753
Views
6
CrossRef citations to date
0
Altmetric
Review

Bioactive and health-promoting properties of enzymatic hydrolysates of legume proteins: a review

, &

References

  • Aguiló‐Aguayo, I., C. Álvarez, M. Saperas, A. Rivera, M. Abadias, and T. Lafarga. 2021. Proteins isolated from Ganxet common bean (Phaseolus vulgaris L.) landrace: techno‐functional and antioxidant properties. International Journal of Food Science & Technology 56 (11):5452–60. doi: 10.1111/ijfs.15201.
  • Ahmed, J., M. Mulla, N. Al‐Ruwaih, and Y. A. Arfat. 2019. Effect of high‐pressure treatment prior to enzymatic hydrolysis on rheological, thermal, and antioxidant properties of lentil protein isolate. Legume Science 1 (1):e10. doi: 10.1002/leg3.10.
  • Ajibola, C. F., J. B. Fashakin, T. N. Fagbemi, and R. E. Aluko. 2011. Effect of peptide size on antioxidant properties of African yam bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions. International Journal of Molecular Sciences 12 (10):6685–702. doi: 10.3390/ijms12106685.
  • Akillioğlu, H. G, and S. Karakaya. 2009. Effects of heat treatment and in vitro digestion on the angiotensin converting enzyme inhibitory activity of some legume species. European Food Research and Technology 229 (6):915–21. doi: 10.1007/s00217-009-1133-x.
  • Al-Ruwaih, N., J. Ahmed, M. F. Mulla, and Y. A. Arfat. 2019. High-pressure assisted enzymatic proteolysis of kidney beans protein isolates and characterization of hydrolysates by functional, structural, rheological and antioxidant properties. LWT 100:231–6. doi: 10.1016/j.lwt.2018.10.074.
  • Aluko, R. E., A. T. Girgih, R. He, S. Malomo, H. Li, M. Offengenden, and J. Wu. 2015. Structural and functional characterization of yellow field pea seed (Pisum sativum L.) protein-derived antihypertensive peptides. Food Research International 77:10–6. doi: 10.1016/j.foodres.2015.03.029.
  • Ambigaipalan, P., A. S. Al-Khalifa, and F. Shahidi. 2015. Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin. Journal of Functional Foods 18:1125–37. doi: 10.1016/j.jff.2015.01.021.
  • Aoyama, T., K. Fukui, K. Takamatsu, Y. Hashimoto, and T. Yamamoto. 2000. Soy protein isolate and its hydrolysate reduce body fat of dietary obese rats and genetically obese mice (yellow KK). Nutrition (Burbank, Los Angeles County, Calif.) 16 (5):349–54. doi: 10.1016/S0899-9007(00)00230-6.
  • Arcan, I, and A. Yemenicioğlu. 2010. Effects of controlled pepsin hydrolysis on antioxidant potential and fractional changes of chickpea proteins. Food Research International 43 (1):140–7. doi: 10.1016/j.foodres.2009.09.012.
  • Arise, A. K., A. M. Alashi, I. D. Nwachukwu, O. A. Ijabadeniyi, R. E. Aluko, and E. O. Amonsou. 2016. Antioxidant activities of Bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions. Food & Function 7 (5):2431–7. doi: 10.1039/C6FO00057F.
  • Ariza-Ortega, T. J., E. Y. Zenón, J. L. Castrejón-Flores, J. Yáñez-Fernández, Y. M. Gómez-Gómez, and M. C. Oliver-Salvador. 2014. Angiotensin-I-converting enzyme inhibitory, antimicrobial and antioxidant effect of bioactive peptides obtained from different varieties of common beans (Phaseolus vulgaris L.) with in vivo antihypertensive activity in spontaneously hypertensive rats. European Food Research and Technology 239 (5):785–94. doi: 10.1007/s00217-014-2271-3.
  • Arteaga, V. G., M. A. Guardia, I. Muranyi, P. Eisner, and U. Schweiggert-Weisz. 2020. Effect of enzymatic hydrolysis on molecular weight distribution, techno-functional properties and sensory perception of pea protein isolates. Innovative Food Science & Emerging Technologies 65:102449. doi: 10.1016/j.ifset.2020.102449.
  • Awosika, T. O, and R. E. Aluko. 2019. Inhibition of the in vitro activities of α‐amylase, α‐glucosidase and pancreatic lipase by yellow field pea (Pisum sativum L.) protein hydrolysates. International Journal of Food Science & Technology 54 (6):2021–34. doi: 10.1111/ijfs.14087.
  • Awosika, T, and R. E. Aluko. 2019. Enzymatic pea protein hydrolysates are active trypsin and chymotrypsin inhibitors. Foods 8 (6):200. doi: 10.3390/foods8060200.
  • Barbana, C, and J. I. Boye. 2010. Angiotensin I-converting enzyme inhibitory activity of chickpea and pea protein hydrolysates. Food Research International 43 (6):1642–9. doi: 10.1016/j.foodres.2010.05.003.
  • Barbana, C, and J. I. Boye. 2011. Angiotensin I-converting enzyme inhibitory properties of lentil protein hydrolysates: determination of the kinetics of inhibition. Food Chemistry 127 (1):94–101. doi: 10.1016/j.foodchem.2010.12.093.
  • Beermann, C., M. Euler, J. Herzberg, and B. Stahl. 2009. Anti-oxidative capacity of enzymatically released peptides from soybean protein isolate. European Food Research and Technology 229 (4):637–44. doi: 10.1007/s00217-009-1093-1.
  • Betancur‐Ancona, D., R. Martínez, Rosado, A. Corona‐Cruz, A. Castellanos, Ruelas, M. E. Jaramillo‐Flores, and L. Chel‐Guerrero. 2009. Functional properties of hydrolysates from Phaseolus lunatus seeds. International Journal of Food Science & Technology 44 (1):128–37.
  • Betancur, Ancona, D. T. Sosa, Espinoza, J. Ruiz, Ruiz, M. Segura, Campos, L., and Chel, Guerrero. 2014. Enzymatic hydrolysis of hard‐to‐cook bean (Phaseolus vulgaris L.) protein concentrates and its effects on biological and functional properties. International Journal of Food Science & Technology 49 (1):2–8.
  • Bilska, A., M. Rudzińska, R. Kowalski, and K. Krysztofiak. 2009. The effect of soy hydrolysates on changes in cholesterol content and its oxidation products in fine-ground model sausages. Acta Scientiarum Polonorum Technologia Alimentaria 8 (3):15–22.
  • Boye, J. I., S. Roufik, N. Pesta, and C. Barbana. 2010. Angiotensin I-converting enzyme inhibitory properties and SDS-PAGE of red lentil protein hydrolysates. LWT - Food Science and Technology 43 (6):987–91. doi: 10.1016/j.lwt.2010.01.014.
  • Budseekoad, S., C. Takahashi Yupanqui, A. M. Alashi, R. E. Aluko, and W. Youravong. 2019. Anti‐allergic activity of mung bean (Vigna radiata (L.) Wilczek) protein hydrolysates produced by enzymatic hydrolysis using non‐gastrointestinal and gastrointestinal enzymes. Journal of Food Biochemistry 43 (1):e12674. doi: 10.1111/jfbc.12674.
  • Cabanillas, B., M. M. Pedrosa, J. Rodriguez, M. Muzquiz, S. J. Maleki, C. Cuadrado, C. Burbano, and J. F. Crespo. 2012. Influence of enzymatic hydrolysis on the allergenicity of roasted peanut protein extract. International Archives of Allergy and Immunology 157 (1):41–50. doi: 10.1159/000324681.
  • Calabriso, N., E. Scoditti, M. Massaro, M. Pellegrino, C. Storelli, I. Ingrosso, G. Giovinazzo, and M. A. Carluccio. 2016. Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression. European Journal of Nutrition 55 (2):477–89. doi: 10.1007/s00394-015-0865-6.
  • Carrasco-Castilla, J., A. J. Hernández-Álvarez, C. Jiménez-Martínez, C. Jacinto-Hernández, M. Alaiz, J. Girón-Calle, J. Vioque, and G. Dávila-Ortiz. 2012. Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates. Food Chemistry 135 (3):1789–95. doi: 10.1016/j.foodchem.2012.06.016.
  • Chalé, F. H., J. C. R. Ruiz, D. B. Ancona, J. J. A. Fernández, and M. R. S. Campos. 2016. The hypolipidemic effect and antithrombotic activity of Mucuna pruriens protein hydrolysates. Food & Function 7 (1):434–44.
  • Chang, C.-Y., J.-D. Jin, H.-L. Chang, K.-C. Huang, Y.-F. Chiang, M. Ali, and S.-M. Hsia. 2021. Antioxidative activity of soy, wheat and pea protein isolates characterized by multi-enzyme hydrolysis. Nanomaterials 11 (6):1509. doi: 10.3390/nano11061509.
