809
Views
5
CrossRef citations to date
0
Altmetric
Review

Preparation, pungency and bioactivity of gingerols from ginger (Zingiber officinale Roscoe): a review

, , , ORCID Icon, & ORCID Icon

References

  • Abbas, M., U. Aly, H. Taha, and E.-S. Gaber. 2021. In vitro production of microrhizomes in ginger (Zingiber officinale Rosco). Journal of Microbiology, Biotechnology and Food Sciences 2021:142–8.
  • Abbas, M. A. 2020. Modulation of TRPV1 channel function by natural products in the treatment of pain. Chemico-Biological Interactions 330:109178. doi: 10.1016/j.cbi.2020.109178.
  • Abdel-Aziz, H., T. Windeck, M. Ploch, and E. J. Verspohl. 2006. Mode of action of gingerols and shogaols on 5-HT3 receptors: binding studies, cation uptake by the receptor channel and contraction of isolated guinea-pig ileum. European Journal of Pharmacology 530 (1–2):136–43.
  • Abdo, M. T., S. H. El‐Ahmady, and H. A. Gad. 2021. Quality control and long‐term stability study of ginger from different geographical origins using chemometrics. Journal of the Science of Food and Agriculture 101 (8):3429–38. doi: 10.1002/jsfa.10973.
  • Adetuyi, B. O, and E. O. Farombi. 2021. 6‐Gingerol, an active constituent of ginger, attenuates lipopolysaccharide‐induced oxidation, inflammation, cognitive deficits, neuroplasticity, and amyloidogenesis in rat. Journal of Food Biochemistry 45 (4):e13660. doi: 10.1111/jfbc.13660.
  • Aggarwal, R. 2021. Targeting TRPV1 signaling pathway through natural products in inflammatory cancer. Journal of Advanced Scientific Research 12:66–78.
  • Alam, J., T. Hussain, and S. Pati. 2020. Bio-active compounds (Curcumin, Allicin and Gingerol) of common spices used in Indian and South-east Asian countries might protect against COVID-19 infection: a short review. European Journal of Medicinal Plants 31:65–78. doi: 10.9734/ejmp/2020/v31i2030363.
  • Alqasoumi, S. I. 2012. Ameliorative effect of 10-gingerol on drug induced hepatotoxicity in albino rats. Journal of Medicinal Plants Research 6:1548–55.
  • Alsahli, M. A., S. A. Almatroodi, A. Almatroudi, A. A. Khan, S. Anwar, A. G. Almutary, F. Alrumaihi, and A. H. Rahmani. 2021. 6-gingerol, a major ingredient of ginger attenuates diethylnitrosamine-induced liver injury in rats through the modulation of oxidative stress and anti-inflammatory activity. Mediators of Inflammation. 2021:1–17. doi: 10.1155/2021/6661937.
  • Alsherbiny, M. A., W. H. Abd-Elsalam, S. A. El Badawy, E. Taher, M. Fares, A. Torres, D. Chang, and C. G. Li. 2019. Ameliorative and protective effects of ginger and its main constituents against natural, chemical and radiation-induced toxicities: a comprehensive review. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 123:72–97.
  • Aly, U. I., M. S. Abbas, H. S. Taha, and E.-S. I. Gaber. 2013. Characterization of 6-gingerol for in vivo and in vitro ginger (Zingiber officinale) using high performance liquid chromatography. Global Journal of Botanical Science 1 (1):9–17. doi: 10.12974/2311-858X.2013.01.01.2.
  • Anuar, A., T. J. Yi, and M. A. Awang. 2021. Optimization model of total phenolic compounds in Zingiber Officinale via ultrasound-assisted extraction technique. Journal of Engineering and Science Research 5 (5):1–6. doi: 10.26666/rmp.jesr.2021.5.1.
  • Arbizu-Trigueros, R. G., Baek, Y.-S., Kim, S.-Y. Jang, Y.-S. Kim, T.-H. Bae, T.-S, and Lee, M.-H. 2021. Osteoblast cytocompatibility and antibacterial effect of ginger main compounds. Korean Journal of Dental Materials 48 (3):159–74. doi: 10.14815/kjdm.2021.48.3.159.
  • Archana, C., S. Geetha, and B. Indira. 2013. In vitro microrhizome induction in three high yielding cultivars of Zingiber officinale Rosc. and their phytopathological analysis. International Journal of Advanced Biotechnology and Research 4:296–300.
  • Aroke, E. N., K. L. Powell-Roach, R. B. Jaime-Lara, M. Tesfaye, A. Roy, P. Jackson, and P. V. Joseph. 2020. Taste the pain: the role of TRP channels in pain and taste perception. International Journal of Molecular Sciences 21 (16):5929. doi: 10.3390/ijms21165929.
