173086.
  • Ooyama, K., K. Kojima, T. Aoyama, and H. Takeuchi. 2009. Decrease of food intake in rats after ingestion of medium-chain triacylglycerol. Journal of Nutritional Science and Vitaminology 55 (5):423–7. doi: 10.3177/jnsv.55.423.
  • Parada Venegas, D., M. K. De la Fuente, G. Landskron, M. J. González, R. Quera, G. Dijkstra, H. J. M. Harmsen, K. N. Faber, and M. A. Hermoso. 2019. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology 10:1486. doi: 10.3389/fimmu.2019.01486.
  • Park, C., N. Meghani, H. Amin, P. H. Tran, T. T. Tran, V. H. Nguyen, and B. J. Lee. 2019. The roles of short and long chain fatty acids on physicochemical properties and improved cancer targeting of albumin-based fattigation-platform nanoparticles containing doxorubicin. International Journal of Pharmaceutics 564:124–35. doi: 10.1016/j.ijpharm.2019.04.038.
  • Park, J., M. Kim, S. G. Kang, A. H. Jannasch, B. Cooper, J. Patterson, and C. H. Kim. 2015. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunology 8 (1):80–93. doi: 10.1038/mi.2014.44.
  • Patnala, R., T. V. Arumugam, N. Gupta, and S. T. Dheen. 2017. HDAC Inhibitor sodium butyrate-mediated epigenetic regulation enhances neuroprotective function of microglia during ischemic stroke. Molecular Neurobiology 54 (8):6391–411. doi: 10.1007/s12035-016-0149-z.
  • Pattayil, L., and H. T. Balakrishnan-Saraswathi. 2019. In vitro evaluation of apoptotic induction of butyric acid derivatives in colorectal carcinoma cells. Anticancer Research 39 (7):3795–801. doi: 10.21873/anticanres.
  • Pham, C. H., J. E. Lee, J. Yu, S. H. Lee, K. R. Yu, J. Hong, N. Cho, S. Kim, D. Kang, S. Lee, et al. 2021. Anticancer effects of propionic acid inducing cell death in cervical cancer cells. Molecules 26 (16):4951. doi: 10.3390/molecules26164951.
  • Pingitore, A., E. S. Chambers, T. Hill, I. R. Maldonado, B. Liu, G. Bewick, D. J. Morrison, T. Preston, G. A. Wallis, C. Tedford, et al. 2017. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes, Obesity & Metabolism 19 (2):257–65. doi: 10.1111/dom.12811.
  • Pirozzi, C., A. Lama, C. Annunziata, G. Cavaliere, C. De Caro, R. Citraro, E. Russo, M. Tallarico, M. Iannone, M. C. Ferrante, et al. 2020. Butyrate prevents valproate-induced liver injury: In vitro and in vivo evidence. FASEB Journal 34 (1):676–90. doi: 10.1096/fj.201900927RR.
  • Pluznick, J. 2014. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 5 (2):202–7. doi: 10.4161/gmic.27492.
  • Poll, B. G., J. Xu, S. Jun, J. Sanchez, N. A. Zaidman, X. He, L. Lester, D. E. Berkowitz, N. Paolocci, W. D. Gao, et al. 2021. Acetate, a short-chain fatty acid, acutely lowers heart rate and cardiac contractility along with blood pressure. The Journal of Pharmacology and Experimental Therapeutics 377 (1):39–50. doi: 10.1124/jpet.120.000187.
  • Prinz, M., S. Jung, and J. Priller. 2019. Microglia biology: One century of evolving concepts. Cell 179 (2):292–311. doi: 10.1016/j.cell.2019.08.053.
  • Priyadarshini, M., K. U. Kotlo, P. K. Dudeja, and B. T. Layden. 2018. Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Comprehensive Physiology 8 (3):1091–115. doi: 10.1002/cphy.c170050.