  • Chel-Guerrero, L., M. Domínguez-Magaña, A. Martínez- Ayala, G. Dávila-Ortiz, and D. Betancur-Ancona. 2012. Lima bean (Phaseolus lunatus) protein hydrolysates with ACE-I inhibitory activity. Food and Nutrition Sciences 3 (4):511–21. doi: 10.4236/fns.2012.34072.
  • Chen, Z., W. Li, R. K. Santhanam, C. Wang, X. Gao, Y. Chen, C. Wang, L. Xu, and H. Chen. 2019. Bioactive peptide with antioxidant and anticancer activities from black soybean [Glycine max (L.) Merr.] byproduct: isolation, identification and molecular docking study. European Food Research and Technology 245 (3):677–89. doi: 10.1007/s00217-018-3190-5.
  • Cho, S. J., M. A. Juillerat, and C. H. Lee. 2007. Cholesterol lowering mechanism of soybean protein hydrolysate. Journal of Agricultural and Food Chemistry 55 (26):10599–604. doi: 10.1021/jf071903f.
  • Clemente, A., J. Vioque, R. Sanchez-Vioque, J. Pedroche, and F. Millán. 1999. Production of extensive chickpea (Cicer arietinum L.) protein hydrolysates with reduced antigenic activity. Journal of Agricultural and Food Chemistry 47 (9):3776–81. doi: 10.1021/jf981315p.
  • Cruz-Chamorro, I., N. Álvarez-Sánchez, M. D. C. Millán-Linares, M. D. M. Yust, J. Pedroche, F. Millán, P. J. Lardone, C. Carrera-Sánchez, J. M. Guerrero, A. Carrillo-Vico, et al. 2019. Lupine protein hydrolysates decrease the inflammatory response and improve the oxidative status in human peripheral lymphocytes. Food Research International (Ottawa, Ont.) 126:108585. doi: 10.1016/j.foodres.2019.108585.
  • De Angelis, D., A. Kaleda, A. Pasqualone, H. Vaikma, M. Tamm, M.-L. Tammik, G. Squeo, and C. Summo. 2020. Physicochemical and sensorial evaluation of meat analogues produced from dry-fractionated pea and oat proteins. Foods 9 (12):1754. doi: 10.3390/foods9121754.
  • de Castro, R. J. S., V. G. Cason, and H. H. Sato. 2017. Binary mixture of proteases increases the antioxidant properties of white bean (Phaseolus vulgaris L.) protein-derived peptides obtained by enzymatic hydrolysis. Biocatalysis and Agricultural Biotechnology 10:291–7. doi: 10.1016/j.bcab.2017.04.003.
  • de Oliveira, C. F., A. P. F. Corrêa, D. Coletto, D. J. Daroit, F. Cladera-Olivera, and A. Brandelli. 2015. Soy protein hydrolysis with microbial protease to improve antioxidant and functional properties. Journal of Food Science and Technology 52 (5):2668–78. doi: 10.1007/s13197-014-1317-7.
  • de Souza Rocha, T., L. M. R. Hernandez, L. Mojica, M. H. Johnson, Y. K. Chang, and E. G. de Mejía. 2015. Germination of Phaseolus vulgaris and alcalase hydrolysis of its proteins produced bioactive peptides capable of improving markers related to type-2 diabetes in vitro. Food Research International 76:150–9. doi: 10.1016/j.foodres.2015.04.041.
  • Diao, J., Z. Chi, Z. Guo, and L. Zhang. 2019. Mung bean protein hydrolysate modulates the immune response through NF‐κB pathway in lipopolysaccharide‐stimulated RAW 264.7 macrophages. Journal of Food Science 84 (9):2652–7. doi: 10.1111/1750-3841.14691.
  • Ding, J., H. Ju, L. Zhong, L. Qi, N. Sun, and S. Lin. 2021. Reducing the allergenicity of pea protein based on the enzyme action of alcalase. Food & Function 12 (13):5940–8. doi: 10.1039/D1FO00083G.
  • do Evangelho, J. A., J. D. J. Berrios, V. Z. Pinto, M. D. Antunes, N. L. Vanier, and E. D. R. Zavareze. 2016. Antioxidant activity of black bean (Phaseolus vulgaris L.) protein hydrolysates. Food Science and Technology 36 (suppl 1):23–7. doi: 10.1590/1678-457x.0047.
  • do Evangelho, J. A., N. L. Vanier, V. Z. Pinto, J. J. De Berrios, A. R. G. Dias, and E. da Rosa Zavareze. 2017. Black bean (Phaseolus vulgaris L.) protein hydrolysates: physicochemical and functional properties. Food Chemistry 214:460–7. doi: 10.1016/j.foodchem.2016.07.046.
  • dos Santos Aguilar, J. G., R. J. S. De Castro, and H. H. Sato. 2020. Production of antioxidant peptides from pea protein using protease from Bacillus licheniformis LBA 46. International Journal of Peptide Research and Therapeutics 26 (1):435–43. doi: 10.1007/s10989-019-09849-9.
  • dos Santos Aguilar, J. G., V. G. Cason, and R. J. S. de Castro. 2019. Improving antioxidant activity of black bean protein by hydrolysis with protease combinations. International Journal of Food Science & Technology 54 (1):34–41. doi: 10.1111/ijfs.13898.
  • Durak, A., B. Baraniak, A. Jakubczyk, and M. Świeca. 2013. Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds. Food Chemistry 141 (3):2177–83. doi: 10.1016/j.foodchem.2013.05.012.
  • Eckert, E., J. Han, K. Swallow, Z. Tian, M. Jarpa‐Parra, and L. Chen. 2019. Effects of enzymatic hydrolysis and ultrafiltration on physicochemical and functional properties of faba bean protein. Cereal Chemistry 96 (4):725–41. doi: 10.1002/cche.10169.
  • Elias, R. J., S. S. Kellerby, and E. A. Decker. 2008. Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition 48 (5):430–41. doi: 10.1080/10408390701425615.
  • Fadimu, G. J., H. Gill, A. Farahnaky, and T. Truong. 2021. Investigating the impact of ultrasound pretreatment on the physicochemical, structural, and antioxidant properties of lupin protein hydrolysates. Food and Bioprocess Technology 14 (11):2004–19. doi: 10.1007/s11947-021-02700-4.
  • Fan, J. F., Y. Y. Zhang, S. Tan, and M. Zhou. 2006. Improving functional properties of soy protein hydrolysate by conjugation with curdlan. Journal of Food Science 71 (5):C285–C291
  • FAO 2007. Cereals, pulses, legumes and vegetable proteins. CODEX Alimentarius, 1–96. Rome: FAO Corporate Document Repository.
  • Ferreira, K. C., J. A. C. Bento, M. Caliari, P. Z. Bassinello, and J. D. J. Berrios. 2022. Dry bean proteins: extraction methods, functionality, and application in products for human consumption. Cereal Chemistry 99 (1):67–77. doi: 10.1002/cche.10514.
  • Franco-Miranda, H., L. Chel-Guerrero, S. Gallegos-Tintoré, A. Castellanos-Ruelas, and D. Betancur-Ancona. 2017. Physicochemical, rheological, bioactive and consumer acceptance analyses of concha-type Mexican sweet bread containing Lima bean or cowpea hydrolysates. LWT 80:250–6. doi: 10.1016/j.lwt.2017.02.034.
  • Garcia-Mora, P., E. Peñas, J. Frias, and C. Martínez-Villaluenga. 2014. Savinase, the most suitable enzyme for releasing peptides from lentil (Lens culinaris var. Castellana) protein concentrates with multifunctional properties. Journal of Agricultural and Food Chemistry 62 (18):4166–74. doi: 10.1021/jf500849u.
  • Garcia-Mora, P., E. Peñas, J. Frias, R. Gomez, and C. Martinez-Villaluenga. 2015. High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins. Food Chemistry 171:224–32. doi: 10.1016/j.foodchem.2014.08.116.
  • Garcia-Mora, P., J. Frias, E. Peñas, H. Zieliński, J. A. Giménez-Bastida, W. Wiczkowski, D. Zielińska, and C. Martínez-Villaluenga. 2015. Simultaneous release of peptides and phenolics with antioxidant, ACE-inhibitory and anti-inflammatory activities from pinto bean (Phaseolus vulgaris L. var. pinto) proteins by subtilisins. Journal of Functional Foods 18:319–32. doi: 10.1016/j.jff.2015.07.010.
  • Gharibzahedi, S. M. T. 2017. Ultrasound-mediated nettle oil nanoemulsions stabilized by purified jujube polysaccharide: process optimization, microbial evaluation and physicochemical storage stability. Journal of Molecular Liquids 234:240–8. doi: 10.1016/j.molliq.2017.03.094.
  • Gharibzahedi, S. M. T. 2018. The preparation, stability, functionality and food enrichment ability of cinnamon oil-loaded nanoemulsion-based delivery systems: a review. Nutrafoods 17 (2):97–105.