  • Aryaeian, N., F. Shahram, M. Mahmoudi, H. Tavakoli, B. Yousefi, T. Arablou, and S. J. Karegar. 2019. The effect of ginger supplementation on some immunity and inflammation intermediate genes expression in patients with active rheumatoid arthritis. Gene 698:179–85. doi: 10.1016/j.gene.2019.01.048.
  • Asghar, A, and N. Sheikh. 2017. Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cellular Immunology 315:18–26. doi: 10.1016/j.cellimm.2017.03.001.
  • Aulia, M. P., F. Pradhita, A. C. Kumoro, M. Christwardana, and H. Hargono. 2018. Kinetic study and optimization of the most influential factor on batch-extraction of gingerol from fresh ginger (Zingiber officinale) rhizomes by using n-hexane as a solvent. Reaktor 18 (3):136–42. doi: 10.14710/reaktor.18.03.136-142.
  • Awang, M. A., N. A. Azelan, N. Ain, A. Wan, A. Aziz, R. Hasham, and J. Bharu. 2014. Influence of processing parameters on the yield and 6-gingerol content of Zingiber officinale extract. Journal of Chemical and Pharmaceutical Research 6:358–63.
  • Azian, M., A. I. Anisa, and Y. Iwai. 2014. Mechanisms of ginger bioactive compounds extract using Soxhlet and accelerated water extraction. International Journal of Chemical, Materials Science and Engineering 8:438–42.
  • Azizah, N., S. L. Purnamaningsih, and S. Fajriani. 2019. Land characteristics impact productivity and quality of ginger (Zingiber officinale Rosc) in Java, Indonesia. AGRIVITA, Journal of Agricultural Science 41:439–49.
  • Bag, B. B. 2018. Ginger processing in India (Zingiber officinale): a review. International Journal of Current Microbiology and Applied Sciences 7:1639–51.
  • Balaji, R., R. Duraisamy, and M. Kumar. 2019. Complications of diabetes mellitus: a review. Drug Invention Today 12:98–103.
  • Bandar, H., A. Hijazi, H. Rammal, A. Hachem, Z. Saad, and B. Badran. 2013. Techniques for the extraction of bioactive compounds from Lebanese Urtica Dioica. American Journal of Phytomedicine and Clinical Therapeutics 1:507–13.
  • Beristain-Bauza, S. D. C., P. Hernández-Carranza, T. S. Cid-Pérez, R. Ávila-Sosa, I. I. Ruiz-López, and C. E. Ochoa-Velasco. 2019. Antimicrobial activity of ginger (Zingiber officinale) and its application in food products. Food Reviews International 35 (5):407–26. doi: 10.1080/87559129.2019.1573829.
  • Bhatt, N., M. I. Waly, M. M. Essa, and A. Ali. 2013. Ginger: a functional herb. Food as Medicine 1:51–71.
  • Cai, L., S. Liu, L. Sun, Y. Wang, H. Ji, and J. Li. 2015a. Application of tea polyphenols in combination with 6-gingerol on shrimp paste of during storage: biogenic amines formation and quality determination. Frontiers in Microbiology 6:981. doi: 10.3389/fmicb.2015.00981.
  • Cai, Z.-X., X.-D. Tang, F.-Y. Wang, Z.-J. Duan, Y.-C. Li, J.-J. Qiu, and H.-S. Guo. 2015b. Effect of gingerol on colonic motility via inhibition of calcium channel currents in rats. World Journal of Gastroenterology 21 (48):13466. doi: 10.3748/wjg.v21.i48.13466.
  • Cakir, U., C. Tayman, U. Serkant, H. I. Yakut, E. Cakir, U. Ates, I. Koyuncu, and E. Karaogul. 2018. Ginger (Zingiber officinale Roscoe) for the treatment and prevention of necrotizing enterocolitis. Journal of Ethnopharmacology 225:297–308. doi: 10.1016/j.jep.2018.07.009.
  • Caterina, M. J., A. Leffler, A. B. Malmberg, W. Martin, J. Trafton, K. Petersen-Zeitz, M. Koltzenburg, A. Basbaum, and D. Julius. 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science (New York, N.Y.) 288 (5464):306–13. doi: 10.1126/science.288.5464.306.
  • Caterina, M. J., M. A. Schumacher, M. Tominaga, T. A. Rosen, J. D. Levine, and D. Julius. 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389 (6653):816–24. doi: 10.1038/39807.
  • Cha, J., C.-T. Kim, and Y.-J. Cho. 2020. Optimizing extraction ­conditions for functional compounds from ginger (Zingiber ­officinale Roscoe) using response surface methodology. Food sScience and bBiotechnology 29 (3):379–85. doi: 10.1007/s10068-019-00667-9.
