651
Views
8
CrossRef citations to date
0
Altmetric
Review

The structure characteristics, biosynthesis and health benefits of naturally occurring rare flavonoids

, , , , ORCID Icon & ORCID Icon

References

  • Abe, I., and H. Morita. 2010. Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Natural Product Reports 27 (6):809–38. doi: 10.1039/b909988n.
  • Abegaz, B. M., and H. H. Kinfe. 2019. Naturally occurring homoisoflavonoids: Phytochemistry, biological activities, and synthesis (Part II). Natural Product Communications 14 (5):1934578X1984581. doi: 10.1177/1934578X19845813.
  • Ahn, J. H., Q. Liu, C. Lee, M.-J. Ahn, H.-S. Yoo, B. Y. Hwang, and M. K. Lee. 2012. A new pancreatic lipase inhibitor from Broussonetia kanzinoki. Bioorganic & Medicinal Chemistry Letters 22 (8):2760–3. doi: 10.1016/j.bmcl.2012.02.088.
  • Akashi, T., K. Sasaki, T. Aoki, S. Ayabe, and K. Yazaki. 2009. Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin. Plant Physiology 149 (2):683–93. doi: 10.1104/pp.108.123679.
  • Alagona, G., and C. Ghio. 2006. Conformational landscape of (R, R) -Pterocarpans with biological activity in vacuo and in aqueous solution (PCM and/or water clusters). The Journal of Physical Chemistry. A 110 (2):647–59. doi: 10.1021/jp053612k.
  • Alali, F., T. El-Elimat, H. Albataineh, Q. Al-Balas, M. Al-Gharaibeh, J. O. Falkinham, W.-L. Chen, S. M. Swanson, and N. H. Oberlies. 2015. Cytotoxic homoisoflavones from the bulbs of Bellevalia eigii. Journal of Natural Products 78 (7):1708–15. doi: 10.1021/acs.jnatprod.5b00357.
  • Alasalvar, C., S. K. Chang, B. Bolling, W. Y. Oh, and F. Shahidi. 2021. Specialty seeds: Nutrients, bioactives, bioavailability, and health benefits: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 20 (3):2382–427. doi: 10.1111/1541-4337.12730.
  • Alsayari, A., A. B. Muhsinah, M. Z. Hassan, M. J. Ahsan, J. A. Alshehri, and N. Begum. 2019. Aurone: A biologically attractive scaffold as anticancer agent. European Journal of Medicinal Chemistry 166:417–31. doi: 10.1016/j.ejmech.2019.01.078.
  • Atilaw, Y., L. Muiva-Mutisya, J. Bogaerts, S. Duffy, A. Valkonen, M. Heydenreich, V. M. Avery, K. Rissanen, M. Erdélyi, and A. Yenesew. 2020. Prenylated flavonoids from the roots of Tephrosia rhodesica. Journal of Natural Products 83 (8):2390–8. doi: 10.1021/acs.jnatprod.0c00245.
  • Bae, G., J.-R. Yu, J. Lee, J. Chang, and E.-K. Seo. 2007. Identification of nyasol and structurally related compounds as the active principles from Anemarrhena asphodeloides against respiratory syncytial virus (RSV). Chemistry & Biodiversity 4 (9):2231–5. doi: 10.1002/cbdv.200790181.
  • Baek, Y. S., Y. B. Ryu, M. J. Curtis-Long, T. J. Ha, R. Rengasamy, M. S. Yang, and K. H. Park. 2009. Tyrosinase inhibitory effects of 1,3-diphenylpropanes from Broussonetia kazinoki. Bioorganic & Medicinal Chemistry 17 (1):35–41. doi: 10.1016/j.bmc.2008.11.022.
  • Bairwa, K., and S. M. Jachak. 2015. Anti-inflammatory potential of a lipid-based formulation of a rotenoid-rich fraction prepared from Boerhavia diffusa. Pharmaceutical Biology 53 (8):1231–8. doi: 10.3109/13880209.2014.971382.
  • Bairwa, K., I. N. Singh, S. K. Roy, J. Grover, A. Srivastava, and S. M. Jachak. 2013. Rotenoids from Boerhaavia diffusa as potential anti-inflammatory agents. Journal of Natural Products 76 (8):1393–8. doi: 10.1021/np300899w.
  • Baldino, L., M. Scognamiglio, and E. Reverchon. 2018. Extraction of rotenoids from Derris elliptica using supercritical CO2: Extraction of rotenoids from Derris elliptica using supercritical CO2. Journal of Chemical Technology & Biotechnology 93 (12):3656–60. doi: 10.1002/jctb.5764.
  • Bao, X.-F., P.-H. Cao, J. Zeng, L.-M. Xiao, Z.-H. Luo, J. Zou, C.-X. Wang, Z.-X. Zhao, Z.-Q. Zhou, H. Zhi, et al. 2022. Bioactive pterocarpans from the root of Astragalus membranaceus var. Mongholicus. Phytochemistry 200:113249. doi: 10.1016/j.phytochem.2022.113249.
  • Bedoya, L. M., M. Beltrán, R. Sancho, D. A. Olmedo, S. Sánchez-Palomino, E. del Olmo, J. L. López-Pérez, E. Muñoz, A. S. Feliciano, and J. Alcamí. 2005. 4-Phenylcoumarins as HIV transcription inhibitors. Bioorganic & Medicinal Chemistry Letters 15 (20):4447–50. doi: 10.1016/j.bmcl.2005.07.041.
  • Bekker, R., X.-C. Li, H. N. ElSohly, A. M. Clark, E. V. Brandt, and D. Ferreira. 2001. Resolution and absolute configuration of naturally occurring auronols. Journal of Natural Products 64 (3):345–7. doi: 10.1021/np000463i.
  • Belmain, S. R., B. A. Amoah, S. P. Nyirenda, J. F. Kamanula, and P. C. Stevenson. 2012. Highly variable insect control efficacy of Tephrosia vogelii chemotypes. Journal of Agricultural and Food Chemistry 60 (40):10055–63. doi: 10.1021/jf3032217.
  • Boucherle, B., M. Peuchmaur, A. Boumendjel, and R. Haudecoeur. 2017. Occurrences, biosynthesis and properties of aurones as high-end evolutionary products. Phytochemistry 142:92–111. doi: 10.1016/j.phytochem.2017.06.017.
  • Boumendjel, A. 2003. Aurones: A subclass of flavones with promising biological potential. Current Medicinal Chemistry 10 (23):2621–30. doi: 10.2174/0929867033456468.
  • Caboni, P., T. B. Sherer, N. Zhang, G. Taylor, H. M. Na, J. T. Greenamyre, and J. E. Casida. 2004. Rotenone, deguelin, their metabolites, and the rat model of Parkinson’s disease. Chemical Research in Toxicology 17 (11):1540–8. doi: 10.1021/tx049867r.
  • Calvo, M. I. 2009a. Homoisoflavanones from Ledebouria floribunda. Fitoterapia 80 (2):96–101. doi: 10.1016/j.fitote.2008.10.006.
  • Calvo, M. I. 2009b. Three new homoisoflavanones from the bulbs of Ledebouria floribunda. Fitoterapia 80 (7):394–8. doi: 10.1016/j.fitote.2009.05.010.