  • Gharibzahedi, S. M, and T. B. Smith. 2020. The functional modification of legume proteins by ultrasonication: a review. Trends in Food Science & Technology 98:107–16. doi: 10.1016/j.tifs.2020.02.002.
  • Gharibzahedi, S. M. T, and B. Smith. 2021a. Effects of high hydrostatic pressure on the quality and functionality of protein isolates, concentrates, and hydrolysates derived from pulse legumes: a review. Trends in Food Science & Technology 107:466–79. doi: 10.1016/j.tifs.2020.11.016.
  • Gharibzahedi, S. M. T, and B. Smith. 2021b. Legume proteins are smart carriers to encapsulate hydrophilic and hydrophobic bioactive compounds and probiotic bacteria: a review. Comprehensive Reviews in Food Science and Food Safety 20 (2):1250–79. doi: 10.1111/1541-4337.12699.
  • Gharibzahedi, S, and M. T. S. Mohammadnabi. 2016. Characterizing the novel surfactant-stabilized nanoemulsions of stinging nettle essential oil: thermal behaviour, storage stability, antimicrobial activity and bioaccessibility. Journal of Molecular Liquids 224:1332–40. doi: 10.1016/j.molliq.2016.10.120.
  • Gharibzahedi, S. M. T., Y. Smith, and Guo, B. 2019. Pectin extraction from common fig skin by different methods: the physicochemical, rheological, functional, and structural evaluations. International Journal of Biological Macromolecules 136:275–83.
  • Gharibzahedi, S. M. T., C. Hernández-Ortega, J. Welti-Chanes, P. Putnik, F. J. Barba, K. Mallikarjunan, Z. Escobedo-Avellaneda, and S. Roohinejad. 2019. High pressure processing of food-grade emulsion systems: antimicrobial activity, and effect on the physicochemical properties. Food Hydrocolloids. 87:307–20. doi: 10.1016/j.foodhyd.2018.08.012.
  • Gharibzahedi, S. M. T., S. George, R. Greiner, B. N. Estevinho, M. J. Frutos Fernández, D. J. McClements, and S. Roohinejad. 2018. New trends in the microencapsulation of functional fatty acid‐rich oils using transglutaminase catalyzed crosslinking. Comprehensive Reviews in Food Science and Food Safety 17 (2):274–89. doi: 10.1111/1541-4337.12324.
  • Gharibzahedi, S. M. T., S. H. Razavi, and M. Mousavi. 2015. Optimal development of a new stable nutraceutical nanoemulsion based on the inclusion complex of 2-hydroxypropyl-β-cyclodextrin with canthaxanthin accumulated by Dietzia natronolimnaea HS-1 using ultrasound-assisted emulsification. Journal of Dispersion Science and Technology 36 (5):614–25. doi: 10.1080/01932691.2014.921188.
  • Gharibzahedi, S. M. T., S. H. Razavi, and S. M. Mousavi. 2012. Developing an emulsion model system containing canthaxanthin biosynthesized by Dietzia natronolimnaea HS-1. International Journal of Biological Macromolecules 51 (4):618–26. doi: 10.1016/j.ijbiomac.2012.06.030.
  • Gharibzahedi, S. M. T., S. M. Mousavi, S. M. Jafari, and K. Faraji. 2012. Proximate composition, mineral content, and fatty acids profile of two varieties of lentil seeds cultivated in Iran. Chemistry of Natural Compounds 47 (6):976–8. doi: 10.1007/s10600-012-0119-2.
  • Gharibzahedi, S. M. T., S. H. Razavi, and S. M. Mousavi. 2013. Comparison of antioxidant and free radical scavenging activities of biocolorant synthesized by Dietzia natronolimnaea HS-1 cells grown in batch, fed-batch and continuous cultures. Industrial Crops and Products 49:10–6. doi: 10.1016/j.indcrop.2013.03.019.
  • Gharibzahedi, S. M. T., S. M. Mousavi, M. Hamedi, and F. Khodaiyan. 2014. Determination and characterization of kernel biochemical composition and functional compounds of Persian walnut oil. Journal of Food Science and Technology 51 (1):34–42. doi: 10.1007/s13197-011-0481-2.
  • Gharibzahedi, S. M. T., S. Roohinejad, S. George, F. J. Barba, R. Greiner, G. V. Barbosa-Cánovas, and K. Mallikarjunan. 2018. Innovative food processing technologies on the transglutaminase functionality in protein-based food products: trends, opportunities and drawbacks. Trends in Food Science & Technology 75:194–205. doi: 10.1016/j.tifs.2018.03.014.
  • Gharibzahedi, S. M. T., S. Yousefi, and I. S. Chronakis. 2019. Microbial transglutaminase in noodle and pasta processing. Critical Reviews in Food Science and Nutrition 59 (2):313–27. doi: 10.1080/10408398.2017.1367643.
  • Ghribi, A. M., A. Sila, R. Przybylski, N. Nedjar-Arroume, I. Makhlouf, C. Blecker, H. Attia, P. Dhulster, A. Bougatef, and S. Besbes. 2015. Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate. Journal of Functional Foods 12:516–25. doi: 10.1016/j.jff.2014.12.011.
  • Girgih, A. T., D. Chao, L. Lin, R. He, S. Jung, and R. E. Aluko. 2015. Enzymatic protein hydrolysates from high pressure-pretreated isolated pea proteins have better antioxidant properties than similar hydrolysates produced from heat pretreatment. Food Chemistry 188:510–6. doi: 10.1016/j.foodchem.2015.05.024.
  • Goertzen, A. D., J. D. House, M. T. Nickerson, and T. Tanaka. 2021. The impact of enzymatic hydrolysis using three enzymes on the nutritional properties of a chickpea protein isolate. Cereal Chemistry 98 (2):275–84. doi: 10.1002/cche.10361.
  • Gomes, M. J. C., S. L. S. Lima, N. E. G. Alves, A. Assis, M. E. C. Moreira, R. C. L. Toledo, C. O. B. Rosa, O. R. Teixeira, P. Z. Bassinello, E. G. De Mejía, et al. 2020. Common bean protein hydrolysate modulates lipid metabolism and prevents endothelial dysfunction in BALB/c mice fed an atherogenic diet. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD 30 (1):141–50. doi: 10.1016/j.numecd.2019.07.020.
  • Gómez, A., C. Gay, V. Tironi, and M. V. Avanza. 2021. Structural and antioxidant properties of cowpea protein hydrolysates. Food Bioscience 41:101074. doi: 10.1016/j.fbio.2021.101074.
  • Granic, I., A. M. Dolga, I. M. Nijholt, G. van Dijk, and U. L. M. Eisel. 2009. Inflammation and NF-kappa B in Alzheimer’s disease and diabetes. Journal of Alzheimer’s Disease: JAD 16 (4):809–21. doi: 10.3233/JAD-2009-0976.
  • Guan, H., X. Diao, F. Jiang, J. Han, and B. Kong. 2018. The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates. Food Chemistry 245:89–96. doi: 10.1016/j.foodchem.2017.08.081.
  • Guerra, A. C. M., W. Murillo, and A. J. J. Méndez. 2017. Antioxidant potential use of bioactive peptides derived from mung bean hydrolysates (Vigna Radiata). African Journal of Food Science 11:67–73.
  • Gupta, N, and S. S. Bhagyawant. 2019. Impact of hydrolysis on functional properties, antioxidant, ACE-I inhibitory and antiproliferative activity of Cicer arietinum and Cicer reticulatum hydrolysates. Nutrire 44 (1):5. doi: 10.1186/s41110-019-0095-4.
  • Hartmann, R, and H. Meisel. 2007. Food-derived peptides with biological activity: from research to food applications. Current Opinion in Biotechnology 18 (2):163–9. doi: 10.1016/j.copbio.2007.01.013.
  • Heymich, M. L., S. Srirangan, and M. Pischetsrieder. 2021. Stability and activity of the antimicrobial peptide leg1 in solution and on meat and its optimized generation from chickpea storage protein. Foods 10 (6):1192. doi: 10.3390/foods10061192.
  • Hidayat, M., S. Prahastuti, D. U. Riany, A. A. Soemardji, N. Suliska, and A. N. Garmana. 2019. Kidney therapeutic potential of peptides derived from the bromelain hydrolysis of green peas protein. Iranian Journal of Basic Medical Sciences 22 (9):1016–25.
  • Huang, T.,G. Bu, andF. Chen. 2018. The influence of composite enzymatic hydrolysis on the antigenicity of β-conglycinin in soy protein hydrolysates. Journal of Food Biochemistry 42 (5):e12544 doi:10.1111/jfbc.12544.
  • Humiski, L. M, and R. E. Aluko. 2007. Physicochemical and bitterness properties of enzymatic pea protein hydrolysates. Journal of Food Science 72 (8):S605–S611. doi: 10.1111/j.1750-3841.2007.00475.x.