  • Chatupheeraphat, C., C. Nantasenamat, K. Deesrisak, S. Roytrakul, U. Anurathapan, and D. Tanyong. 2020. Bioinformatics and experimental studies of anti-leukemic activity from 6-gingerol demonstrate its role in P53 mediated apoptosis pathway. EXCLI Journal 19:582–95.
  • Chen, H., D. N. Soroka, J. Haider, K. F. Ferri-Lagneau, T. Leung, and S. Sang. 2013. [10]-Gingerdiols as the major metabolites of [10]-gingerol in zebrafish embryos and in humans and their hematopoietic effects in zebrafish embryos. Journal of Agricultural and Food Chemistry 61 (22):5353–60. doi: 10.1021/jf401501s.
  • Chen, S.-Y, and P. L. Urban. 2015. On-line monitoring of Soxhlet extraction by chromatography and mass spectrometry to reveal temporal extract profiles. Analytica Chimica Acta 881:74–81. doi: 10.1016/j.aca.2015.05.003.
  • Cheng, S.-P., K.-H. Jia, H. Liu, R.-G. Zhang, Z.-C. Li, S.-S. Zhou, T.-L. Shi, A.-C. Ma, C.-W. Yu, C. Gao, et al. 2021. Haplotype-resolved genome assembly and allele-specific gene expression in cultivated ginger. Horticulture Research 8:188. doi: 10.1038/s41438-021-00599-8.
  • Chetana, B, and S. Pai. 2018. A review on doctrine of signatureswith special reference to samanya-vishesha siddhantha. International Ayurveda Publications 3:985–96.
  • Chiaramonte, M., R. Bonaventura, C. Costa, F. Zito, and R. Russo. 2021. [6]-Gingerol dose-dependent toxicity, its role against lipopolysaccharide insult in sea urchin (Paracentrotus lividus Lamarck), and antimicrobial activity. Food Bioscience 39:100833. doi: 10.1016/j.fbio.2020.100833.
  • Dalsasso, R. R., G. A. Valencia, and A. R. Monteiro. 2022. Impact of drying and extractions processes on the recovery of gingerols and shogaols, the main bioactive compounds of ginger. Food Research International 154:111043. doi: 10.1016/j.foodres.2022.111043.
  • de Lima, R. M. T., A. C. Dos Reis, A.-A P. M. de Menezes, J. V. d O. Santos, J. W. G. d O. Filho, J. R. d O. Ferreira, M. V. O. B. de Alencar, A. M. O. F. da Mata, I. N. Khan, A. Islam, et al. 2018. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]‐gingerol in cancer: a comprehensive review. Phytotherapy Research: PTR 32 (10):1885–907.
  • Dedov, V. N., V. H. Tran, C. C. Duke, M. Connor, M. J. Christie, S. Mandadi, and B. D. Roufogalis. 2002. Gingerols: a novel class of vanilloid receptor (VR1) agonists. British Journal of Pharmacology 137 (6):793–8. doi: 10.1038/sj.bjp.0704925.
  • del Carmen Ramirez-Ahumada, M., B. N. Timmermann, and D. R. Gang. 2006. Biosynthesis of curcuminoids and gingerols in turmeric (Curcuma longa) and ginger (Zingiber officinale): identification of curcuminoid synthase and hydroxycinnamoyl-CoA thioesterases. Phytochemistry 67 (18):2017–29.
  • Deng, B., X.-L. Jiang, Y.-C. Xu, S. Chen, M. Cai, S.-H. Deng, W.-J. Ding, H.-L. Xu, S.-W. Zhang, Z.-B. Tan, et al. 2022. 10-Gingerol, a natural AMPK agonist, suppresses neointimal hyperplasia and inhibits vascular smooth muscle cell proliferation. Food & Function 13 (6):3234–46.
  • Denniff, P., I. Macleod, and D. A. Whiting. 1980. Studies in the biosynthesis of [6]-gingerol, pungent principle of ginger (Zingiber officinale). Journal of the Chemical Society, Perkin Transactions 1:2637–44.
  • El-Nabarawy, M., S. El-Kafafi, M. Hamza, and M. Omar. 2015. The effect of some factors on stimulating the growth and production of active substances in Zingiber officinale callus cultures. Annals of Agricultural Sciences 60 (1):1–9. doi: 10.1016/j.aoas.2014.11.020.
  • El-Naggar, M. H., A. Mira, F. M. A. Bar, K. Shimizu, M. M. Amer, and F. A. Badria. 2017. Synthesis, docking, cytotoxicity, and LTA4H inhibitory activity of new gingerol derivatives as potential colorectal cancer therapy. Bioorganic & Medicinal Chemistry 25 (3):1277–85. doi: 10.1016/j.bmc.2016.12.048.