  • Celoy, R. M., and H. D. VanEtten. 2014. (+) Pisatin biosynthesis: From (−) enantiomeric intermediates via an achiral 7,2′-dihydroxy-4′ 5′-methylenedioxyisoflav-3-ene. Phytochemistry 98:120–7. doi: 10.1016/j.phytochem.2013.10.017.
  • Chahar, M. K., D. S. Sanjaya Kumar, T. Lokesh, and K. P. Manohara. 2012. In-vivo antioxidant and immunomodulatory activity of mesuol isolated from Mesua ferrea L. seed oil. International Immunopharmacology 13 (4):386–91. doi: 10.1016/j.intimp.2012.05.006.
  • Chang, S. K., Y. Jiang, and B. Yang. 2021. An update of prenylated phenolics: Food sources, chemistry and health benefits. Trends in Food Science & Technology 108:197–213. doi: 10.1016/j.tifs.2020.12.022.
  • Chen, D., Z. Xu, X. Chai, K. Zeng, Y. Jia, D. Bi, Z. Ma, and P. Tu. 2012. Nine 2-(2-phenylethyl)chromone derivatives from the resinous wood of Aquilaria sinensis and their inhibition of LPS-induced NO production in RAW 264.7 cells. European Journal of Organic Chemistry 2012 (27):5389–97. doi: 10.1002/ejoc.201200725.
  • Chen, X., X. Zhu, M. Feng, Z. Zhong, X. Zhou, X. Chen, W. Ye, W. Zhang, and X. Gao. 2017. Relationship between expression of chalcone synthase genes and chromones in artificial agarwood induced by formic acid stimulation combined with Fusarium sp. A2 inoculation. Molecules 22 (5):686. doi: 10.3390/molecules22050686.
  • Choi, S.-Y., K.-M. Yang, S.-D. Jeon, J.-H. Kim, L.-Y. Khil, T.-S. Chang, and C.-K. Moon. 1997. Brazilin modulates immune function mainly by augmenting T cell activity in halothane administered mice. Planta Medica 63 (5):405–8. doi: 10.1055/s-2006-957722.
  • Crombie, L. 1984. Rotenoids and their biosynthesis. Natural Product Reports 1 (1):3. doi: 10.1039/np9840100003.
  • Crombie, L., and D. A. Whiting. 1998. Review article number 135 biosynthesis in the rotenoid group of natural products: Applications of isotope methodology. Phytochemistry 49 (6):1479–507. doi: 10.1016/S0031-9422(98)00178-2.
  • Cruz, F. G., L. d. M. Moreira, N. A. S. Santos, and M. L. S. Guedes. 2002. Additional coumarins from Kielmeyera reticulata. Journal of the Brazilian Chemical Society 13 (5):708. doi: 10.1590/S0103-50532002000500029.
  • Dang, N. H., Chung, N. D. Tuan, H. M. Hiep, N. T. Dat, and N. T. 2017. Cytotoxic homoisoflavonoids from Ophiopogon japonicus tubers. Chemical & Pharmaceutical Bulletin 65 (2):204–7. doi: 10.1248/cpb.c16-00743.
  • Detsi, A., M. Majdalani, C. A. Kontogiorgis, D. Hadjipavlou-Litina, and P. Kefalas. 2009. Natural and synthetic 2′-hydroxy-chalcones and aurones: Synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity. Bioorganic & Medicinal Chemistry 17 (23):8073–85. doi: 10.1016/j.bmc.2009.10.002.
  • Dicenzo, G., and H. Vanetten. 2006. Studies on the late steps of (+) pisatin biosynthesis: Evidence for (−) enantiomeric intermediates. Phytochemistry 67 (7):675–83. doi: 10.1016/j.phytochem.2005.12.027.
  • Du, H., Y. Huang, and Y. Tang. 2010. Genetic and metabolic engineering of isoflavonoid biosynthesis. Applied Microbiology and Biotechnology 86 (5):1293–312. doi: 10.1007/s00253-010-2512-8.
  • Duan, Y., Z. Ying, M. Zhang, X. Ying, and G. Yang. 2022. Two new homoisoflavones from Portulaca oleracea L. and their activities. Natural Product Research 36 (7):1765–73. doi: 10.1080/14786419.2020.1815742.
  • Duong, T.-H., M. A. Beniddir, V.-K. Nguyen, T. Aree, J.-F. Gallard, D.-H. Mac, H.-H. Nguyen, X.-H. Bui, J. Boustie, K.-P.-P. Nguyen, et al. 2018. Sulfonic acid-containing flavonoids from the roots of Phyllanthus acidus. Journal of Natural Products 81 (9):2026–31. doi: 10.1021/acs.jnatprod.8b00322.
  • Eyton, W. B., W. D. Ollis, I. O. Sutherland, O. R. Gottlieb, M. Taveira Magalhâes, and L. M. Jackman. 1965. The neoflavanoid group of natural products—I. Tetrahedron 21 (9):2683–96. doi: 10.1016/S0040-4020(01)93924-9.
  • Fang, N., and J. E. Casida. 1999. Cubé resin insecticide: Identification and biological activity of 29 rotenoid constituents. Journal of Agricultural and Food Chemistry 47 (5):2130–6. doi: 10.1021/jf981188x.
  • Garazd, M. M., Y. L. Garazd, and V. P. Khilya. 2003. Neoflavones, natural distribution and spectral and biological properties. Chemistry of Natural Compounds 39 (1):54–121. doi: 10.1023/A:1024140915526.
  • Gautam, J., P. Kumar, P. Kushwaha, V. Khedgikar, D. Choudhary, D. Singh, R. Maurya, and R. Trivedi. 2015. Neoflavonoid dalbergiphenol from heartwood of Dalbergia sissoo acts as bone savior in an estrogen withdrawal model for osteoporosis. Menopause (New York, NY) 22 (11):1246–55. doi: 10.1097/GME.0000000000000453.
  • Goel, A., A. Kumar, and A. Raghuvanshi. 2013. Synthesis, stereochemistry, structural classification, and chemical reactivity of natural pterocarpans. Chemical Reviews 113 (3):1614–40. doi: 10.1021/cr300219y.
  • Gregson, M., W. D. Ollis, B. T. Redman, I. O. Sutherland, H. H. Dietrichs, and O. R. Gottlieb. 1978. Obtusastyrene and obtustyrene, cinnamylphenols from Dalbergia retusa. Phytochemistry 17 (8):1395–400. doi: 10.1016/S0031-9422(00)94596-5.
  • Guo, H., H. Zhao, Y. Kanno, W. Li, Y. Mu, X. Kuang, Y. Inouye, K. Koike, H. Jiang, and H. Bai. 2013. A dihydrochalcone and several homoisoflavonoids from Polygonatum odoratum are activators of adenosine monophosphate-activated protein kinase. Bioorganic & Medicinal Chemistry Letters 23 (11):3137–9. doi: 10.1016/j.bmcl.2013.04.027.
  • Haudecoeur, R., A. Ahmed-Belkacem, W. Yi, A. Fortuné, R. Brillet, C. Belle, E. Nicolle, C. Pallier, J.-M. Pawlotsky, and A. Boumendjel. 2011. Discovery of naturally occurring aurones that are potent allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Journal of Medicinal Chemistry 54 (15):5395–402. doi: 10.1021/jm200242p.