  • Izadi, A., L. Khedmat, and S. Y. Mojtahedi. 2019. Nutritional and therapeutic perspectives of camel milk and its protein hydrolysates: a review on versatile biofunctional properties. Journal of Functional Foods 60:103441. doi: 10.1016/j.jff.2019.103441.
  • Jakubczyk, A, and B. Baraniak. 2013. Activities and sequences of the angiotensin I-converting enzyme (ACE) inhibitory peptides obtained from the digested lentil (Lens culinaris) globulins. International Journal of Food Science & Technology 48:2363–2369. doi: 10.1111/ijfs.12226.
  • Jakubczyk, A, and B. Baraniak. 2014. 2014. Angiotensin I converting inhibitory peptides obtained after in vitro hydrolysis of pea (Pisum sativum var. Bajka). BioMed Research International 2014:438459. doi: 10.1155/2014/438459.
  • Jakubczyk, A., M. Karaś, U. Złotek, U. Szymanowska, B. Baraniak, and J. Bochnak. 2019. Peptides obtained from fermented faba bean seeds (Vicia faba) as potential inhibitors of an enzyme involved in the pathogenesis of metabolic syndrome. LWT 105:306–13. doi: 10.1016/j.lwt.2019.02.009.
  • Kaleda, A., K. Talvistu, H. Vaikma, M. L. Tammik, S. Rosenvald, and R. Vilu. 2021. Physicochemical, textural, and sensorial properties of fibrous meat analogs from oat-pea protein blends extruded at different moistures, temperatures, and screw speeds. Future Foods 4:100092. doi: 10.1016/j.fufo.2021.100092.
  • Kasera, R., A. B. Singh, S. Lavasa, K. N. Prasad, and N. Arora. 2015. Enzymatic hydrolysis: a method in alleviating legume allergenicity. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 76:54–60. doi: 10.1016/j.fct.2014.11.023.
  • Keum, E. H., S. I. Lee, and S. S. Oh. 2006. Effect of enzymatic hydrolysis of 7s globulin, a soybean protein, on its allergenicity and identification of its allergenic hydrolyzed fragments using SDS-PAGE. Food Science & Biotechnology 15:128–32.
  • Kim, J. M., J. H. Whang, and H. J. Suh. 2004. Enhancement of angiotensin I converting enzyme inhibitory activity and improvement of the emulsifying and foaming properties of corn gluten hydrolysate using ultrafiltration membranes. European Food Research and Technology 218 (2):133–8. doi: 10.1007/s00217-003-0825-x.
  • Kim, J. S, and Y. S. Lee. 2009. Antioxidant activity of Maillard reaction products derived from aqueous glucose/glycine, diglycine, and triglycine model systems as a function of heating time. Food Chemistry 116 (1):227–32. doi: 10.1016/j.foodchem.2009.02.038.
  • Klompong, V., S. Benjakul, D. Kantachote, and F. Shahidi. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry 102 (4):1317–27. doi: 10.1016/j.foodchem.2006.07.016.
  • Kodera, T., M. Asano, and N. Nio. 2006. Characteristic property of low bitterness in protein hydrolysates by a novel soybean protease D3. Journal of Food Science 71 (9):S609–S614. doi: 10.1111/j.1750-3841.2006.00179.x.
  • Konieczny, D., A. K. Stone, M. G. Nosworthy, J. D. House, D. R. Korber, M. T. Nickerson, and T. Tanaka. 2020. Nutritional properties of pea protein‐enriched flour treated with different proteases to varying degrees of hydrolysis. Cereal Chemistry 97 (2):429–40. doi: 10.1002/cche.10258.
  • Kusumah, J., L. M. Real Hernandez, and E. Gonzalez de Mejia. 2020. Antioxidant potential of mung bean (Vigna radiata) albumin peptides produced by enzymatic hydrolysis analyzed by biochemical and in silico methods. Foods 9 (9):1241. doi: 10.3390/foods9091241.
  • Kwon, D. Y., J. W. Daily, H. J. Kim, and S. Park. 2010. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutrition Research (New York, N.Y.) 30 (1):1–13. doi: 10.1016/j.nutres.2009.11.004.
  • Kyriakopoulou, K., J. K. Keppler, and A. J. van der Goot. 2021. Functionality of ingredients and additives in plant-based meat analogues. Foods 10 (3):600. doi: 10.3390/foods10030600.
  • Lammi, C., A. Arnoldi, and G. Aiello. 2019. Soybean peptides exert multifunctional bioactivity modulating 3-hydroxy-3-methylglutaryl-coa reductase and dipeptidyl peptidase-iv targets in vitro. Journal of Agricultural and Food Chemistry 67 (17):4824–30. doi: 10.1021/acs.jafc.9b01199.
  • Lammi, C., C. Zanoni, S. Ferruzza, G. Ranaldi, Y. Sambuy, and A. Arnoldi. 2016. Hypocholesterolaemic activity of lupin peptides: investigation on the crosstalk between human enterocytes and hepatocytes using a co-culture system including Caco-2 and HepG2 cells. Nutrients 8 (7):437. doi: 10.3390/nu8070437.
  • Laudano, A. P, and R. F. Doolittle. 1978. Synthetic peptides derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers. Proceedings of the National Academy of Sciences of the United States of America 75 (7):3085–9. doi: 10.1073/pnas.75.7.3085.
  • Lee, B. H., Y. S. Lai, and S. C. Wu. 2015. Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto)-fermented pigeon pea. Journal of Food and Drug Analysis 23 (4):750–7. doi: 10.1016/j.jfda.2015.06.008.
  • Li, G. H., G. W. Le, H. Liu, and Y. H. Shi. 2005. Mung-bean protein hydrolysates obtained with alcalase exhibit angiotensin I-converting enzyme inhibitory activity. Food Science and Technology International 11 (4):281–7. doi: 10.1177/1082013205056781.
  • Li, G. H., Y. H. Shi, H. Liu, and G. W. Le. 2006. Antihypertensive effect of alcalase generated mung bean protein hydrolysates in spontaneously hypertensive rats. European Food Research and Technology 222 (5-6):733–6. doi: 10.1007/s00217-005-0147-2.
  • Li, H., N. Prairie, C. C. Udenigwe, A. P. Adebiyi, P. S. Tappia, H. M. Aukema, P. J. H. Jones, and R. E. Aluko. 2011. Blood pressure lowering effect of a pea protein hydrolysate in hypertensive rats and humans. Journal of Agricultural and Food Chemistry 59 (18):9854–60. doi: 10.1021/jf201911p.
  • Li, M., S. Carlson, J. A. Kinzer, and H. J. Perpall. 2003. HPLC and LC-MS studies of hydroxylation of phenylalanine as an assay for hydroxyl radicals generated from Udenfriend’s reagent. Biochemical and Biophysical Research Communications 312 (2):316–22. doi: 10.1016/j.bbrc.2003.10.116.
  • Li, M., Y. Zhang, S. Xia, and X. Ding. 2019. Finding and isolation of novel peptides with anti-proliferation ability of hepatocellular carcinoma cells from mung bean protein hydrolysates. Journal of Functional Foods 62:103557. doi: 10.1016/j.jff.2019.103557.
  • Li, Q, and I. M. Verma. 2002. NF-kappa B regulation in the immune system. Nature Reviews. Immunology 2 (10):725–34. doi: 10.1038/nri910.
  • Li, Y., B. Jiang, T. Zhang, W. Mu, and J. Liu. 2008. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry 106 (2):444–50. doi: 10.1016/j.foodchem.2007.04.067.
  • Liao, W., H. Fan, P. Liu, and J. Wu. 2019. Identification of angiotensin converting enzyme 2 (ACE2) up-regulating peptides from pea protein hydrolysate. Journal of Functional Foods 60:103395. doi: 10.1016/j.jff.2019.05.051.
  • Lin, Z., L. Liu, W. Qin, A. Wang, M. Nie, H. Xi, Z. Chen, Y. He, F. Wang, and L. ‐T. Tong. 2022. Changes in the quality and in vitro digestibility of brown rice noodles with the addition of ultrasound‐assisted enzyme‐treated red lentil protein. International Journal of Food Science & Technology 57 (2):1150–60. doi: 10.1111/ijfs.15483.
  • Liu, D. Y., J. Zienkiewicz, A. DiGiandomenico, and J. Hawiger. 2009. Suppression of acute lung inflammation by intracellular peptide delivery of a nuclear import inhibitor. Molecular Therapy: The Journal of the American Society of Gene Therapy 17 (5):796–802. doi: 10.1038/mt.2009.18.
  • Liu, F.-F., Y.-Q. Li, G.-J. Sun, C.-Y. Wang, Y. Liang, X.-Z. Zhao, J.-X. He, and H.-Z. Mo. 2022. Influence of ultrasound treatment on the physicochemical and antioxidant properties of mung bean protein hydrolysate. Ultrasonics Sonochemistry 84:105964. doi: 10.1016/j.ultsonch.2022.105964.