  • Eren, D., and Y. M. Betul. 2016. Revealing the effect of 6-gingerol, 6-shogaol and curcumin on mPGES-1, GSK-3β and β-catenin pathway in A549 cell line. Chemico-Biological Interactions 258:257–65. doi: 10.1016/j.cbi.2016.09.012.
  • Ernfors, P., and M. A. Svenningsson. 2021. Scientific background: Discoveries of receptors for temperature and touch. The Nobel Assembly at Karolinska Institute. https://www.nobelprize.org/prizes/medicine/2021/advanced-information/
  • Fan, J., X. Yang, and Z. Bi. 2015. 6-Gingerol inhibits osteosarcoma cell proliferation through apoptosis and AMPK activation. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine 36 (2):1135–41. doi: 10.1007/s13277-014-2723-1.
  • Ferri-Lagneau, K. F., K. S. Moshal, M. Grimes, B. Zahora, L. Lv, S. Sang, and T. Leung. 2012. Ginger stimulates hematopoiesis via bmp pathway in zebrafish. PLoS One. 7 (6):e39327. doi: 10.1371/journal.pone.0039327.
  • Fu, C., D. Wu, Z. Jin, G. Xie, and J. Lu. 2022. Development of a novel cooking wine with high-efficiency deodorizing capability via a rapid fermentation strategy. LWT 153:112431. doi: 10.1016/j.lwt.2021.112431.
  • Fu, Y., W.-N. Liu, and O. P. Soladoye. 2020. Towards potato protein utilisation: insights into separation, functionality and bioactivity of patatin. International Journal of Food Science & Technology 55 (6):2314–22. doi: 10.1111/ijfs.14343.
  • Gabr, S. A., A. H. Alghadir, and G. A. Ghoniem. 2019. Biological activities of ginger against cadmium-induced renal toxicity. Saudi Journal of Biological Sciences 26 (2):382–9. doi: 10.1016/j.sjbs.2017.08.008.
  • Gandhi, K., S. Arora, and A. Kumar. 2017. Industrial applications of supercritical fluid extraction: a review. International Journal of Chemical Studies 5:336–40.
  • Geng, S., Y. Zheng, M. Meng, Z. Guo, N. Cao, X. Ma, Z. Du, J. Li, Y. Duan, and G. Du. 2016. Gingerol reverses the cancer-promoting effect of capsaicin by increased TRPV1 level in a urethane-induced lung carcinogenic model. Journal of Agricultural and Food Chemistry 64 (31):6203–11. doi: 10.1021/acs.jafc.6b02480.
  • Ghosh, S, and S. S. Mandi. 2015. SNP in chalcone synthase gene is associated with variation of 6-gingerol content in contrasting landraces of Zingiber officinale. Roscoe. Gene 566 (2):184–8. doi: 10.1016/j.gene.2015.04.042.
  • Govindarajan, V, and D. Connell. 1983. Ginger—chemistry, technology, and quality evaluation: part 2. C R C Critical Reviews in Food Science and Nutrition 17 (3):189–258. doi: 10.1080/10408398209527348.
  • Guo, J.-B., Y. Fan, W.-J. Zhang, H. Wu, L.-M. Du, and Y.-X. Chang. 2017. Extraction of gingerols and shogaols from ginger (Zingiber officinale Roscoe) through microwave technique using ionic liquids. Journal of Food Composition and Analysis 62:35–42. doi: 10.1016/j.jfca.2017.04.014.
  • Guo, J-B., W.-J. Zhang, H. Wu, and L.-M. Du. 2015. Microwave-assisted decomposition coupled with acidic food condiment as an efficient technology for ginger (Zingiber officinale Roscoe) processing. Separation and Purification Technology 146:219–26. doi: 10.1016/j.seppur.2015.03.049.
  • Ha, S. K., E. Moon, M. S. Ju, D. H. Kim, J. H. Ryu, M. S. Oh, and S. Y. Kim. 2012. 6-Shogaol, a ginger product, modulates neuroinflammation: a new approach to neuroprotection. Neuropharmacology 63 (2):211–23.
  • Han, X., P. Liu, M. Liu, Z. Wei, S. Fan, X. Wang, S. Sun, and L. Chu. 2020. [6]‐Gingerol ameliorates ISO‐induced myocardial fibrosis by reducing oxidative stress, inflammation, and apoptosis through inhibition of TLR4/MAPKs/NF‐κB pathway. Molecular Nutrition & Food Research 64 (13):2000003. doi: 10.1002/mnfr.202000003.
  • Haniadka, R., A. G. Rajeev, P. L. Palatty, R. Arora, and M. S. Baliga. 2012. Zingiber officinale (Ginger) as an anti-emetic in cancer chemotherapy: a review. Journal of Alternative and Complementary Medicine (New York, N.Y.) 18 (5):440–4. doi: 10.1089/acm.2010.0737.