  • He, D.-Y., Y.-P. Li, H.-B. Tang, L. Luo, R.-J. Ma, J.-H. Wang, and L.-Q. Wang. 2016. Phenolic compounds from the twigs and leaves of Tara (Caesalpinia spinosa). Journal of Asian Natural Products Research 18 (4):334–8. doi: 10.1080/10286020.2015.1096269.
  • He, J., L. Chen, D. Heber, W. Shi, and Q.-Y. Lu. 2006. Antibacterial compounds from Glycyrrhiza u ralensis. Journal of Natural Products 69 (1):121–4. doi: 10.1021/np058069d.
  • He, J., Z. Dong, Z. Hu, Y. Kuang, J. Fan, X. Qiao, and M. Ye. 2018. Regio-specific prenylation of pterocarpans by a membrane-bound prenyltransferase from Psoralea corylifolia. Organic & Biomolecular Chemistry 16 (36):6760–6. doi: 10.1039/C8OB01724G.
  • He, Q., D.-B. Hu, L. Zhang, M.-Y. Xia, H. Yan, X.-N. Li, J.-F. Luo, Y.-S. Wang, J.-H. Yang, and Y.-H. Wang. 2021. Neuroprotective compounds from the resinous heartwood of Aquilaria sinensis. Phytochemistry 181:112554. doi: 10.1016/j.phytochem.2020.112554.
  • Helal, I. E., M. Elsbaey, A. M. Zaghloul, and E.-S. S. Mansour. 2022. A new homoisoflavan from Dracaena cinnabari Balf. f. resin: α-glucosidase and COX-II inhibitory activity. Natural Product Research 36 (5):1224–9. doi: 10.1080/14786419.2020.1869229.
  • Hu, X. Q., W. Han, Z. Z. Han, Q. X. Liu, X. K. Xu, P. Fu, and H. L. Li. 2014. Three new diphenylpropanes from Celastrus hindsii. Archives of Pharmacal Research 37 (11):1411–5. doi: 10.1007/s12272-013-0296-y.
  • Huang, L., M. E. Wall, M. C. Wani, H. Navarro, T. Santisuk, V. Reutrakul, E.-K. Seo, N. R. Farnsworth, and A. D. Kinghorn. 1998. New compounds with DNA strand-scission activity from the combined leaf and stem of Uvaria hamiltonii. Journal of Natural Products 61 (4):446–50. doi: 10.1021/np9703609.
  • Huang, Y., Y. Sun, W.-W. Wang, and L. Zhang. 2018. Boeravinone B a natural rotenoid exerts anticancer activity via inducing internalization and degradation of inactivated EGFR and ErbB2 in human colon cancer cells. American Journal of Translational Research 10 (12):4183–92. doi: 10.1007/s12272-013-0296-y.
  • Huo, H., Y. Liu, W. Liu, J. Sun, Q. Zhang, Y. Zhao, J. Zheng, P. Tu, Y. Song, and J. Li. 2018. A full solution for multi-component quantification-oriented quality assessment of herbal medicines, Chinese agarwood as a case. Journal of Chromatography. A 1558:37–49. doi: 10.1016/j.chroma.2018.05.018.
  • Huo, H.-X., Z.-X. Zhu, Y.-L. Song, S.-P. Shi, J. Sun, H. Sun, Y.-F. Zhao, J. Zheng, D. Ferreira, J. K. Zjawiony, et al. 2018. Anti-inflammatory dimeric 2-(2-phenylethyl)chromones from the resinous wood of Aquilaria sinensis. Journal of Natural Products 81 (3):543–53. doi: 10.1021/acs.jnatprod.7b00919.
  • Ibrahim, S. R. M., and G. A. Mohamed. 2015. Natural occurring 2-(2-phenylethyl) chromones, structure elucidation and biological activities. Natural Product Research 29 (16):1489–520. doi: 10.1080/14786419.2014.991323.
  • Jang, D. S., E. J. Park, M. E. Hawthorne, J. S. Vigo, J. G. Graham, F. Cabieses, B. D. Santarsiero, A. D. Mesecar, H. H. S. Fong, R. G. Mehta, et al. 2003. Potential cancer chemopreventive constituents of the seeds of Dipteryxo dorata (Tonka Bean). Journal of Natural Products 66 (5):583–7. doi: 10.1021/np020522n.
  • Kaennakam, S., E. R. Sukandar, S. Hongnak, K. Rassamee, P. Siripong, and S. Tip-Pyang. 2021. Velucarpin D, a new pterocarpan from the stems of Dalbergia velutina and its cytotoxicity. Natural Product Research 35 (21):3925–30. doi: 10.1080/14786419.2020.1749613.
  • Kaintz, C., C. Molitor, J. Thill, I. Kampatsikas, C. Michael, H. Halbwirth, and A. Rompel. 2014. Cloning and functional expression in E. coli of a polyphenol oxidase transcript from Coreopsis grandiflora involved in aurone formation. FEBS Letters 588 (18):3417–26. doi: 10.1016/j.febslet.2014.07.034.
  • Kamal, R., and N. Mathur. 2010. Rotenoids from Lablab purpureus L. and their bioefficacy against human disease vectors. Parasitology Research 107 (6):1481–8. doi: 10.1007/s00436-010-2023-7.
  • Kim, H.-G., Y. H. Nam, Y. S. Jung, S. M. Oh, T. N. Nguyen, M.-H. Lee, D.-O. Kim, T. H. Kang, D. Y. Lee, and N.-I. Baek. 2021. Aurones and flavonols from Coreopsis lanceolata L. flowers and their anti-oxidant, pro-inflammatory inhibition effects, and recovery effects on alloxan-induced pancreatic islets in Zebrafish. Molecules 26 (20):6098. doi: 10.3390/molecules26206098.
  • Kim, J.-Y., J. Y. Kim, Y.-H. Cheon, S. C. Kwak, J. M. Baek, Y.-C. Kim, K.-H. Yoon, J. Oh, and M. S. Lee. 2014. 9-Hydroxy-6,7-dimethoxydalbergiquinol inhibits osteoclast differentiation through down-regulation of Akt, c-Fos and NFATc1. International Immunopharmacology 20 (1):213–20. doi: 10.1016/j.intimp.2014.03.001.
  • Kim, K. H., E. Moon, S. U. Choi, C. Pang, S. Y. Kim, and K. R. Lee. 2015. Identification of cytotoxic and anti-inflammatory constituents from the bark of Toxicodendron vernicifluum (Stokes) F.A. Barkley. Journal of Ethnopharmacology 162:231–7. doi: 10.1016/j.jep.2014.12.071.
  • Kim, K. H., E. Moon, S. U. Choi, S. Y. Kim, and K. R. Lee. 2013. Polyphenols from the bark of Rhus verniciflua and their biological evaluation on antitumor and anti-inflammatory activities. Phytochemistry 92:113–21. doi: 10.1016/j.phytochem.2013.05.005.
  • Kosar, S., I. Fatima, A. Mahmood, R. Ahmed, A. Malik, S. Talib, and M. I. Chouhdary. 2009. Purunusides A-C, α-glucosidase inhibitory homoisoflavone glucosides from Prunus domestica. Archives of Pharmacal Research 32 (12):1705–10. doi: 10.1007/s12272-009-2207-9.