  • Psichas, A., M. L. Sleeth, K. G. Murphy, L. Brooks, G. A. Bewick, A. C. Hanyaloglu, M. A. Ghatei, S. R. Bloom, and G. Frost. 2015. The short-chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. International Journal of Obesity (2005) 39 (3):424–9. doi: 10.1038/ijo.2014.153.
  • Quagliariello, V., M. Masarone, E. Armenia, A. Giudice, M. Barbarisi, M. Caraglia, A. Barbarisi, and M. Persico. 2019. Chitosan-coated liposomes loaded with butyric acid demonstrate anticancer and anti-inflammatory activity in human hepatoma HepG2 cells. Oncology Reports 41 (3):1476–86. doi: 10.3892/or.2018.6932.
  • Ratnayake, W. M, and C. Galli. 2009. Fat and fatty acid terminology, methods of analysis and fat digestion and metabolism: A background review paper. Annals of Nutrition & Metabolism 55 (1-3):8–43. doi: 10.1159/000228994.
  • Reichardt, N., S. H. Duncan, P. Young, A. Belenguer, C. McWilliam Leitch, K. P. Scott, H. J. Flint, and P. Louis. 2014. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota [published correction appears in ISME J. 2014 Jun;8(6):1352]. The ISME Journal 8 (6):1323–35. doi: 10.1038/ismej.2014.14.
  • Rephaeli, A., S. Waks-Yona, A. Nudelman, I. Tarasenko, N. Tarasenko, D. R. Phillips, S. M. Cutts, and G. Kessler-Icekson. 2007. Anticancer prodrugs of butyric acid and formaldehyde protect against doxorubicin-induced cardiotoxicity. British Journal of Cancer 96 (11):1667–74. doi: 10.1038/sj.bjc.6603781.
  • Robles-Vera, I., M. Toral, N. de la Visitación, M. Sánchez, M. Gómez-Guzmán, M. Romero, T. Yang, J. L. Izquierdo-Garcia, R. Jiménez, J. Ruiz-Cabello, et al. 2020. Probiotics prevent dysbiosis and the rise in blood pressure in genetic hypertension: Role of short-chain fatty acids. Molecular Nutrition & Food Research 64 (6):e1900616. doi: 10.1002/mnfr.201900616.
  • Rosser, E. C., C. J. M. Piper, D. E. Matei, P. A. Blair, A. F. Rendeiro, M. Orford, D. G. Alber, T. Krausgruber, D. Catalan, N. Klein, et al. 2020. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells. Cell Metabolism 31 (4):837–51.e10. doi: 10.1016/j.cmet.2020.03.003.
  • Roy, R., C. Nguyen-Ngo, and M. Lappas. 2020. Short-chain fatty acids as novel therapeutics for gestational diabetes. Journal of Molecular Endocrinology 65 (2):21–34. doi: 10.1530/JME-20-0094.
  • Rumberger, J. M., J. R. Arch, and A. Green. 2014. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes. Peer J 2 2:e611. doi: 10.7717/peerj.611.
  • Ryu, T. Y., K. Kim, M. Y. Son, J. K. Min, J. Kim, T. S. Han, D. S. Kim, and H. S. Cho. 2019. Downregulation of PRMT1, a histone arginine methyltransferase, by sodium propionate induces cell apoptosis in colon cancer. Oncology Reports 41 (3):1691–9. doi: 10.3892/or.2018.6938.
  • Sacco, P., E. Decleva, F. Tentor, R. Menegazzi, M. Borgogna, S. Paoletti, K. A. Kristiansen, K. M. Vårum, and E. Marsich. 2017. Butyrate-loaded chitosan/hyaluronan nanoparticles: A suitable tool for sustained inhibition of ROS release by activated neutrophils. Macromolecular Bioscience 17 (11):1700214. doi: 10.1002/mabi.201700214.