  • López-Barrios, L., M. Antunes-Ricardo, and J. A. Gutiérrez-Uribe. 2016. Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion. Food Chemistry 203:417–24. doi: 10.1016/j.foodchem.2016.02.048.
  • López‐Barrios, L., J. A. Gutiérrez‐Uribe, and S. O. Serna‐Saldívar. 2014. Bioactive peptides and hydrolysates from pulses and their potential use as functional ingredients. Journal of Food Science 79 (3):R273–R283.
  • Luna-Vital, D. A., L. Mojica, E. G. de Mejia, S. Mendoza, and G. Loarca-Piña. 2015. Biological potential of protein hydrolysates and peptides from common bean (Phaseolus vulgaris L.): a review. Food Research International 76:39–50. doi: 10.1016/j.foodres.2014.11.024.
  • Marques, M. R., G. G. Fontanari, D. C. Pimenta, R. M. Soares-Freitas, and J. A. G. Arêas. 2015. Proteolytic hydrolysis of cowpea proteins is able to release peptides with hypocholesterolemic activity. Food Research International 77:43–8. doi: 10.1016/j.foodres.2015.04.020.
  • Martinez-Villaluenga, C., V. P. Dia, M. Berhow, N. A. Bringe, and E. Gonzalez de Mejia. 2009. Protein hydrolysates from beta-conglycinin enriched soybean genotypes inhibit lipid accumulation and inflammation in vitro. Molecular Nutrition & Food Research 53 (8):1007–18. doi: 10.1002/mnfr.200800473.
  • Millan-Linares, M. C., B. Bermudez, M. M. Yust, F. Millan, and J. Pedroche. 2014. Antiinflammatory activity of lupine (Lupinus angustifolius L.) protein hydrolysates in THP-1-derived macrophages. Journal of Functional Foods 8:224–33. doi: 10.1016/j.jff.2014.03.020.
  • Mirzadeh, M., M. R. Arianejad, and L. Khedmat. 2020. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: a review. Carbohydrate Polymers 229:115421.
  • Mohan, N. M., A. Zorgani, L. Earley, S. Chauhan, S. Trajkovic, J. Savage, A. Adelfio, N. Khaldi, and M. Martins. 2021. Preservatives from food—for food: pea protein hydrolysate as a novel bio‐preservative against Escherichia coli O157:H7 on a lettuce leaf. Food Science & Nutrition 9 (11):5946–58. doi: 10.1002/fsn3.2489.
  • Mojica, L., E. G. de Mejia, M. Á. Granados-Silvestre, and M. Menjivar. 2017. Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches. Journal of Functional Foods 31:274–86. doi: 10.1016/j.jff.2017.02.006.
  • Moreno, C., L. Mojica, E. González de Mejía, R. M. Camacho Ruiz, and D. A. Luna-Vital. 2020. Combinations of legume protein hydrolysates synergistically inhibit biological markers associated with adipogenesis. Foods 9 (11):1678. doi: 10.3390/foods9111678.
  • Mujtaba, N.,N. Jahan,B. Sultana, andM. A. Zia. 2021. Isolation and characterization of antihypertensive peptides from soy bean protein. Brazilian Journal of Pharmaceutical Sciences 57. doi:10.1590/s2175-97902020000419061.
  • Mune Mune, M. A., S. R. Minka, and T. Henle. 2018. Investigation on antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activity of Bambara bean protein hydrolysates. Food Chemistry 250:162–9.
  • Nadzri, F. A., D. Tawalbeh, and N. M. Sarbon. 2021. Physicochemical properties and antioxidant activity of enzymatic hydrolysed chickpea (Cicer arietinum L.) protein as influence by alcalase and papain enzyme. Biocatalysis and Agricultural Biotechnology 36:102131. doi: 10.1016/j.bcab.2021.102131.
  • Nam, K. A., S. G. You, and S. M. Kim. 2008. Molecular and physical characteristics of squid (Todarodes pacificus) skin collagens and biological properties of their enzymatic hydrolysates. Journal of Food Science 73 (4):C249–C255. doi: 10.1111/j.1750-3841.2008.00722.x.
  • Ngoh, Y, and C. Gan. 2016. Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from pinto beans (Phaseolus vulgaris cv. Pinto). Food Chemistry 190:331–7. doi: 10.1016/j.foodchem.2015.05.120.
  • Nongonierma, A. B, and R. J. FitzGerald. 2015. Investigation of the potential of hemp, pea, rice and soy protein hydrolysates as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Digestion: Research and Current Opinion 6 (1–3):19–29.
  • Nuñes-Aragón, P. N., M. Segura-Campos, E. Negrete-Léon, J. J. Acevedo-Fernández, D. Betancur-Ancona, L. Chel-Guerrero, and G. Castañeda-Corral. 2019. Protein hydrolysates and ultrafiltered fractions (<1kDa) from Phaseolus lunatus, Phaseolus vulgaris and Mucuna pruriens exhibit antihyperglycemic activity, intestinal glucose absorption and α-glucosidase inhibition with no acute toxicity in rodents. Journal of the Science of Food and Agriculture 99:587–95.
  • Ohara, A., V. G. Cason, T. G. Nishide, F. Miranda de Matos, and R. J. S. de Castro. 2021. Improving the antioxidant and antidiabetic properties of common bean proteins by enzymatic hydrolysis using a blend of proteases. Biocatalysis and Biotransformation 39 (2):100–8. doi: 10.1080/10242422.2020.1789114.
  • Olagunju, A. I., O. S. Omoba, V. N. Enujiugha, A. M. Alashi, and R. E. Aluko. 2018a. Pigeon pea enzymatic protein hydrolysates and ultrafiltration peptide fractions as potential sources of antioxidant peptides: an in vitro study. LWT 97:269–78. doi: 10.1016/j.lwt.2018.07.003.
  • Olagunju, A. I., O. S. Omoba, V. N. Enujiugha, A. M. Alashi, and R. E. Aluko. 2018b. Antioxidant properties, ACE/renin inhibitor1y activities of pigeon pea hydrolysates and effects on systolic blood pressure of spontaneously hypertensive rats. Food Science & Nutrition 6 (7):1879–89.
  • Olagunju, A. I., O. S. Omoba, V. N. Enujiugha, A. M. Alashi, and R. E. Aluko. 2021. Thermoase‐hydrolysed pigeon pea protein and its membrane fractions possess in vitro bioactive properties (antioxidative, antihypertensive, and antidiabetic). Journal of Food Biochemistry 45 (3):e13429. doi: 10.1111/jfbc.13429.
  • Oliveira, C. F., D. Coletto, A. P. F. Correa, D. J. Daroit, R. Toniolo, and F. Cladera-Olivera. 2014. Antioxidant activity and inhibition of meat lipid oxidation by soy protein hydrolysates obtained with a microbial protease. International Food Research Journal 21 (2):775–81.
  • Oseguera-Toledo, M. E., E. G. de Mejia, and S. L. Amaya-Llano. 2015. Hard-to-cook bean (Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food Research International 76:839–51. doi: 10.1016/j.foodres.2015.07.046.
  • Oseguera-Toledo, M. E., E. G. de Mejia, V. P. Dia, and S. L. Amaya-Llano. 2011. Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-κB pathways. Food Chemistry 127 (3):1175–85. doi: 10.1016/j.foodchem.2011.01.121.
  • Osman, A., G. M. El-Araby, and H. Taha. 2016. Potential use as a bio-preservative from lupin protein hydrolysate generated by alcalase in food system. Journal of Applied Biology & Biotechnology 4:76–81.
  • Osman, A., G. Enan, A.-R. Al-Mohammadi, S. Abdel-Shafi, S. Abdel-Hameid, M. Z. Sitohy, and N. El-Gazzar. 2021. Antibacterial peptides produced by alcalase from cowpea seed proteins. Antibiotics 10 (7):870. doi: 10.3390/antibiotics10070870.
  • Pedroche, J., M. M. Yust, J. Girón-Calle, M. Alaiz, F. Millán, and J. Vioque. 2002. Utilisation of chickpea protein isolate for production of peptide with angiotensin I-converting enzyme (ACE)-inhibitory activity. Journal of the Science of Food and Agriculture 82 (9):960–5. doi: 10.1002/jsfa.1126.
  • Peña-Ramos, E. A., and Y. L. Xiong. 2002. Antioxidant activity of soy protein hydrolysates in a liposomal system. Journal of Food Science 67 (8):2952–6. doi: 10.1111/j.1365-2621.2002.tb08844.x.
  • Peña-Ramos, E. A., and Y. L. Xiong. 2003. Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties. Meat Science 64 (3):259–63. doi: 10.1016/S0309-1740(02)00187-0.
  • Polanco-Lugo, E., G. Dávila-Ortiz, D. A. Betancur-Ancona, and L. A. Chel-Guerrero. 2014. Effects of sequential enzymatic hydrolysis on structural, bioactive and functional properties of Phaseolus lunatus protein isolate. Food Science and Technology 34 (3):441–8. doi: 10.1590/1678-457x.6349.