  • Kuang, T., H.-Q. Chen, H. Wang, F.-D. Kong, C.-H. Cai, W.-H. Dong, J.-Z. Yuan, W.-L. Mei, and H.-F. Dai. 2019. UPLC-MS-guided isolation of single ether linkage dimeric 2-(2-phenylethyl)chromones from Aquilaria sinensis. RSC Advances 9 (30):17025–34. doi: 10.1039/C9RA02597A.
  • Kumar, P., P. Kushwaha, V. Khedgikar, J. Gautam, D. Choudhary, D. Singh, R. Trivedi, and R. Maurya. 2014. Neoflavonoids as potential osteogenic agents from Dalbergia sissoo heartwood. Bioorganic & Medicinal Chemistry Letters 24 (12):2664–8. doi: 10.1016/j.bmcl.2014.04.056.
  • Kushwaha, P., V. Khedgikar, N. Ahmad, A. Karvande, J. Gautam, P. Kumar, R. Maurya, and R. Trivedi. 2016. A neoflavonoid dalsissooal isolated from heartwood of Dalbergia sissoo Roxb. has bone forming effects in mice model for osteoporosis. European Journal of Pharmacology 788:65–74. doi: 10.1016/j.ejphar.2016.06.003.
  • Kwon, Y., H. Yang, W. Chun, M. J. Kim, and I. A. Khan. 2021. Two new pterocarpans from Lespedeza tomentosa. Chemistry of Natural Compounds 57 (3):451–4. doi: 10.1007/s10600-021-03385-z.
  • Lee, D., H. Lee, and J.-H. Ryu. 2018. Prenylated polyphenols from Broussonetia kazinoki as inhibitors of nitric oxide production. Molecules 23 (3):639. doi: 10.3390/molecules23030639.
  • Li, C.-G., L. Pan, Z.-Z. Han, Y.-Q. Xie, H.-J. Hu, X.-L. Liu, L.-H. Wu, L. Yang, and Z.-T. Wang. 2020. Antioxidative 2-(2-phenylethyl)chromones in Chinese eaglewood from Aquilaria sinensis. Journal of Asian Natural Products Research 22 (7):639–646. doi: 10.1080/10286020.2019.1607841.
  • Li, F., D. Bi, R. Luo, X. Liang, H. Zhuang, H. Qin, and L. Wang. 2021. Isoprenoid pterocarpans, isoflavonoids and flavonoids from Erythrina stricta. Phytochemistry Letters 44:160–3. doi: 10.1016/j.phytol.2021.06.021.
  • Li, W., C.-H. Cai, W.-H. Dong, Z.-K. Guo, H. Wang, W.-L. Mei, and H.-F. Dai. 2014. 2-(2-Phenylethyl)chromone derivatives from Chinese agarwood induced by artificial holing. Fitoterapia 98:117–23. doi: 10.1016/j.fitote.2014.07.011.
  • Li, W., Y. Yang, W. Dong, H. Wang, F. Kong, C. Cai, W. Mei, and H. Dai. 2019. Dimeric 2-(2-phenylethyl)chromones from the agarwood of Aquilaria crassna in Laos. Fitoterapia 133:12–6. doi: 10.1016/j.fitote.2018.12.006.
  • Li, X., M. Yin, X. Yang, G. Yang, and X. Gao. 2018. Flavonoids from Mirabilis himalaica. Fitoterapia 127:89–95. doi: 10.1016/j.fitote.2018.02.005.
  • Li, X.-N., Z.-Q. Lu, S. Qin, H.-X. Yan, M. Yang, S.-H. Guan, X. Liu, H.-M. Hua, L.-J. Wu, and D.-A. Guo. 2008. Tonkinensines A and B, two novel alkaloids from Sophora tonkinensis. Tetrahedron Letters 49 (23):3797–801. doi: 10.1016/j.tetlet.2008.04.003.
  • Liao, G., W.-H. Dong, J.-L. Yang, W. Li, J. Wang, W.-L. Mei, and H.-F. Dai. 2018. Monitoring the chemical profile in agarwood formation within one year and speculating on the biosynthesis of 2-(2-phenylethyl)chromones. Molecules 23 (6):1261. doi: 10.3390/molecules23061261.
  • Liao, G., W.-L. Mei, F.-D. Kong, W. Li, J.-Z. Yuan, and H.-F. Dai. 2017. 5,6,7,8-Tetrahydro-2-(2-phenylethyl)chromones from artificial agarwood of Aquilaria sinensis and their inhibitory activity against acetylcholinesterase. Phytochemistry 139:98–108. doi: 10.1016/j.phytochem.2017.04.011.
  • Lin, L.-G., Q.-Y. Liu, and Y. Ye. 2014. Naturally occurring homoisoflavonoids and their pharmacological activities. Planta Medica 80 (13):1053–66. doi: 10.1055/s-0034-1383026.
  • Lin, L.-G., Xie, H. L. H.-L. Tong, L.-J. Tang, C.-P. Ke, C.-Q. Liu, Q.-F. Lin, L.-P. Geng, M.-Y. Jiang, H. Zhao, et al. 2008. Naturally occurring homoisoflavonoids function as potent protein tyrosine kinase inhibitors by c-src-based high-throughput screening. Journal of Medicinal Chemistry 51 (15):4419–29. doi: 10.1021/jm701501x.
  • Lin, S., R.-H. Liu, G.-Q. Ma, D.-Y. Mei, F. Shao, and L.-Y. Chen. 2020. Two new compounds from the heartwood of Dalbergia melanoxylon. Natural Product Research 34 (19):2794–801. doi: 10.1080/14786419.2019.1591397.
  • Linghu, L., H. Fan, Y. Hu, Y. Zou, P. Yang, X. Lan, Z. Liao, and M. Chen. 2014. Mirabijalone E: A novel rotenoid from Mirabilis himalaica inhibited A549 cell growth in vitro and in vivo. Journal of Ethnopharmacology 155 (1):326–33. doi: 10.1016/j.jep.2014.05.034.
  • Liu, C.-J., D. Huhman, L. W. Sumner, and R. A. Dixon. 2003. Regiospecific hydroxylation of isoflavones by cytochrome P450 81E enzymes from Medicago truncatula. The Plant Journal: For Cell and Molecular Biology 36 (4):471–84. doi: 10.1046/j.1365-313X.2003.01893.x.
  • Liu, J., J. Wu, Y. X. Zhao, Y. Y. Deng, W. L. Mei, and H. F. Dai. 2008. A new cytotoxic 2-(2-phenylethyl)chromone from Chinese eaglewood. Chinese Chemical Letters 19 (8):934–6. doi: 10.1016/j.cclet.2008.05.034.
  • Liu, Y., J.-C. Shu, M.-F. Wang, Z.-J. Xu, L. Yang, X.-W. Meng, W.-B. Duan, N. Zhang, F. Shao, R.-H. Liu, et al. 2021. Melanoxylonin A-G, neoflavonoids from the heartwood of Dalbergia melanoxylon and their cardioprotective effects. Phytochemistry 189:112845. doi: 10.1016/j.phytochem.2021.112845.