  • Sadler, R., J. V. Cramer, S. Heindl, S. Kostidis, D. Betz, K. R. Zuurbier, B. H. Northoff, M. Heijink, M. P. Goldberg, E. J. Plautz, et al. 2020. Short-chain fatty acids improve poststroke recovery via immunological mechanisms. The Journal of Neuroscience 40 (5):1162–73. doi: 10.1523/JNEUROSCI.1359-19.2019.
  • Sahuri-Arisoylu, M., L. P. Brody, J. R. Parkinson, H. Parkes, N. Navaratnam, A. D. Miller, E. L. Thomas, G. Frost, and J. D. Bell. 2016. Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate. International Journal of Obesity (2005) 40 (6):955–63. doi: 10.1038/ijo.2016.23.
  • Sanford, J. A., L. J. Zhang, M. R. Williams, J. A. Gangoiti, C. M. Huang, and R. L. Gallo. 2016. Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Science Immunology 1:eaah4609. doi: 10.1126/sciimmunol.aah4609.
  • Sawin, E. A., T. J. De Wolfe, B. Aktas, B. M. Stroup, S. G. Murali, J. L. Steele, and D. M. Ney. 2015. Glycomacropeptide is a prebiotic that reduces Desulfovibrio bacteria, increases cecal short-chain fatty acids, and is anti-inflammatory in mice. American Journal of Physiology. Gastrointestinal and Liver Physiology 309 (7):G590–G601. doi: 10.1152/ajpgi.00211.2015.
  • Schilderink, R., C. Verseijden, J. Seppen, V. Muncan, G. R. van den Brink, T. T. Lambers, E. A. van Tol, and W. J. de Jonge. 2016. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. American Journal of Physiology. Gastrointestinal and Liver Physiology 310 (11):G1138–G1146. doi: 10.1152/ajpgi.00411.2015.
  • Schönfeld, P., and L. Wojtczak. 2016. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. Journal of Lipid Research 57 (6):943–54. doi: 10.1194/jlr.R067629.
  • Sette, S., C. Le Donne, R. Piccinelli, D. Arcella, A. Turrini, and C. Leclercq. 2011. The third Italian National Food Consumption Survey, INRAN-SCAI 2005-06—Part 1: Nutrient intakes in Italy. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD 21 (12):922–32. doi: 10.1016/j.numecd.2010.03.001.
  • Shah, S., T. Fillier, T. H. Pham, R. Thomas, and S. K. Cheema. 2021. Intraperitoneal administration of short-chain fatty acids improves lipid metabolism of long-evans rats in a sex-specific manner. Nutrients 13 (3):892. doi: 10.3390/nu13030892.
  • Shimizu, H., Y. Masujima, C. Ushiroda, R. Mizushima, S. Taira, R. Ohue-Kitano, and I. Kimura. 2019. Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Scientific Reports 9 (1):16574. doi: 10.1038/s41598-019-53242-x.
  • Shimizu, H., Y. Masujima, C. Ushiroda, R. Mizushima, S. Taira, R. Ohue-Kitano, and I. Kimura. 2013. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–4. doi: 10.1126/science.1227166.
  • Shin, C., Y. Lim, H. Lim, and T. B. Ahn. 2020. Plasma short-chain fatty acids in patients with Parkinson’s Disease. Movement Disorders 35 (6):1021–7. doi: 10.1002/mds.28016.
  • Si, X., W. Shang, Z. Zhou, G. Shui, S. M. Lam, C. Blanchard, and P. Strappe. 2018. Gamma-aminobutyric acid enriched rice bran diet attenuates insulin resistance and balances energy expenditure via modification of gut microbiota and short-chain fatty acids. Journal of Agricultural and Food Chemistry 66 (4):881–90. doi: 10.1021/acs.jafc.7b04994.
  • Sifat, A. E., B. Vaidya, and T. J. Abbruscato. 2017. Blood-brain barrier protection as a therapeutic strategy for acute ischemic stroke. The AAPS Journal 19 (4):957–72. doi: 10.1208/s12248-017-0091-7.