  • Pownall, T. L., C. C. Udenigwe, and R. E. Aluko. 2010. Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) enzymatic protein hydrolysate fractions. Journal of Agricultural and Food Chemistry 58 (8):4712–8. doi: 10.1021/jf904456r.
  • Quintero‐Soto, M. F., J. Chávez‐Ontiveros, J. A. Garzón‐Tiznado, N. Y. Salazar‐Salas, K. V. Pineda‐Hidalgo, F. Delgado‐Vargas, and J. A. López‐Valenzuela. 2021. Characterization of peptides with antioxidant activity and antidiabetic potential obtained from chickpea (Cicer arietinum L.) protein hydrolyzates. Journal of Food Science 86 (7):2962–77. doi: 10.1111/1750-3841.15778.
  • Rahma, E. H., A. A. El-Bedawey, T. A. El-Adawy, and M. A. Goma. 1987. Changes in chemical and antinutritional factors and functional properties of faba beans during germination. LWT-Food Science & Technology 20:271–6.
  • Ratnayani, K., I. W. S. Panjaitan, and N. M. Puspawati. 2017. Screening potential antioxidant and antibacterial activities of protein hydrolysates derived from germinated lablab bean, pigeon pea and kidney bean. Journal of Health Sciences and Medicine 1 (1):24–7. doi: 10.24843/JHSM.2017.v01.i01.p07.
  • Ratnayani, K., I. K. Suter, N. S. Antara, and I. N. K. Putra. 2019. Effect of in vitro gastrointestinal digestion on the Angiotensin Converting Enzyme (ACE) inhibitory activity of pigeon pea protein isolate. International Food Research Journal 26 (4):1397–404.
  • Rezvankhah, A., M. S. Yarmand, B. Ghanbarzadeh, and H. Mirzaee. 2021a. Generation of bioactive peptides from lentil protein: degree of hydrolysis, antioxidant activity, phenol content, ACE-inhibitory activity, molecular weight, sensory, and functional properties. Journal of Food Measurement and Characterization 15 (6):5021–35. doi: 10.1007/s11694-021-01077-4.
  • Rezvankhah, A., M. S. Yarmand, B. Ghanbarzadeh, and H. Mirzaee. 2021b. Characterization of bioactive peptides produced from green lentil (Lens culinaris) seed protein concentrate using Alcalase and Flavourzyme in single and sequential hydrolysis. Journal of Food Processing and Preservation 45 (11):e15932. doi: 10.1111/jfpp.15932.
  • Rizzello, C. G.,A. Lavecchia,V. Gramaglia, andM. Gobbetti. 2015. Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread. Applied and Environmental Microbiology 81 (12):4195–206. doi:10.1128/AEM.04088-14.
  • Rostami, H, and S. M. T. Gharibzahedi. 2017. Cellulase-assisted extraction of polysaccharides from Malva sylvestris: process optimization and potential functionalities. International Journal of Biological Macromolecules 101:196–206. doi: 10.1016/j.ijbiomac.2017.03.078.
  • Roubos-van den Hil, P. J., E. Dalmas, M. J. R. Nout, and T. Abee. 2010. Soya bean tempeh extracts show antibacterial activity against Bacillus cereus cells and spores. Journal of Applied Microbiology 109 (1):137–45. doi: 10.1111/j.1365-2672.2009.04637.x.
  • Roy, F., J. I. Boye, and B. K. Simpson. 2010. Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil. Food Research International 43 (2):432–42. doi: 10.1016/j.foodres.2009.09.002.
  • Roy, M., A. Sarker, M. A. K. Azad, M. R. Shaheb, and M. M. Hoque. 2020. Evaluation of antioxidant and antimicrobial properties of dark red kidney bean (Phaseolus vulgaris) protein hydrolysates. Journal of Food Measurement and Characterization 14 (1):303–13. doi: 10.1007/s11694-019-00292-4.
  • Roy, M., S. Ullah, M. Alam, and M. A. Islam. 2022. Evaluation of quality parameters and antioxidant properties of protein concentrates and hydrolysates of hyacinth bean (Lablab purpureus). Legume Science 4 (2):e128. doi: 10.1002/leg3.128.
  • Rui, X., J. I. Boye, B. K. Simpson, and S. O. Prasher. 2012. Angiotensin I-converting enzyme inhibitory properties of Phaseolus vulgaris bean hydrolysates: effects of different thermal and enzymatic digestion treatments. Food Research International 49 (2):739–46. doi: 10.1016/j.foodres.2012.09.025.
  • Rui, X., J. I. Boye, B. K. Simpson, and S. O. Prasher. 2013. Purification and characterization of angiotensin I-converting enzyme inhibitory peptides of small red bean (Phaseolus vulgaris) hydrolysates. Journal of Functional Foods 5 (3):1116–24. doi: 10.1016/j.jff.2013.03.008.
  • Ruiz‐Ruiz, J. O. R. G. E., G. L. O. R. I. A. Dávila, Ortíz, L. U. I. S. Chel‐Guerrero, and D. A. V. I. D. Betancur‐Ancona. 2013. Angiotensin I‐converting enzyme inhibitory and antioxidant peptide fractions from hard‐to‐cook bean enzymatic hydrolysates. Journal of Food Biochemistry 37 (1):26–35.
  • Saad, A. M., A. O. M. Osman, A. S. Mohamed, and M. F. Ramadan. 2020. Enzymatic hydrolysis of Phaseolus vulgaris protein isolate: characterization of hydrolysates and effect on the quality of minced beef during cold storage. International Journal of Peptide Research and Therapeutics 26 (1):567–77. doi: 10.1007/s10989-019-09863-x.
  • Saad, A. M., M. Z. Sitohy, A. I. Ahmed, N. A. Rabie, S. A. Amin, S. M. Aboelenin, M. M. Soliman, and M. T. El-Saadony. 2021. Biochemical and functional characterization of kidney bean protein alcalase-hydrolysates and their preservative action on stored chicken meat. Molecules 26 (15):4690. doi: 10.3390/molecules26154690.
  • Saiga, A., S. Tanabe, and T. Nishimura. 2003. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry 51 (12):3661–7. doi: 10.1021/jf021156g.
  • Samaei, S. P., M. Ghorbani, D. Tagliazucchi, S. Martini, R. Gotti, T. Themelis, F. Tesini, A. Gianotti, T. Gallina Toschi, and E. Babini. 2020. Functional, nutritional, antioxidant, sensory properties and comparative peptidomic profile of and fortified apple juice. Food Chemistry 330:127120.
  • Sarker, A., S. Chakraborty, and M. Roy. 2020. Dark red kidney bean (Phaseolus vulgaris L.) protein hydrolysates inhibit the growth of oxidizing substances in plain yogurt. Journal of Agriculture and Food Research 2:100062. doi: 10.1016/j.jafr.2020.100062.
  • Segura-Campos, M. R., L. A. Chel-Guerrero, and D. A. Betancur-Ancona. 2010. Angiotensin-I converting enzyme inhibitory and antioxidant activities of peptide fractions extracted by ultrafiltration of cowpea Vigna unguiculata hydrolysates. Journal of the Science of Food and Agriculture 90:2512–8.
  • Segura-Campos, M. R., L. A. Chel-Guerrero, and D. A. Betancur-Ancona. 2011. Purification of angiotensin-I converting enzyme inhibitory peptides from a cowpea (Vigna unguiculata) enzymatic hydrolysate. Process Biochemistry 46 (4):864–72. doi: 10.1016/j.procbio.2010.12.008.
  • Segura-Campos, M. R., K. García-Rodríguez, J. C. Ruiz-Ruiz, L. Chel-Guerrero, and D. Betancur-Ancona. 2014. In vitro bioactivity, nutritional and sensory properties of semolina pasta added with hard-to-cook bean (Phaseolus vulgaris L.) protein hydrolysate. Journal of Functional Foods 8:1–8. doi: 10.1016/j.jff.2014.02.016.
  • Shahidi, F, and Y. Zhong. 2008. Bioactive peptides. Journal of AOAC International 91 (4):914–31. doi: 10.1093/jaoac/91.4.914.
  • Sheu, J. R., C. H. Lin, J. L. Chung, C. M. Teng, and T. F. Huang. 1992. Triflavin, an Arg-Gly-Asp containing antiplatelet peptide inhibits cell-substratum adhesion and melanoma cell-induced lung colonization. Japanese Journal of Cancer Research: Gann 83 (8):885–93.
  • Shimizu, M., N. Sawashita, F. Morimatsu, J. Ichikawa, Y. Taguchi, Y. Ijiri, and J. Yamamoto. 2009. Antithrombotic papain-hydrolyzed peptides isolated from pork meat. Thrombosis Research 123 (5):753–7. doi: 10.1016/j.thromres.2008.07.005.