  • Haniadka, R., A. Saxena, A. Shivashankara, R. Fayad, P. Palatty, N. Nazreth, A. Francis, R. Arora, and M. Baliga. 2013. Ginger protects the liver against the toxic effects of xenobiotic compounds: preclinical observations. Journal of Nutrition & Food Sciences 3:1000226.
  • Heimes, K., B. Feistel, and E. J. Verspohl. 2009. Impact of the 5-HT3 receptor channel system for insulin secretion and interaction of ginger extracts. European Journal of Pharmacology 624 (1–3):58–65. doi: 10.1016/j.ejphar.2009.09.049.
  • Herrero, M., P. del, A. Sánchez-Camargo, A. Cifuentes, and E. Ibáñez. 2015. Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. TrAC Trends in Analytical Chemistry 71:26–38. doi: 10.1016/j.trac.2015.01.018.
  • Hirao, N., J. Kawachi, and B. Yasui. 1973. Synthesis of natural gingerol. Chemical and Pharmaceutical Bulletin 21 (11):2569–71. doi: 10.1248/cpb.21.2569.
  • Ho, S.-C., K.-S. Chang, and C.-C. Lin. 2013. Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol. Food Chemistry 141 (3):3183–91. doi: 10.1016/j.foodchem.2013.06.010.
  • Hoff, R. B, and T. M. Pizzolato. 2018. Combining extraction and purification steps in sample preparation for environmental matrices: a review of matrix solid phase dispersion (MSPD) and pressurized liquid extraction (PLE) applications. TrAC Trends in Analytical Chemistry 109:83–96. doi: 10.1016/j.trac.2018.10.002.
  • Hsu, Y.-L., C.-Y. Chen, I.-P. Lin, E.-M. Tsai, P.-L. Kuo, and M.-F. Hou. 2012. 4-Shogaol, an active constituent of dietary ginger, inhibits metastasis of MDA-MB-231 human breast adenocarcinoma cells by decreasing the repression of NF-κB/Snail on RKIP. Journal of Agricultural and Food Chemistry 60 (3):852–61. doi: 10.1021/jf2052515.
  • Hu, J., Z. Guo, M. Glasius, K. Kristensen, L. Xiao, and X. Xu. 2011. Pressurized liquid extraction of ginger (Zingiber officinale Roscoe) with bioethanol: An efficient and sustainable approach. Journal of Chromatography. A 1218 (34):5765–73. doi: 10.1016/j.chroma.2011.06.088.
  • Hu, S. M., X. H. Yao, Y. H. Hao, A. H. Pan, and X. W. Zhou. 2020. 8‑Gingerol regulates colorectal cancer cell proliferation and migration through the EGFR/STAT/ERK pathway. International Journal of Oncology 56 (1):390–7. doi: 10.3892/ijo.2019.4934.
  • Huang, H.-C., Y.-C. Chou, C.-Y. Wu, and T.-M. Chang. 2013. [8]-Gingerol inhibits melanogenesis in murine melanoma cells through down-regulation of the MAPK and PKA signal pathways. Biochemical and Biophysical Research Communications 438 (2):375–81. doi: 10.1016/j.bbrc.2013.07.079.
  • Huh, E., J. G. Choi, D. Noh, H.-S. Yoo, J. Ryu, N.-J. Kim, H. Kim, and M. S. Oh. 2020. Ginger and 6-shogaol protect intestinal tight junction and enteric dopaminergic neurons against 1-methyl-4-phenyl 1, 2, 3, 6-tetrahydropyridine in mice. Nutritional Neuroscience 23 (6):455–64. doi: 10.1080/1028415X.2018.1520477.
  • Iwasaki, Y., A. Morita, T. Iwasawa, K. Kobata, Y. Sekiwa, Y. Morimitsu, K. Kubota, and T. Watanabe. 2006. A nonpungent component of steamed ginger—[10]-shogaol—increases adrenaline secretion via the activation of TRPV1. Nutritional Neuroscience 9 (3):169–78. doi: 10.1080/10284150600955164.
  • Jeena, K., V. B. Liju, R. Viswanathan, and R. Kuttan. 2014. Antimutagenic potential and modulation of carcinogen‐metabolizing enzymes by ginger essential oil. Phytotherapy Research: PTR 28 (6):849–55. doi: 10.1002/ptr.5064.
  • Jha, A. K, and N. Sit. 2022. Extraction of bioactive compounds from plant materials using combination of various novel methods: a review. Trends in Food Science & Technology 119:579–91. doi: 10.1016/j.tifs.2021.11.019.
  • Ji, R.-R, and S.-Y. Lee. 2021. Molecular sensors of temperature, pressure, and pain with special focus on TRPV1, TRPM8, and PIEZO2 ion channels. Neuroscience Bulletin 37 (12):1745–9.