  • Singh, N. P, and H. C. Lai. 2005. Synergistic cytotoxicity of artemisinin and sodium butyrate on human cancer cells. Anticancer Res. 25:4325–31.
  • Sivaprakasam, S., Y. D. Bhutia, S. Yang, and V. Ganapathy. 2017. Short-chain fatty acid transporters: Role in colonic homeostasis. Comprehensive Physiology 8 (1):299–314. doi: 10.1002/cphy.c170014.
  • Smith, S. A., S. A. Ogawa, L. Chau, K. A. Whelan, K. E. Hamilton, J. Chen, L. Tan, E. Z. Chen, S. Keilbaugh, F. Fogt, et al. 2021. Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines. J Clin Invest 131:e133371. doi: 10.1172/JCI133371.
  • Song, R., J. Yao, Q. Shi, and R. Wei. 2018. Nanocomposite of half-fin anchovy hydrolysates/zinc oxide nanoparticles exhibits actual non-toxicity and regulates intestinal microbiota, short-chain fatty acids production and oxidative status in mice. Mar Drugs. 16 (1):23. doi: 10.3390/md16010023.
  • Su, Y., H. K. Wang, X. P. Gan, L. Chen, Y. N. Cao, D. C. Cheng, D. Y. Zhang, W. Y. Liu, F. F. Li, and X. M. Xu. 2021. Alterations of gut microbiota in gestational diabetes patients during the second trimester of pregnancy in the Shanghai Han population. Journal of Translational Medicine 19 (1):366. doi: 10.1186/s12967-021-03040-9.
  • Sun, M., W. Wu, L. Chen, W. Yang, X. Huang, M. C. Chen, F. Xiao, Y. Zhao, Y. M. C. Yao, S. Carpio, et al. 2018. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nature Communications 9 (1):3555. doi: 10.1038/s41467-018-05901-2.
  • Sun, M., W. Wu, Z. Liu, and Y. Cong. 2017. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. Journal of Gastroenterology 52 (1):1–8. doi: 10.1007/s00535-016-1242-9.
  • Sun, Y., T. Yan, G. Gong, Y. Li, J. Zhang, B. Wu, K. Bi, and Y. Jia. 2020. Antidepressant-like effects of Schisandrin on lipopolysaccharide-induced mice: Gut microbiota, short-chain fatty acid and TLR4/NF-κB signalling pathway. International Immunopharmacology 89 (Pt A):107029, 10–1016/j. intimp.2020.107029. doi: 10.1016/j.intimp.2020.107029.
  • Szentirmai, É., N. S. Millican, A. R. Massie, and L. Kapás. 2019. Butyrate, a metabolite of intestinal bacteria, enhances sleep. Scientific Reports 9 (1):7035. doi: 10.1038/s41598-019-43502-1.
  • Tan, C., Q. Wu, H. Wang, X. Gao, R. Xu, Z. Cui, J. Zhu, X. Zeng, H. Zhou, Y. He, et al. 2021. Dysbiosis of gut microbiota and short-chain fatty acids in acute ischemic stroke and the subsequent risk for poor functional outcomes. JPEN. Journal of Parenteral and Enteral Nutrition 45 (3):518–29. doi: 10.1002/jpen.1861.
  • Tang, R, and L. Li. 2021. Modulation of short-chain fatty acids as potential therapy method for type 2 diabetes mellitus. Canadian Journal of Infectious Diseases and Medical Microbiology. 2021:1–13. doi: 10.1155/2021/6632266.
  • Tang, Y., Y. Chen, H. Jiang, and D. Nie. 2011. The role of short-chain fatty acids in orchestrating two types of programmed cell death in colon cancer. Autophagy 7 (2):235–7. doi: 10.4161/auto.7.2.14277.
  • Tayyeb, J. Z., H. E. Popeijus, R. P. Mensink, M. C. J. M. Konings, K. H. R. Mulders, and J. Plat. 2019. The effects of short-chain fatty acids on the transcription and secretion of apolipoprotein A-I in human hepatocytes in vitro. Journal of Cellular Biochemistry 120 (10):17219–27. doi: 10.1002/jcb.28982.