  • Liu, Y.-Y., D.-L. Chen, J.-H. Wei, J. Feng, Z. Zhang, Y. Yang, and W. Zheng. 2016. Four new 2-(2-Phenylethyl)chromone derivatives from chinese agarwood produced via the whole-tree agarwood-inducing technique. Molecules 21 (11):1433. doi: 10.3390/molecules21111433.
  • Liu, Z., Wang, X. Sun, Z. Zhang, Y. Meng, C. Chen, B. Wang, G. Ke, H. W. J. Yan, Y. W. L. L. Z. Yang, et al. 2021. Evolution, expression and functional analysis of cultivated allotetraploid cotton DIR genes. BMC Plant Biology 21 (1):89. doi: 10.1186/s12870-021-02859-0.
  • Lu, K., Z. Feng, X. Yuan, Y. Yang, J. Jiang, X. Zhang, and P. Zhang. 2021. Five novel pterocarpan derivatives from Sophora flavescens. Chinese Journal of Chemistry 39 (10):2763–8. doi: 10.1002/cjoc.202100357.
  • Ma, Q., R. Wei, and Z. Sang. 2019. Neuroprotective aurones from Sophora japonica. Chemistry of Natural Compounds 55 (2):265–8. doi: 10.1007/s10600-019-02663-1.
  • Márquez, N., R. Sancho, L. M. Bedoya, J. Alcamí, J. L. López-Pérez, A. S. Feliciano, B. L. Fiebich, and E. Muñoz. 2005. Mesuol, a natural occurring 4-phenylcoumarin, inhibits HIV-1 replication by targeting the NF-κB pathway. Antiviral Research 66 (2–3):137–45. doi: 10.1016/j.antiviral.2005.02.006.
  • Mehany, T., I. Khalifa, H. Barakat, S. A. Althwab, Y. M. Alharbi, and S. El-Sohaimy. 2021. Polyphenols as promising biologically active substances for preventing SARS-CoV-2: A review with research evidence and underlying mechanisms. Food Bioscience 40:100891. doi: 10.1016/j.fbio.2021.100891.
  • Meng, Q., S. G. A. Moinuddin, S.-J. Kim, D. L. Bedgar, M. A. Costa, D. G. Thomas, R. P. Young, C. A. Smith, J. R. Cort, L. B. Davin, et al. 2020. Pterocarpan synthase (PTS) structures suggest a common quinone methide–stabilizing function in dirigent proteins and proteins with dirigent-like domains. The Journal of Biological Chemistry 295 (33):11584–601. doi: 10.1074/jbc.RA120.012444.
  • Mi, C., J. Yuan, M. Zhu, L. Yang, Y. Wei, H. Wang, W. Long, W. Mei, and H. Dai. 2021. 2-(2-Phenylethyl)chromone derivatives: Promising α-glucosidase inhibitors in agarwood from Aquilaria filaria. Phytochemistry 181:112578. doi: 10.1016/j.phytochem.2020.112578.
  • Miosic, S., K. Knop, D. Hölscher, J. Greiner, C. Gosch, J. Thill, M. Kai, B. K. Shrestha, B. Schneider, A. C. Crecelius, et al. 2013. 4-Deoxyaurone formation in Bidens ferulifolia (Jacq.) DC. PloS One 8 (5):e61766. doi: 10.1371/journal.pone.0061766.
  • Mishra, S., V. Aeri, P. K. Gaur, and S. M. Jachak. 2014. Phytochemical, therapeutic, and ethnopharmacological overview for a traditionally important herb: Boerhavia diffusa Linn. BioMed Research International 2014:808302–19. doi: 10.1155/2014/808302.
  • Molitor, C., S. G. Mauracher, and A. Rompel. 2016. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases. Proceedings of the National Academy of Sciences of the United States of America 113 (13):E1806–E1815. doi: 10.1073/pnas.1523575113.
  • Moon, C.-K., S. H. Lee, M. O. Lee, and S. G. Kim. 1993. Effects of brazilin on glucose oxidation, lipogenesis and therein involved enzymes in adipose tissues from diabetic KK-mice. Life Sciences 53 (16):1291–7. doi: 10.1016/0024-3205(93)90574-M.
  • Mottaghipisheh, J., and H. Stuppner. 2021. A comprehensive review on chemotaxonomic and phytochemical aspects of homoisoflavonoids, as rare flavonoid derivatives. International Journal of Molecular Sciences 22 (5):2735. doi: 10.3390/ijms22052735.
  • Muharini, R., A. Díaz, W. Ebrahim, A. Mándi, T. Kurtán, N. Rehberg, R. Kalscheuer, R. Hartmann, R. S. Orfali, W. Lin, et al. 2017. Antibacterial and cytotoxic phenolic metabolites from the fruits of Amorpha fruticosa. Journal of Natural Products 80 (1):169–80. doi: 10.1021/acs.jnatprod.6b00809.
  • Nakayama, T., K. Yonekura-Sakakibara, T. Sato, S. Kikuchi, Y. Fukui, M. F. Mizutani, T. Ueda, M. Nakao, Y. Tanaka, T. Kusumi, et al. 2000. Aureusidin synthase: A polyphenol oxidase homolog responsible for flower coloration. Science (New York, NY) 290 (5494):1163–6. doi: 10.1126/science.290.5494.1163.
  • Nguyen, A.-T., J. Fontaine, H. Malonne, and P. Duez. 2006. Homoisoflavanones from Disporopsis aspera. Phytochemistry 67 (19):2159–63. doi: 10.1016/j.phytochem.2006.06.021.
  • Nguyen, P. H., T. N. A. Nguyen, K. W. Kang, D. T. Ndinteh, J. T. Mbafor, Y. R. Kim, and W. K. Oh. 2010. Prenylated pterocarpans as bacterial neuraminidase inhibitors. Bioorganic & Medicinal Chemistry 18 (9):3335–44. doi: 10.1016/j.bmc.2010.03.005.
  • Olmedo, D., J. López-Pérez, E. del Olmo, L. Bedoya, R. Sancho, J. Alcamí, E. Muñoz, A. Feliciano, and M. Gupta. 2017. Neoflavonoids as inhibitors of HIV-1 replication by targeting the tat and NF-κB pathways. Molecules 22 (2):321. doi: 10.3390/molecules22020321.
  • Ortega, A. R., N. Pérez-Hernández, and P. Joseph-Nathan. 2019. Piscicartone, a rotenoid from Piscidia carthagenensis. Natural Product Communications 14 (5):1934578X1984979. doi: 10.1177/1934578X19849799.
  • Paiva, N. L., R. Edwards, Y. Sun, G. Hrazdina, and R. A. Dixon. 1991. Stress responses in alfalfa (Medicago sativa L.) 11. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Molecular Biology 17 (4):653–67. doi: 10.1007/BF00037051.
  • Palu, D. S., M. Paoli, H. Casabianca, J. Casanova, and A. Bighelli. 2020. New compounds from the roots of Corsican calicotome villosa (Poir.) Link.: Two pterocarpans and a dihydrobenzofuran. Molecules 25 (15):3467. doi: 10.3390/molecules25153467.