  • Jiang, Q., N. Xu, L. Kong, M. Wang, and H. Lei. 2021. Promoting effects of 6-Gingerol on probiotic adhesion to colonic epithelial cells. Food Science and Technology 41 (3):678–86. doi: 10.1590/fst.17420.
  • Jiang, Y., M. Huang, M. Wisniewski, H. Li, M. Zhang, X. Tao, Y. Liu, and Y. Zou. 2018. Transcriptome analysis provides insights into gingerol biosynthesis in ginger (Zingiber officinale). The Plant Genome 11 (3):180034. doi: 10.3835/plantgenome2018.06.0034.
  • Jiang, Y., Q. Liao, Y. Zou, Y. Liu, and J. Lan. 2017. Transcriptome analysis reveals the genetic basis underlying the biosynthesis of volatile oil, gingerols, and diarylheptanoids in ginger (Zingiber officinale Rosc.). Botanical Studies 58 (1):1–12. doi: 10.1186/s40529-017-0195-5.
  • Johnson, J. B., J. S. Mani, S. White, P. Brown, and M. Naiker. 2021. Quantitative profiling of gingerol and its derivatives in Australian ginger. Journal of Food Composition and Analysis 104:104190. doi: 10.1016/j.jfca.2021.104190.
  • Joo, J.-H., S.-S. Hong, Y.-R. Cho, and D.-W. Seo. 2016. 10-Gingerol inhibits proliferation and invasion of MDA-MB-231 breast cancer cells through suppression of Akt and p38MAPK activity. Oncology Reports 35 (2):779–84. doi: 10.3892/or.2015.4405.
  • Joshi, D., S. K. Srivastav, S. Belemkar, and V. A. Dixit. 2017. Zingiber officinale and 6-gingerol alleviate liver and kidney dysfunctions and oxidative stress induced by mercuric chloride in male rats: a protective approach. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 91:645–55. doi: 10.1016/j.biopha.2017.04.108.
  • Kapoor, V., S. Aggarwal, and S. N. Das. 2016. 6‐Gingerol mediates its anti tumor activities in human oral and cervical cancer cell lines through apoptosis and cell cycle arrest. Phytotherapy Research: PTR 30 (4):588–95. doi: 10.1002/ptr.5561.
  • Kausar, T., Anwar, S. Hanan, S. Yaseen, M. Aboelnaga, S. M. H. and Azad, Z. R. A. A. 2021. Therapeutic role of ginger (Zingiber officinale)—a review. Journal of Pharmaceutical Research International 33:9–16. doi: 10.9734/jpri/2021/v33i29B31584.
  • Khandouzi, N., F. Shidfar, A. Rajab, T. Rahideh, P. Hosseini, and M. M. Taheri. 2015. The effects of ginger on fasting blood sugar, hemoglobin A1c, apolipoprotein B, apolipoprotein AI and malondialdehyde in type 2 diabetic patients. Iranian Journal of Pharmaceutical Research: IJPR 14:131.
  • Khaw, K.-Y., M.-O. Parat, P. N. Shaw, and J. R. Falconer. 2017. Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: a review. Molecules 22 (7):1186. doi: 10.3390/molecules22071186.
  • Kim, S. O., and M. R. Kim. 2013. [6]-gingerol prevents disassembly of cell junctions and activities of MMPs in invasive human pancreas cancer cells through ERK/NF-κB/snail signal transduction pathway. Evidence-Based Complementary and Alternative Medicine. 2013:1–9. doi: 10.1155/2013/761852.
  • Kiyama, R. 2020. Nutritional implications of ginger: chemistry, biological activities and signaling pathways. The Journal of Nutritional Biochemistry 86:108486. doi: 10.1016/j.jnutbio.2020.108486.
  • Ko, M.-J., H.-H. Nam, and M.-S. Chung. 2019. Conversion of 6-gingerol to 6-shogaol in ginger (Zingiber officinale) pulp and peel during subcritical water extraction. Food Chemistry 270:149–55. doi: 10.1016/j.foodchem.2018.07.078.
  • Koivisto, A.-P., M. G. Belvisi, R. Gaudet, and A. Szallasi. 2022. Advances in TRP channel drug discovery: from target validation to clinical studies. Nature Reviews. Drug Discovery 21 (1):41–59. doi: 10.1038/s41573-021-00268-4.
  • Kou, X., Y. Ke, X. Wang, M. R. T. Rahman, Y. Xie, S. Chen, and H. Wang. 2018. Simultaneous extraction of hydrophobic and hydrophilic bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chemistry 257:223–9. doi: 10.1016/j.foodchem.2018.02.125.
  • Kumar, V., A. tha, Y. Chahar, and A. Agrawal. 2019. Development and performance evaluation of an electric motor-powered ginger washing-cum-peeling machine. International Journal of Current Microbiology and Applied Sciences 8 (06):722–6. doi: 10.20546/ijcmas.2019.802.084.