  • Thandapilly, S. J., S. P. Ndou, Y. Wang, C. M. Nyachoti, and N. P. Ames. 2018. Barley β-glucan increases fecal bile acid excretion and short chain fatty acid levels in mildly hypercholesterolemic individuals. Food & Function 9 (6):3092–6. doi: 10.1039/C8FO00157J.
  • Tolhurst, G., H. Heffron, Y. S. Lam, H. E. Parker, A. M. Habib, E. Diakogiannaki, J. Cameron, J. Grosse, F. Reimann, and F. M. Gribble. 2012. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61 (2):364–71. doi: 10.2337/db11-1019.
  • Usman, T. O., E. D. Areola, O. O. Badmus, I. Kim, and L. A. Olatunji. 2018. Sodium acetate and androgen receptor blockade improve gestational androgen excess-induced deteriorated glucose homeostasis and antioxidant defenses in rats: Roles of adenosine deaminase and xanthine oxidase activities. The Journal of Nutritional Biochemistry 62:65–75. doi: 10.1016/j.jnutbio.2018.08.018.
  • Valcheva, R., P. Koleva, I. Martínez, J. Walter, M. G. Gänzle, and L. A. Dieleman. 2019. Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels. Gut Microbes 10 (3):334–57. doi: 10.1080/19490976.2018.1526583.
  • van der Beek, C. M., E. E. Canfora, A. M. Kip, S. H. M. Gorissen, S. W. M. Olde Damink, H. M. van Eijk, J. J. Holst, E. E. Blaak, C. H. C. Dejong, and K. Lenaerts. 2018. The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism 87:25–35. doi: 10.1016/j.metabol.2018.06.009.
  • Verhaar, B. J. H., D. Collard, A. Prodan, J. H. M. Levels, A. H. Zwinderman, F. Bäckhed, L. Vogt, M. J. L. Peters, M. Muller, M. Nieuwdorp, et al. 2020. Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: The HELIUS study. European Heart Journal 41 (44):4259–67. doi: 10.1093/eurheartj/ehaa704.
  • Vital, M., A. C. Howe, and J. M. Tiedje. 2014. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio 5 (2):e00889-14. doi: 10.1128/mBio.00889-14.
  • Wang, G., Q. Si, S. Yang, T. Jiao, H. Zhu, P. Tian, L. Wang, X. Li, L. Gong, J. Zhao, et al. 2020. Lactic acid bacteria reduce diabetes symptoms in mice by alleviating gut microbiota dysbiosis and inflammation in different manners. Food & Function 11 (7):5898–914. doi: 10.1039/c9fo02761k.
  • Wang, J., M. Cui, F. Sun, K. Zhou, B. Fan, J. H. Qiu, and F. Q. Chen. 2020. HDAC inhibitor sodium butyrate prevents allergic rhinitis and alters lncRNA and mRNA expression profiles in the nasal mucosa of mice. International Journal of Molecular Medicine 45 (4):1150–62. doi: 10.3892/ijmm.2020.4489.
  • Wang, S., D. Lv, S. Jiang, J. Jiang, M. Liang, F. Hou, and Y. Chen. 2019. Quantitative reduction in short-chain fatty acids, especially butyrate, contributes to the progression of chronic kidney disease. Clinical Science 133 (17):1857–70. doi: 10.1042/CS20190171.
  • Wang, Z., X. Zhang, L. Zhu, X. Yang, F. He, T. Wang, T. Bao, H. Lu, H. Wang, and S. Yang. 2020. Inulin alleviates inflammation of alcoholic liver disease via SCFAs-inducing suppression of M1 and facilitation of M2 macrophages in mice. International Immunopharmacology 78:106062. doi: 10.1016/j.intimp.2019.106062.