  • Pan, E., L. Harinantenaina, P. J. Brodie, J. S. Miller, M. W. Callmander, S. Rakotonandrasana, E. Rakotobe, V. E. Rasamison, and D. G. I. Kingston. 2010. Four Diphenylpropanes and a cycloheptadibenzofuran from Bussea sakalava from the Madagascar Dry Forest. Journal of Natural Products 73 (11):1792–5. doi: 10.1021/np100411d.
  • Patil, A. D., A. J. Freyer, D. S. Eggleston, R. C. Haltiwanger, M. F. Bean, P. B. Taylor, M. J. Caranfa, A. L. Breen, H. R. Bartus, and R. K. Johnson. 1993. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. Journal of Medicinal Chemistry 36 (26):4131–8. doi: 10.1021/jm00078a001.
  • Patrón-González, D., R. Ríos-Gómez, V. Flores-Morales, and M. Y. Rios. 2021. Metabolites of Machaerium isadelphum as chemophenetic markers of Machaerium genus. Biochemical Systematics and Ecology 94:104202. doi: 10.1016/j.bse.2020.104202.
  • Phukhatmuen, P., P. Meesakul, V. Suthiphasilp, R. Charoensup, T. Maneerat, S. Cheenpracha, T. Limtharakul, S. G. Pyne, and S. Laphookhieo. 2021. Antidiabetic and antimicrobial flavonoids from the twigs and roots of Erythrina subumbrans (Hassk.) Merr. Heliyon 7 (4):e06904. doi: 10.1016/j.heliyon.2021.e06904.
  • Praveen, K. P. K., A. Priyadharshini, and S. Muthukumaran. 2021. A review on rotenoids: Purification, characterization and its biological applications. Mini Reviews in Medicinal Chemistry 21 (13):1734–46. doi: 10.2174/1389557521666210217092634.
  • Raksat, A., W. Maneerat, R. J. Andersen, S. G. Pyne, and S. Laphookhieo. 2018. Antibacterial Prenylated Isoflavonoids from the Stems of Millettia extensa. Journal of Natural Products 81 (8):1835–40. doi: 10.1021/acs.jnatprod.8b00321.
  • Reyes-Chilpa, R., E. Estrada-Muñiz, E. Vega-Avila, F. Abe, J. Kinjo, and S. Hernández-Ortega. 2008. Trypanocidal constituents in plants: 7. Mammea-type coumarins. Memorias Do Instituto Oswaldo Cruz 103 (5):431–6. doi: 10.1590/S0074-02762008000500004.
  • Rukachaisirikul, T., P. Innok, N. Aroonrerk, W. Boonamnuaylap, S. Limrangsun, C. Boonyon, U. Woonjina, and A. Suksamrarn. 2007. Antibacterial pterocarpans from Erythrina subumbrans. Journal of Ethnopharmacology 110 (1):171–5. doi: 10.1016/j.jep.2006.09.022.
  • Ryu, H. W., M. H. Park, O.-K. Kwon, D.-Y. Kim, J.-Y. Hwang, Y. H. Jo, K.-S. Ahn, B. Y. Hwang, and S.-R. Oh. 2019. Anti-inflammatory flavonoids from root bark of Broussonetia papyrifera in LPS-stimulated RAW264.7 cells. Bioorganic Chemistry 92:103233. doi: 10.1016/j.bioorg.2019.103233.
  • Saldanha, G. B., Oliveira, G. L. S. d Silva, J. C. C. L. Oliveira, M. C. P. d Silva, A. P. S. C. L. de Lima David, and J. P. 2017. Neoflavonoids as prospective compounds against parasitic neglected tropical infections and human immunodeficiency virus. Current Bioactive Compounds 13 (4):276–291. doi: 10.2174/1573407213666170104152315.
  • Sangthong, S., K. Krusong, N. Ngamrojanavanich, T. Vilaivan, S. Puthong, S. Chandchawan, and N. Muangsin. 2011. Synthesis of rotenoid derivatives with cytotoxic and topoisomerase II inhibitory activities. Bioorganic & Medicinal Chemistry Letters 21 (16):4813–8. doi: 10.1016/j.bmcl.2011.06.052.
  • Sato, M., H. Tanaka, T. Oh-Uchi, T. Fukai, H. Etoh, and R. Yamaguchi. 2004. Antibacterial activity of phytochemicals isolated from Erythrina zeyheri against vancomycin-resistant enterococci and their combinations with vancomycin. Phytotherapy Research: PTR 18 (11):906–10. doi: 10.1002/ptr.1556.
  • Selvam, C., B. C. Jordan, S. Prakash, D. Mutisya, and R. Thilagavathi. 2017. Pterocarpan scaffold: A natural lead molecule with diverse pharmacological properties. European Journal of Medicinal Chemistry 128:219–36. doi: 10.1016/j.ejmech.2017.01.023.
  • Sheng, H., X. Sun, Y. Yan, Q. Yuan, J. Wang, and X. Shen. 2020. Metabolic engineering of microorganisms for the production of flavonoids. Frontiers in Bioengineering and Biotechnology 8:589069. doi: 10.3389/fbioe.2020.589069.
  • Shi, S., J. Li, X. Zhao, Q. Liu, and S.-J. Song. 2021. A comprehensive review: Biological activity, modification and synthetic methodologies of prenylated flavonoids. Phytochemistry 191:112895. doi: 10.1016/j.phytochem.2021.112895.
  • Shibata, S., T. Sugiyama, Y. Uekusa, R. Masui, Y. Narukawa, and F. Kiuchi. 2020. Five new 2-(2-phenylethyl)chromone derivatives from agarwood. Journal of Natural Medicines 74 (3):561–70. doi: 10.1007/s11418-020-01410-z.
  • Shim, J. S., J. H. Kim, J. Lee, S. N. Kim, and H. J. Kwon. 2004. Anti-angiogenic activity of a homoisoflavanone from cremastra appendiculata. Planta Medica 70 (2):171–3. doi: 10.1055/s-2004-815496.
  • Sobolev, V. S., S. A. Neff, J. B. Gloer, S. I. Khan, N. Tabanca, A. J. De Lucca, and D. E. Wedge. 2010. Pterocarpenes elicited by Aspergillus caelatus in peanut (Arachis hypogaea) seeds. Phytochemistry 71 (17–18):2099–107. doi: 10.1016/j.phytochem.2010.09.018.
  • Sobreira, A. C. M., F. Pinto, C. L. das, K. G. D. Florêncio, D. V. Wilke, C. C. Staats, R. Streit, d A. S. Freire, F. das, C. d. O. Pessoa, et al. 2018. Endophytic fungus Pseudofusicoccum stromaticum produces cyclopeptides and plant-related bioactive rotenoids. RSC Advances 8 (62):35575–86. doi: 10.1039/C8RA06824K.
  • Sugiyama, T., Y. Narukawa, S. Shibata, R. Masui, and F. Kiuchi. 2016. New 2-(2-phenylethyl)chromone derivatives and inhibitors of phosphodiesterase (PDE) 3A from agarwood. Natural Product Communications 11 (6):1934578X1601100. doi: 10.1177/1934578X1601100624.
  • Sukumaran, A., T. McDowell, L. Chen, J. Renaud, and S. Dhaubhadel. 2018. Isoflavonoid-specific prenyltransferase gene family in soybean: GmPT01, a pterocarpan 2-dimethylallyltransferase involved in glyceollin biosynthesis. The Plant Journal: For Cell and Molecular Biology 96 (5):966–81. doi: 10.1111/tpj.14083.