  • Kumar, K., S. Srivastav, and V. S. Sharanagat. 2021. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: a review. Ultrasonics Sonochemistry 70:105325. doi: 10.1016/j.ultsonch.2020.105325.
  • Kumar, N. V., P. S. Murthy, J. R. Manjunatha, and B. Bettadaiah. 2014. Synthesis and quorum sensing inhibitory activity of key phenolic compounds of ginger and their derivatives. Food Chemistry 159:451–7. doi: 10.1016/j.foodchem.2014.03.039.
  • Kumar, N. V., P. Srinivas, and B. Bettadaiah. 2012. New scalable and eco-friendly synthesis of gingerols. Tetrahedron Letters 53 (24):2993–5. doi: 10.1016/j.tetlet.2012.03.092.
  • Lee, D.-H., D.-W. Kim, C.-H. Jung, Y. J. Lee, and D. Park. 2014. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells. Toxicology and Applied Pharmacology 279 (3):253–65. doi: 10.1016/j.taap.2014.06.030.
  • Lee, J. O., N. Kim, H. J. Lee, J. W. Moon, S. K. Lee, S. J. Kim, J. K. Kim, S. H. Park, and H. S. Kim. 2015. [ 6]‐Gingerol affects glucose metabolism by dual regulation via the AMPKα2‐mediated AS160–Rab5 pathway and AMPK‐mediated insulin sensitizing effects. Journal of Cellular Biochemistry 116 (7):1401–10. doi: 10.1002/jcb.25100.
  • Lei, L., Y. Liu, X. Wang, R. Jiao, K. Y. Ma, Y. M. Li, L. Wang, S. W. Man, S. Sang, Y. Huang, et al. 2014. Plasma cholesterol-lowering activity of gingerol-and shogaol-enriched extract is mediated by increasing sterol excretion. Journal of Agricultural and Food Chemistry 62 (43):10515–21. doi: 10.1021/jf5043344.
  • Li, H.-L., L. Wu, Z. Dong, Y. Jiang, S. Jiang, H. Xing, Q. Li, G. Liu, S. Tian, Z. Wu, et al. 2021a. Haplotype-resolved genome of diploid ginger (Zingiber officinale) and its unique gingerol biosynthetic pathway. Horticulture Research 8:189. doi: 10.1038/s41438-021-00627-7.
  • Li, X., Ao, M. Zhang, C. Fan, S. Chen, Z., and Yu, L. 2021. Zingiberis rhizoma recens: a review of its traditional uses, phytochemistry, pharmacology, and toxicology. Evidence-Based Complementary and Alternative Medicine: eCAM 2021:6668990. doi: 10.1155/2021/6668990.
  • Li, Y., V. H. Tran, N. Koolaji, C. Duke, and B. D. Roufogalis. 2013. (S)-[6]-Gingerol enhances glucose uptake in L6 myotubes by activation of AMPK in response to [Ca 2+] i. Journal of Pharmacy & Pharmaceutical Sciences: A Publication of the Canadian Society for Pharmaceutical Sciences, Societe Canadienne Des Sciences Pharmaceutiques 16 (2):304–12. doi: 10.18433/j34g7p.
  • Liang, J., L. Chen, Y. n Li, and X. Hu. 2021. Isolation and identification of umami‐flavored peptides from Leccinum extremiorientale and their taste characteristic. Journal of Food Processing and Preservation 45 (3):e15255. doi: 10.1111/jfpp.15255.
  • Lin, C.-B., C.-C. Lin, and G. J. Tsay. 2012. 6-Gingerol inhibits growth of colon cancer cell lovo via induction of G2/M arrest. Evidence-Based Complementary Alternative Medicine. 2012:326096.
  • Liu, C.-M., C.-L. Kao, Y.-T. Tseng, Y.-C. Lo, and C.-Y. Chen. 2017. Ginger phytochemicals inhibit cell growth and modulate drug resistance factors in docetaxel resistant prostate cancer cell. Molecules 22 (9):1477. doi: 10.3390/molecules22091477.
  • Liu, C. L., T. P. Xie, C. L. He, L. J. Xu, and Z. S. Liu. 2011. Study on the interaction of gingerol and Sudan dye. Advanced Materials Research 236-238:2894–8. doi: 10.4028/www.scientific.net/AMR.236-238.2894.
  • Liu, Q., J. Liu, H. Guo, S. Sun, S. Wang, Y. Zhang, S. Li, and Y. Qiao. 2013. [6]-Gingerol: a novel AT1 antagonist for the treatment of cardiovascular disease. Planta Medica 79 (5):322–6. doi: 10.1055/s-0032-1328262.