  • Weber, G. J., J. Foster, S. B. Pushpakumar, and U. Sen. 2018. Altered microRNA regulation of short chain fatty acid receptors in the hypertensive kidney is normalized with hydrogen sulfide supplementation. Pharmacological Research 134:157–65. doi: 10.1016/j.phrs.2018.06.012.
  • Weinberg, Z. Y, and M. A. Puthenveedu. 2019. Regulation of G protein-coupled receptor signalling by plasma membrane organization and endocytosis. Traffic (Copenhagen, Denmark) 20 (2):121–9. doi: 10.1111/tra.12628.
  • Wenzel, T. J., E. J. Gates, A. L. Ranger, and A. Klegeris. 2020. Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells. Molecular and Cellular Neurosciences 105:103493. doi: 10.1016/j.mcn.2020.103493.
  • Wu, H., E. Esteve, V. Tremaroli, M. T. Khan, R. Caesar, L. Mannerås-Holm, M. Ståhlman, L. M. Olsson, M. Serino, M. Planas-Fèlix, et al. 2017. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine 23 (7):850–8. doi: 10.1038/nm.4345.
  • Wu, J., Z. Zhou, Y. Hu, and S. Dong. 2012. Butyrate-induced Gpr41 activation inhibits histone acetylation and cell growth. Journal of Genetics and Genomics = Yi Chuan Xue Bao 39 (8):375–84. doi: 10.1016/j.jgg.2012.05.008.
  • Wu, M., T. Tian, Q. Mao, T. Zou, C.-J. Zhou, J. Xie, and J.-J. Chen. 2020. Associations between disordered gut microbiota and changes of neurotransmitters and short-chain fatty acids in depressed mice. Translational Psychiatry 10 (1):350. doi: 10.1038/s41398-020-01038-3.
  • Xiao, S., Z. Zhang, M. Chen, J. Zou, S. Jiang, D. Qian, and J. Duan. 2019. Xie Xin Tang ameliorates dyslipidemia in high-fat diet-induced obese rats via elevating gut microbiota-derived short chain fatty acids production and adjusting energy metabolism. Journal of Ethnopharmacology 241:112032. doi: 10.1016/j.jep.2019.112032.
  • Xiu, W., Q. Chen, Z. Wang, J. Wang, and Z. Zhou. 2020. Microbiota-derived short chain fatty acid promotion of Amphiregulin expression by dendritic cells is regulated by GPR43 and Blimp-1. Biochemical and Biophysical Research Communications 533 (3):282–8. doi: 10.1016/j.bbrc.2020.09.027.
  • Yan, F., N. Li, J. Shi, H. Li, Y. Yue, W. Jiao, N. Wang, Y. Song, G. Huo, B. Li, et al. 2019. Lactobacillus acidophilus alleviates type 2 diabetes by regulating hepatic glucose, lipid metabolism and gut microbiota in mice. Food & Function 10 (9):5804–15. doi: 10.1039/c9fo01062a.
  • Yan, L., L. Wang, S. Gao, C. Liu, Z. Zhang, A. Ma, and L. Zheng. 2020. Celery cellulose hydrogel as carriers for controlled release of short-chain fatty acid by ultrasound. Food Chemistry 309:125717. doi: 10.1016/j.foodchem.2019.125717.
  • Yang, L. L., V. Millischer, S. Rodin, D. F. MacFabe, J. C. Villaescusa, and C. Lavebratt. 2020a. Enteric short-chain fatty acids promote proliferation of human neural progenitor cells. Journal of Neurochemistry 154 (6):635–46. doi: 10.1111/jnc.14928.
  • Yang, W., T. Yu, X. Huang, A. J. Bilotta, L. Xu, Y. Lu, J. Sun, F. Pan, J. Zhou, W. Zhang, et al. 2020b. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nature Communications 11 (1):4457. doi: 10.1038/s41467-020-18262-6.
  • Yoon, S., G. Kang, and G. H. Eom. 2019. HDAC inhibitors: Therapeutic potential in fibrosis-associated human diseases. International Journal of Molecular Sciences 20 (6):1329. doi: 10.3390/ijms20061329.