  • Suzuki, A., K. Miyake, Y. Saito, F. Rasyid, H. Tokuda, M. Takeuchi, N. Suzuki, E. Ichiishi, T. Fujie, M. Goto, et al. 2017. Phenylethylchromones with In vitro antitumor promoting activity from Aquilaria filaria. Planta Medica 83 (3-04):300–5. doi: 10.1055/s-0042-110858.
  • Tchegnitegni, B. T., R. B. Teponno, C. Tanaka, A. F. Gabriel, L. A. Tapondjou, and T. Miyamoto. 2015. Sappanin-type homoisoflavonoids from Sansevieria trifasciata Prain. Phytochemistry Letters 12:262–6. doi: 10.1016/j.phytol.2015.04.017.
  • Telikepalli, H., S. R. Gollapudi, A. Keshavarz-Shokri, L. Velazquez, R. A. Sandmann, E. A. Veliz, K. V. J. Rao, A. S. Madhavi, and L. A. Mitscher. 1990. Isoflavonoids and a cinnamyl phenol from root extracts of Erythrina variegata. Phytochemistry 29 (6):2005–7. doi: 10.1016/0031-9422(90)85056-L.
  • Tiuman, T. S., M. A. Brenzan, T. Ueda-Nakamura, B. P. D. Filho, D. A. G. Cortez, and C. V. Nakamura. 2012. Intramuscular and topical treatment of cutaneous leishmaniasis lesions in mice infected with Leishmania amazonensis using coumarin (−) mammea A/BB. Phytomedicine 19 (13):1196–9. doi: 10.1016/j.phymed.2012.08.001.
  • Uchida, K., T. Akashi, and T. Aoki. 2015. Functional expression of cytochrome P450 in Escherichia coli: An approach to functional analysis of uncharacterized enzymes for flavonoid biosynthesis. Plant Biotechnology 32 (3):205–13. doi: 10.5511/plantbiotechnology.15.0605a.
  • Uchida, K., T. Akashi, and T. Aoki. 2017. The missing link in leguminous pterocarpan biosynthesis is a dirigent domain-containing protein with isoflavanol dehydratase activity. Plant & Cell Physiology 58 (2):398–408. doi: 10.1093/pcp/pcw213.
  • Uchida, K., T. Aoki, H. Suzuki, and T. Akashi. 2020. Molecular cloning and biochemical characterization of isoflav-3-ene synthase, a key enzyme of the biosyntheses of (+)-pisatin and coumestrol. Plant Biotechnology (Tokyo, Japan) 37 (3):301–10. doi: 10.5511/plantbiotechnology.20.0421a.
  • Ulubelen, A., R. R. Kerr, and T. J. Mabry. 1982. Two new neoflavonoids and C-glycosylflavones from Passiflora serratodigitata. Phytochemistry 21 (5):1145–7. doi: 10.1016/S0031-9422(00)82434-6.
  • Wang, H.-Y., T. Li, R. Ji, F. Xu, G.-X. Liu, Y.-L. Li, M.-Y. Shang, and S.-Q. Cai. 2019. Metabolites of medicarpin and their distributions in rats. Molecules 24 (10):1966. doi: 10.3390/molecules24101966.
  • Wang, J., X.-H. Wang, X. Liu, J. Li, X.-P. Shi, Y.-L. Song, K.-W. Zeng, L. Zhang, P.-F. Tu, and S.-P. Shi. 2016. Synthesis of unnatural 2-substituted quinolones and 1,3-diketones by a member of type III polyketide synthases from Huperzia serrata. Organic Letters 18 (15):3550–3. doi: 10.1021/acs.orglett.6b01501.
  • Wang, M., G. Ma, F. Shao, R. Liu, L. Chen, Y. Liu, L. Yang, and X. Meng. 2020. Neoflavonoids from the heartwood of Dalbergia melanoxylon. Natural Product Research 34:2794–2801. doi: 10.1080/14786419.2020.1800692.
  • Wang, S.-L., H.-R. Liao, M.-J. Cheng, C.-W. Shu, C.-L. Chen, M.-I. Chung, and J.-J. Chen. 2018. Four new 2-(2-phenylethyl)-4H-chromen-4-one derivatives from the resinous wood of Aquilaria sinensis and their inhibitory activities on neutrophil pro-inflammatory responses. Planta Medica 84 (18):1340–7. doi: 10.1055/a-0645-1437.
  • Wang, S.-L., T.-L. Hwang, M.-I. Chung, P.-J. Sung, C.-W. Shu, M.-J. Cheng, and J.-J. Chen. 2015. New flavones, a 2-(2-phenylethyl)-4H-chromen-4-one derivative, and anti-inflammatory constituents from the stem barks of Aquilaria sinensis. Molecules (Basel, Switzerland) 20 (11):20912–25. doi: 10.3390/molecules201119736.
  • Wang, S.-L., Y.-C. Tsai, S.-L. Fu, M.-J. Cheng, M.-I. Chung, and J.-J. Chen. 2018. 2-(2-Phenylethyl)-4H-chromen-4-one derivatives from the resinous wood of Aquilaria sinensis with anti-inflammatory effects in LPS-induced macrophages. Molecules 23 (2):289. doi: 10.3390/molecules23020289.
  • Wang, W., X. Dabu, J. He, H. Yang, S. Yang, J. Chen, W. Fan, G. Zhang, J. Cai, H. Ai, et al. 2019. Polygonatone H, a new homoisoflavanone with cytotoxicity from Polygonatum Cyrtonema Hua. Natural Product Research 33 (12):1727–33. doi: 10.1080/14786419.2018.1434645.
  • Wang, X., Z. Zhang, X. Dong, Y. Feng, X. Liu, B. Gao, J. Wang, L. Zhang, J. Wang, S. Shi, et al. 2017. Identification and functional characterization of three type III polyketide synthases from Aquilaria sinensis calli. Biochemical and Biophysical Research Communications 486 (4):1040–7. doi: 10.1016/j.bbrc.2017.03.159.
  • Woo, H. S., D. W. Kim, M. J. Curtis-Long, B. W. Lee, J. H. Lee, J. Y. Kim, J. E. Kang, and K. H. Park. 2011. Potent inhibition of bacterial neuraminidase activity by pterocarpans isolated from the roots of Lespedeza bicolor. Bioorganic & Medicinal Chemistry Letters 21 (20):6100–3. doi: 10.1016/j.bmcl.2011.08.046.
  • Wu, S.-F., F.-R. Chang, S.-Y. Wang, T.-L. Hwang, C.-L. Lee, S.-L. Chen, C.-C. Wu, and Y.-C. Wu. 2011. Anti-inflammatory and cytotoxic neoflavonoids and benzofurans from Pterocarpus santalinus. Journal of Natural Products 74 (5):989–96. doi: 10.1021/np100871g.
  • Xia, W., P. Luo, P. Hua, P. Ding, C. Li, J. Xu, H. Zhou, and Q. Gu. 2019. Discovery of a new pterocarpan-Type antineuroinflammatory compound from Sophora tonkinensis through suppression of the TLR4/NFκB/MAPK signaling pathway with PU.1 as a potential target. ACS Chemical Neuroscience 10 (1):295–303. doi: 10.1021/acschemneuro.8b00243.