  • Slama, R. B., N. Ktari, I. Bkhairia, R. Nasri, L. Mora, R. Kallel, S. Hamdi, K. Jamoussi, T. Boudaouara, A. El-Feki, et al. 2018. In vitro and in vivo antidiabetic and anti-hyperlipidemic effects of protein hydrolysates from Octopus vulgaris in alloxanic rats. Food Research International (Ottawa, Ont.) 106:952–63. doi: 10.1016/j.foodres.2018.01.068.
  • Sonklin, C., M. A. Alashi, N. Laohakunjit, O. Kerdchoechuen, and R. E. Aluko. 2020. Identification of antihypertensive peptides from mung bean protein hydrolysate and their effects in spontaneously hypertensive rats. Journal of Functional Foods 64:103635. doi: 10.1016/j.jff.2019.103635.
  • Stathopulos, P. B., G. A. Scholz, Y. M. Hwang, J. A. Rumfeldt, J. R. Lepock, E, and Meiering, M. 2004. Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Science: A Publication of the Protein Society 13 (11):3017–27. doi: 10.1110/ps.04831804.
  • Sun, W, and Y. L. Xiong. 2015. Stabilization of cooked cured beef color by radical-scavenging pea protein and its hydrolysate. LWT - Food Science and Technology 61 (2):352–8. doi: 10.1016/j.lwt.2014.12.048.
  • Surówka, K., D. Żmudziński, and J. Surówka. 2004. Enzymic modification of extruded soy protein concentrates as a method of obtaining new functional food components. Trends in Food Science & Technology 15 (3-4):153–60. doi: 10.1016/j.tifs.2003.09.013.
  • Swiatecka, D., A. Swiatecki, H. Kostyra, K. Marciniak-Darmochwał, and E. Kostyra. 2010. The impact of pea protein hydrolysates on bacterial physiological activity-an in vitro study. International Journal of Food Microbiology 140 (2-3):263–70. doi: 10.1016/j.ijfoodmicro.2010.03.015.
  • Tavares, T., M. del Mar Contreras, M. Amorim, M. Pintado, I. Recio, and F. X. Malcata. 2011. Novel whey-derived peptides with inhibitory effect against angiotensin converting enzyme: in vitro effect and stability to gastrointestinal enzymes. Peptides 32 (5):1013–9. doi: 10.1016/j.peptides.2011.02.005.
  • Teniente-Martínez, G., A. Bernardino-Nicanor, R. Cariño-Cortés, M. d C. Valadez-Vega, J. L. Montañez-Soto, G. Acosta-García, and L. González-Cruz. 2019. Cytotoxic and genotoxic activity of protein isolate of ayocote beans and anticancer activity of their protein fractions. Journal of Food Measurement and Characterization 13 (2):1040–8. doi: 10.1007/s11694-018-0019-7.
  • Thammarat, K., N. Leena, S. Punnanee, and B. Soottawat. 2015. Functional and Antioxidative properties of Bambara groundnut (Voandzeia subterranea) protein hydrolysates. International Food Research Journal 22 (4):1584–95.
  • Thiansilakul, Y., S. Benjakul, and F. Shahidi. 2007. Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme. Journal of Food Biochemistry 31 (2):266–87. doi: 10.1111/j.1745-4514.2007.00111.x.
  • Thomas, K., M. Aalbers, G. A. Bannon, M. Bartels, R. J. Dearman, D. J. Esdaile, T. J. Fu, C. M. Glatt, N. Hadfield, C. Hatzos, et al. 2004. A multi-laboratory evaluation of a common in vitro pepsin digestion assay protocol used in assessing the safety of novel proteins. Regulatory Toxicology and Pharmacology: RTP 39 (2):87–98. doi: 10.1016/j.yrtph.2003.11.003.
  • Todorov, S. D., M. B. Wachsman, H. Knoetze, M. Meincken, and L. M. T. Dicks. 2005. An antibacterial and antiviral peptide produced by Entrococcus mundtii ST4V isolated from soya beans. International Journal of Antimicrobial Agents 25 (6):508–13. doi: 10.1016/j.ijantimicag.2005.02.005.
  • Torres, J., S. M. Rutherfurd, L. S. Muñoz, M. Peters, and C. A. Montoya. 2016. The impact of heating and soaking on the in vitro enzymatic hydrolysis of protein varies in different species of tropical legumes. Food Chemistry 194:377–82. doi: 10.1016/j.foodchem.2015.08.022.
  • Torres-Fuentes, C., M. Alaiz, and J. Vioque. 2011. Affinity purification and characterisation of chelating peptides from chickpea protein hydrolysates. Food Chemistry 129 (2):485–90. doi: 10.1016/j.foodchem.2011.04.103.
  • Torruco-Uco, J., L. Chel-Guerrero, A. Martínez-Ayala, G. Dávila-Ortíz, and D. Betancur-Ancona. 2009. Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris seeds. LWT - Food Science and Technology 42 (10):1597–604. doi: 10.1016/j.lwt.2009.06.006.
  • Udeh, C., I. Ifie, J. Akpodiete, and S. Malomo. 2021. Kidney bean protein products as potential antioxidative and antihypertensive alternatives for non-pharmacological inhibition of angiotensin-converting enzymes. Scientific African 11:e00693. doi: 10.1016/j.sciaf.2021.e00693.
  • Udenigwe, C. C, and R. E. Aluko. 2012. Hypolipidemic and hypocholesterolemic food proteins and peptides. In Bioactive food proteins and peptides, ed. N. S. Hettiarachchy , 348. Boca Raton, FL: CRC Press Taylor & Francis Group.
  • Valdez-Ortiz, A., C. I. Fuentes-Gutiérrez, L. J. Germán-Báez, R. Gutiérrez-Dorado, and S. Medina-Godoy. 2012. Protein hydrolysates obtained from Azufrado (sulphur yellow) beans (Phaseolus vulgaris): nutritional, ACE-inhibitory and antioxidative characterization. LWT - Food Science and Technology 46 (1):91–6. doi: 10.1016/j.lwt.2011.10.021.
  • Valencia-Mejía, E., K. A. Batista, J. J. A. Fernández, and K. F. Fernandes. 2019. Antihyperglycemic and hypoglycemic activity of naturally occurring peptides and protein hydrolysates from easy-to-cook and hard-to-cook beans (Phaseolus vulgaris L.). Food Research International 121:238–46. doi: 10.1016/j.foodres.2019.03.043.
  • Vermeirssen, V., P. Augustijns, N. Morel, J. Van Camp, A. Opsomer, and W. Verstraete. 2005a. In vitro intestinal transport and antihypertensive activity of ACE inhibitory pea and whey digests. International Journal of Food Sciences and Nutrition 56 (6):415–30. doi: 10.1080/09637480500407461.
  • Vermeirssen, V., J. Van Camp, and W. Verstraete. 2005b. Fractionation of angiotensin I converting enzyme inhibitory activity from pea and whey protein in vitro gastrointestinal digests. Journal of the Science of Food and Agriculture 85 (3):399–405. doi: 10.1002/jsfa.1926.
  • Vernaza, M. G., V. P. Dia, E. González de Mejia, and Y. K. Chang. 2012. Antioxidant and antiinflammatory properties of germinated and hydrolysed Brazilian soybean flours. Food Chemistry 134 (4):2217–25. doi: 10.1016/j.foodchem.2012.04.037.
  • Walter, J., Y. Greenberg, P. Sriramarao, and B. P. Ismail. 2016. Limited hydrolysis combined with controlled Maillard-induced glycation does not reduce immunoreactivity of soy protein for all sera tested. Food Chemistry 213:742–52. doi: 10.1016/j.foodchem.2016.07.012.
  • Wang, D., X. Zhao, and Y. Liu. 2017. Hypoglycemic and hypolipidemic effects of a polysaccharide from flower buds of Lonicera japonica in streptozotocin-induced diabetic rats. International Journal of Biological Macromolecules 102:396–404. doi: 10.1016/j.ijbiomac.2017.04.056.
  • Wang, Y., Z. Wang, C. L. Handa, and J. Xu. 2017. Effects of ultrasound pre-treatment on the structure of β-conglycinin and glycinin and the antioxidant activity of their hydrolysates. Food Chemistry 218:165–72. doi: 10.1016/j.foodchem.2016.09.069.
  • Wickham, M., R. Faulks, and C. Mills. 2009. In vitro digestion methods for assessing the effect of food structure on allergen breakdown. Molecular Nutrition & Food Research 53 (8):952–8. doi: 10.1002/mnfr.200800193.
  • Wong, J. H, and T. B. Ng. 2005. Lunatusin, a trypsin-stable antimicrobial peptide from Lima beans (Phaseolus lunatus L.). Peptides 26 (11):2086–92. doi: 10.1016/j.peptides.2005.03.004.
  • Wong, J. H Ng, and T. B. 2005. Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (Phaseolus vulgaris). The International Journal of Biochemistry & Cell Biology 37 (8):1626–32. doi: 10.1016/j.biocel.2005.02.022.