  • Yu, H., R. Li, H. Huang, R. Yao, and S. Shen. 2018. Short-chain fatty acids enhance the lipid accumulation of 3T3-L1 cells by modulating the expression of enzymes of fatty acid metabolism. Lipids 53 (1):77–84. doi: 10.1002/lipd.12005.
  • Yu, H., L. Qin, H. Hu, and Z. Wang. 2019. Alteration of the gut microbiota and its effect on AMPK/NADPH oxidase signalling pathway in 2K1C rats. BioMed Research International 2019:8250619. () doi: 10.1155/2019/8250619.
  • Yuan, T., L. Wang, J. Jin, L. Mi, J. Pang, Z. Liu, J. Gong, C. Sun, J. Li, W. Wei, et al. 2022. Role medium-chain fatty acids in the lipid metabolism of infants. Frontiers in Nutrition 9:1195. doi: 10.3389/fnut.2022.804880.
  • Zhang, J., H. Zhang, M. Liu, Y. Lan, H. Sun, K. Mai, and M. Wan. 2020. Short-chain fatty acids promote intracellular bactericidal ­activity in head kidney macrophages from turbot (Scophthalmus maximus L.) via hypoxia-inducible factor-1α. Frontiers in Immunology 11:615536–10. 3389/fimmu.2020.615536. doi: 10.3389/fimmu.2020.615536.
  • Zhang, L., Y. Wang, X. Xiayu, C. Shi, W. Chen, N. Song, X. Fu, R. Zhou, Y. F. Xu, L. Huang, et al. 2017. Altered gut microbiota in a mouse model of Alzheimer’s disease. Journal of Alzheimer’s Disease 60 (4):1241–57. - doi: 10.3233/JAD-170020.
  • Zhang, S., J. Bai, S. Ren, R. Wang, L. Zhang, and Y. Zuo. 2012. Sodium butyrate restores ASC expression and induces apoptosis in LS174T cells. International Journal of Molecular Medicine 30 (6):1431–7. doi: 10.3892/ijmm.2012.1156.
  • Zhao, L., H. Lou, Y. Peng, S. Chen, L. Fan, and X. Li. 2020. Elevated levels of circulating short-chain fatty acids and bile acids in type 2 diabetes are linked to gut barrier disruption and disordered gut microbiota. Diabetes Research and Clinical Practice 169:108418. doi: 10.1016/j.diabres.2020.108418.
  • Zhou, L., M. Zhang, Y. Wang, R. G. Dorfman, H. Liu, T. Yu, X. Chen, D. Tang, L. Xu, Y. Yin, et al. 2018. Faecali bacteriumprausnitzii produces butyrate to maintain th17/treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflammatory Bowel Diseases 24 (9):1926–40. doi: 10.1093/ibd/izy182.
  • Zhu, L., L. Z. Xu, S. Zhao, Z. F. Shen, H. Shen, and L. B. Zhan. 2020. Protective effect of baicalin on the regulation of Treg/Th17 balance, gut microbiota and short-chain fatty acids in rats with ulcerative colitis. Applied Microbiology and Biotechnology 104 (12):5449–60. doi: 10.1007/s00253-020-10527-w.
  • Zou, F., Y. Qiu, Y. Huang, H. Zou, X. Cheng, Q. Niu, A. Luo, and J. Sun. 2021. Effects of short-chain fatty acids in inhibiting HDAC and activating p38 MAPK are critical for promoting B10 cell generation and function. Cell Death & Disease 12 (6):582. doi: 10.1038/s41419-021-03880-9.
  • Zou, Y., S. Fineberg, A. Pearlman, R. D. Feinman, and E. J. Fine. 2020. The effect of a ketogenic diet and synergy with rapamycin in a mouse model of breast cancer. PLoS One 15 (12):e0233662. doi: 10.1371/journal.pone.0233662.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.