  • Xiang, P., W.-H. Dong, C.-H. Cai, W. Li, L.-M. Zhou, H.-F. Dai, H.-Q. Chen, and W.-L. Mei. 2021. Three new dimeric 2-(2-phenylethyl)chromones from artificial agarwood of Aquilaria sinensis. Natural Product Research 35 (21):3592–8. doi: 10.1080/14786419.2020.1716345.
  • Xie, B., H. Luo, X. Huang, F. Huang, Q. Zhang, X. Wu, X. Zhou, and H. Wu. 2021. Pharmacokinetic studies of six major 2‐(2‐phenylethyl) chromones in rat plasma using ultra high performance liquid chromatography with tandem mass spectrometry after oral administration of agarwood ethanol extract. Journal of Separation Science 44 (12):2418–26. doi: 10.1002/jssc.202100053.
  • Xu, Z., Y. Liu, X. Meng, F. Shao, R. Liu, L. Yang, and L. Chen. 2021. Neoflavonoids from the heartwood of Dalbergia melanoxylon. Records of Natural Products (2):200–5. doi: 10.25135/rnp.267.2105.2071.
  • Xue, J.-J., C. Lei, P.-P. Wang, K.-Y. Kim, J.-Y. Li, J. Li, and A.-J. Hou. 2018. Flavans and diphenylpropanes with PTP1B inhibition from Broussonetia kazinoki. Fitoterapia 130:37–42. doi: 10.1016/j.fitote.2018.08.001.
  • Yan, T., S. Yang, Y. Chen, Q. Wang, and G. Li. 2019. Chemical profiles of cultivated agarwood induced by different techniques. Molecules 24 (10):1990. doi: 10.3390/molecules24101990.
  • Yang, J., J. Fei, H. Su, H. Tian, S. Huang, P. Yang, D. Mao, and S. Hu. 2019. Flavonoids from the flowers of Sophora davidii and their anti-tobacco mosaic virus activities. Natural Product Communications 14 (6):1934578X1985678. doi: 10.1177/1934578X19856786.
  • Yang, K.-M., S.-D. Jeon, D.-S. So, and C.-K. Moon. 2000. Brazilin augments cellular immunity in multiple low dose streptozotocin (MLD-STZ) induced type I diabetic mice. Archives of Pharmacal Research 23 (6):626–32. doi: 10.1007/BF02975252.
  • Yang, L., Y.-L. Yang, W.-H. Dong, W. Li, P. Wang, X. Cao, J.-Z. Yuan, H.-Q. Chen, W.-L. Mei, and H.-F. Dai. 2019. Sesquiterpenoids and 2-(2-phenylethyl)chromones respectively acting as α-glucosidase and tyrosinase inhibitors from agarwood of an Aquilaria plant. Journal of Enzyme Inhibition and Medicinal Chemistry 34 (1):853–62. doi: 10.1080/14756366.2019.1576657.
  • Yang, X., Y. Jiang, J. Yang, J. He, J. Sun, F. Chen, M. Zhang, and B. Yang. 2015. Prenylated flavonoids, promising nutraceuticals with impressive biological activities. Trends in Food Science & Technology 44 (1):93–104. doi: 10.1016/j.tifs.2015.03.007.
  • Yao, G.-D., Q. Sun, X.-Y. Song, X.-X. Huang, Y. Zhang, and S.-J. Song. 2018. 1,3-Diphenylpropanes from Daphne giraldii induced apoptosis in hepatocellular carcinoma cells through nuclear factor kappa-B inhibition. Bioorganic Chemistry 77:619–24. doi: 10.1016/j.bioorg.2018.02.017.
  • You, E.-J., L.-Y. Khil, W.-J. Kwak, H.-S. Won, S.-H. Chae, B.-H. Lee, and C.-K. Moon. 2005. Effects of brazilin on the production of fructose-2,6-bisphosphate in rat hepatocytes. Journal of Ethnopharmacology 102 (1):53–7. doi: 10.1016/j.jep.2005.05.020.
  • Yu, Z., C. Wang, W. Zheng, D. Chen, Y. Liu, Y. Yang, and J. Wei. 2020. Anti-inflammatory 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromones from agarwood of Aquilaria sinensis. Bioorganic Chemistry 99:103789. doi: 10.1016/j.bioorg.2020.103789.
  • Yuk, H. J., M. J. Curtis-Long, H. W. Ryu, K. C. Jang, W. D. Seo, J. Y. Kim, K. Y. Kang, and K. H. Park. 2011. Pterocarpan profiles for soybean leaves at different growth stages and investigation of their glycosidase inhibitions. Journal of Agricultural and Food Chemistry 59 (23):12683–90. doi: 10.1021/jf203326c.
  • Zerva, A., E. Koutroufini, I. Kostopoulou, A. Detsi, and E. Topakas. 2019. A novel thermophilic laccase-like multicopper oxidase from Thermothelomyces thermophila and its application in the oxidative cyclization of 2′,3,4-trihydroxychalcone. New Biotechnology 49:10–8. doi: 10.1016/j.nbt.2018.12.001.
  • Zhang, P., D. Qin, J. Chen, and Z. Zhang. 2020. Plants in the genus Tephrosia: Valuable resources for botanical insecticides. Insects 11 (10):721. doi: 10.3390/insects11100721.
  • Zhang, X., J. Cao, G. Shi, Z. Liu, J. Liu, and Y. Zhao. 2016. Two new isoaurones derivatives from Callistephus chinensis flower. Natural Product Research 30 (3):358–61. doi: 10.1080/14786419.2015.1053090.
  • Zhang, Y.-F., Z.-X. Zhu, H. Sun, H.-N. Yao, X.-N. Chen, L. Liu, S.-L. Zhang, Y.-F. Zhao, P.-F. Tu, and J. Li. 2018. Stachyodin A, a pterocarpan derivative with unusual spirotetrahydrofuran ring from the roots of Indigofera stachyodes. Tetrahedron Letters 59 (51):4514–6. doi: 10.1016/j.tetlet.2018.11.024.
  • Zhao, Y.-M., L. Yang, F.-D. Kong, W.-H. Dong, W. Li, H.-Q. Chen, H. Wang, C.-H. Cai, C.-J. Gai, W.-L. Mei, et al. 2021. Three new 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromones and one new dimeric 2-(2-phenylethyl)chromone from agarwood of Aquilaria crassna Pierre ex Lecomte in Laos. Natural Product Research 35 (14):2295–302. doi: 10.1080/14786419.2019.1672066.
  • Zhou, C.-X., L. Zou, J.-X. Mo, X.-Y. Wang, B. Yang, Q.-J. He, and L.-S. Gan. 2013. Homoisoflavonoids from Ophiopogon japonicus. Helvetica Chimica Acta 96 (7):1397–405. doi: 10.1002/hlca.201200493.
  • Zhu, Z., Y. Gu, Y. Zhao, Y. Song, J. Li, and P. Tu. 2016. GYF-17, a chloride substituted 2-(2-phenethyl)-chromone, suppresses LPS-induced inflammatory mediator production in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways. International Immunopharmacology 35:185–92. doi: 10.1016/j.intimp.2016.03.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.