  • Wong, J. H, and B. N. Tzi. 2005. A potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides 26 (7):1120–6. doi: 10.1016/j.peptides.2005.01.003.
  • Wu, J, and X. Ding. 2002. Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Research International 35 (4):367–75. doi: 10.1016/S0963-9969(01)00131-4.
  • Xie, J., M. Du, M. Shen, T. Wu, and L. Lin. 2019. Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate). Food Chemistry 270:243–50. doi: 10.1016/j.foodchem.2018.07.103.
  • Xie, J., H. Ye, M. Du, Q. Yu, Y. Chen, and M. Shen. 2020. Mung bean protein hydrolysates protect mouse liver cell line NCTC-1469 cell from hydrogen peroxide-induced cell injury. Foods 9 (1):14. doi: 10.3390/foods9010014.
  • Xu, J., D. Han, Z. Chen, M. Li, and H. Jin. 2018. Effect of glucose glycosylation following limited enzymatic hydrolysis on functional and conformational properties of black bean protein isolate. European Food Research and Technology 244 (6):1111–20. doi: 10.1007/s00217-018-3032-5.
  • Xu, J., H. F. Wu, E. S. M. Ang, K. Yip, M. Woloszyn, M. H. Zheng, and R. X. Tan. 2009. NF-κB modulators in osteolytic bone diseases. Cytokine & Growth Factor Reviews 20 (1):7–17. doi: 10.1016/j.cytogfr.2008.11.007.
  • Xu, X., Y. Qiao, B. Shi, and V. P. Dia. 2021. Alcalase and bromelain hydrolysis affected physicochemical and functional properties and biological activities of legume proteins. Food Structure 27:100178. doi: 10.1016/j.foostr.2021.100178.
  • Xu, Y., M. Galanopoulos, E. Sismour, S. Ren, Z. Mersha, P. Lynch, and A. Almutaimi. 2020. Effect of enzymatic hydrolysis using endo-and exo-proteases on secondary structure, functional, and antioxidant properties of chickpea protein hydrolysates. Journal of Food Measurement and Characterization 14 (1):343–52. doi: 10.1007/s11694-019-00296-0.
  • Yan, F., H. Cui, Q. Zhang, K. Hayat, J. Yu, S. Hussain, M. U. Tahir, X. Zhang, and C.-T. Ho. 2021. Small peptides hydrolyzed from pea protein and their Maillard reaction products as taste modifiers: saltiness, umami, and kokumi enhancement. Food and Bioprocess Technology 14 (6):1132–41. doi: 10.1007/s11947-021-02630-1.
  • Yang, H., X. Li, J. Gao, P. Tong, A. Yang, and H. Chen. 2017. Germination‐assisted enzymatic hydrolysis can improve the quality of soybean protein. Journal of Food Science 82 (8):1814–9. doi: 10.1111/1750-3841.13782.
  • Yin, S. W., C. H. Tang, Q. B. Wen, X. Q. Yang, and L. Li. 2008. Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: effect of high-pressure treatment. Food Chemistry 110 (4):938–45. doi: 10.1016/j.foodchem.2008.02.090.
  • Yoo, S. H, and Y. H. Chang. 2016. Volatile compound, physicochemical, and antioxidant properties of beany flavor-removed soy protein isolate hydrolyzates obtained from combined high temperature pre-treatment and enzymatic hydrolysis. Preventive Nutrition and Food Science 21 (4):338–47. doi: 10.3746/pnf.2016.21.4.338.
  • Yust, M. M., M. C. Millan-Linares, J. M. Alcaide-Hidalgo, F. Millan, and J. Pedroche. 2012. Hypocholesterolaemic and antioxidant activities of chickpea (Cicer arietinum L.) protein hydrolysates. Journal of the Science of Food and Agriculture 92 (9):1994–2001. doi: 10.1002/jsfa.5573.
  • Yust, M. M., J. Pedroche, J. Giron-Calle, M. Alaiz, F. Millan, and J. Vioque. 2003. Production of ace inhibitory peptides by digestion of chickpea legumin with alcalase. Food Chemistry 81 (3):363–9. doi: 10.1016/S0308-8146(02)00431-4.
  • Żbikowska-Gotz, M., K. Pałgan, E. Gawrońska-Ukleja, A. Kuźmiński, M. Przybyszewski, E. Socha, and Z. Bartuzi. 2016. Expression of IL-17A concentration and effector functions of peripheral blood neutrophils in food allergy hypersensitivity patients. International Journal of Immunopathology and Pharmacology 29 (1):90–8. doi: 10.1177/0394632015617069.
  • Zhang, L., J. Li, and K. Zhou. 2010. Chelating and radical scavenging activities of soy protein hydrolysates prepared from microbial proteases and their effect on meat lipid peroxidation. Bioresource Technology 101 (7):2084–9. doi: 10.1016/j.biortech.2009.11.078.
  • Zhang, T., B. Jiang, M. Miao, W. Mu, and Y. Li. 2012. Combined effects of high-pressure and enzymatic treatments on the hydrolysis of chickpea protein isolates and antioxidant activity of the hydrolysates. Food Chemistry 135 (3):904–12. doi: 10.1016/j.foodchem.2012.05.097.
  • Zhang, T., L. Yanhong, M. Miao, and B. Jiang. 2011. Purification and characterisation of a new antioxidant peptide from chickpea (Cicer arietium L.) protein hydrolysates. Food Chemistry 128 (1):28–33. doi: 10.1016/j.foodchem.2011.02.072.
  • Zhang, W., L. Huang, W. Chen, J. Wang, and S. Wang. 2021. Influence of ultrasound-assisted ionic liquid pretreatments on the functional properties of soy protein hydrolysates. Ultrasonics Sonochemistry 73:105546. doi: 10.1016/j.ultsonch.2021.105546.
  • Zhang, Y., C. Tan, X. Zhang, S. Xia, C. Jia, K. Eric, S. Abbas, B. Feng, and F. Zhong. 2014. Effects of maltodextrin glycosylation following limited enzymatic hydrolysis on the functional and conformational properties of soybean protein isolate. European Food Research and Technology 238 (6):957–68. doi: 10.1007/s00217-014-2164-5.
  • Zhang, Y, and H. M. Romero. 2020. Exploring the structure-function relationship of Great Northern and navy bean (Phaseolus vulgaris L.) protein hydrolysates: a study on the effect of enzymatic hydrolysis. International Journal of Biological Macromolecules 162:1516–25. doi: 10.1016/j.ijbiomac.2020.08.019.
  • Zhang, Y., F. Niu, X. Zhang, Z. Lu, Y. Guo, and H. Wang. 2018. Controlled enzymatic hydrolysis on characteristic and antioxidant properties of soybean protein isolate-maltodextrin conjugates. International Journal of Food Properties 21 (1):2239–49. doi: 10.1080/10942912.2018.1508154.
  • Zhang, Z., R. Zhang, and D. J. McClements. 2017. Control of protein digestion under simulated gastrointestinal conditions using biopolymer microgels. Food Research International (Ottawa, Ont.) 100 (Pt 2):86–94. doi: 10.1016/j.foodres.2017.08.037.
  • Zhao, P., X. Xiao, R. M. Ghobrial, and X. C. Li. 2013. IL-9 and Th9 cells: progress and challenges. International Immunology 25 (10):547–51. doi: 10.1093/intimm/dxt039.
  • Zhao, Q., H. Xiong, C. Selomulya, X. D. Chen, H. Zhong, S. Wang, W. Sun, and Q. Zhou. 2012. Enzymatic hydrolysis of rice dreg protein: effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food Chemistry 134 (3):1360–7. doi: 10.1016/j.foodchem.2012.03.033.
  • Zheng, Z., J. Li, J. Li, H. Sun, and Y. Liu. 2019. Physicochemical and antioxidative characteristics of black bean protein hydrolysates obtained from different enzymes. Food Hydrocolloids. 97:105222. doi: 10.1016/j.foodhyd.2019.105222.
  • Zheng, Z., M. Wang, J. Li, J. Li, and Y. Liu. 2020. Comparative assessment of physicochemical and antioxidative properties of mung bean protein hydrolysates. RSC Advances 10 (5):2634–45. doi: 10.1039/c9ra06468k.
  • Zhong, F., J. Liu, J. Ma, and C. F. Shoemaker. 2007. Preparation of hypocholesterol peptides from soy protein and their hypocholesterolemic effect in mice. Food Research International 40 (6):661–7. doi: 10.1016/j.foodres.2006.11.011.
  • Zhou, X., H. Cui, Q. Zhang, K. Hayat, J. Yu, S. Hussain, M. U. Tahir, X. Zhang, and C.-T. Ho. 2021. Taste improvement of Maillard reaction intermediates derived from enzymatic hydrolysates of pea protein. Food Research International (Ottawa, Ont.) 140:109985. doi: 10.1016/j.foodres.2020.109985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.