  • Liu, W., C.-L. Zhou, J. Zhao, D. Chen, and Q.-H. Li. 2014. Optimized microwave-assisted extraction of 6-gingerol from Zingiber officinale roscoeand evaluation of antioxidant activity in vitro. Acta Scientiarum Polonorum. Technologia Alimentaria 13 (2):155–68. doi: 10.17306/j.afs.2014.2.5.
  • Liu, Y., J. Liu, and Y. Zhang. 2019. Research progress on chemical constituents of Zingiber officinale Roscoe. BioMed Research International 2019:5370823. doi: 10.1155/2019/5370823.
  • Luo, J., J. Chen, C. Yang, J. Tan, J. Zhao, N. Jiang, and Y. Zhao. 2021. 6-Gingerol protects against cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome and apoptosis via TRPV1/FAF1 complex dissociation-mediated autophagy. International Immunopharmacology 100:108146. doi: 10.1016/j.intimp.2021.108146.
  • Ma, L., and J. Li. 2021. Food flavor substances. In Essentials of Food Chemistry, eds. J. Kan and K. Chen, 433–509. Singapore: Springer.
  • Ma, R.-H., Z.-J. Ni, Y.-Y. Zhu, K. Thakur, F. Zhang, Y.-Y. Zhang, F. Hu, J.-G. Zhang, and Z.-J. Wei. 2021. A recent update on the multifaceted health benefits associated with ginger and its bioactive components. Food & Function 12 (2):519–42. doi: 10.1039/d0fo02834g.
  • Ma, S., S. Zhang, W. Duan, and W. Wang. 2009. An enantioselective synthesis of (+)-(S)-[n]-gingerols via the l-proline-catalyzed aldol reaction. Bioorganic & Medicinal Chemistry Letters 19 (14):3909–11. doi: 10.1016/j.bmcl.2009.03.081.
  • Manousi, N., I. Sarakatsianos, and V. Samanidou. 2019. Extraction techniques of phenolic compounds and other bioactive compounds from medicinal and aromatic plants. In Engineering tools in the beverage industry, eds. A. M. Grumezescu and A. M. Holban, 283–314. Cambridge, UK: Elsevier.
  • Marfori, E, and C. Jane. 2018. Influence of sucrose on growth and [6]-gingerol production of in vitro-grown ginger (Zingiber officinale Rosc). International Journal of Pharmacognosy and Phytochemical Research 10 (01):17–20. doi: 10.25258/phyto.v10i01.11926.
  • Marx, W., N. Kiss, and L. Isenring. 2015. Is ginger beneficial for nausea and vomiting? An update of the literature. Current Opinion in Supportive and Palliative Care 9 (2):189–95. doi: 10.1097/SPC.0000000000000135.
  • Matsumura, M. D., G. S. Zavorsky, and J. M. Smoliga. 2015. The effects of pre‐exercise ginger supplementation on muscle damage and delayed onset muscle soreness. Phytotherapy Research: PTR 29 (6):887–93. doi: 10.1002/ptr.5328.
  • Matsuyama, M., Y. Terada, T. Yamazaki-Ito, and K. Ito. 2021. A luminescence-based human TRPV1 assay system for quantifying pungency in spicy foods. Foods 10 (1):151. doi: 10.3390/foods10010151.
  • Meng, B., H. Ii, W. Qu, and H. Yuan. 2018. Anticancer effects of gingerol in retinoblastoma cancer cells (RB355 Cell Line) are mediated via apoptosis induction, cell cycle arrest and upregulation of PI3K/Akt signaling pathway. Medical Science Monitor 24:1980–7. doi: 10.12659/MSM.905450.
  • Misawa, K., K. Hashizume, M. Yamamoto, Y. Minegishi, T. Hase, and A. Shimotoyodome. 2015. Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor δ pathway. The Journal of Nutritional Biochemistry 26 (10):1058–67. doi: 10.1016/j.jnutbio.2015.04.014.
  • Mohamad, E. A. 2019. In silico study of ginger extract and capsaicin effects on prostate cancer. Romanian Journal of Biophysics 29:81–7.
  • Mohammad Azmin, S. N. H., Z. Abdul Manan, S. R. Wan Alwi, L. S. Chua, A. A. Mustaffa, and N. A. Yunus. 2016. Herbal processing and extraction technologies. Separation & Purification Reviews 45 (4):305–20. doi: 10.1080/15422119.2016.1145395.
  • Mohammed, A., V. A. Gbonjubola, N. A. Koorbanally, and M. S. Islam. 2017. Inhibition of key enzymes linked to type 2 diabetes by compounds isolated from Aframomum melegueta fruit. Pharmaceutical Biology 55 (1):1010–6. doi: 10.1080/13880209.2017.1286358.
  • Morera, E., L. De Petrocellis, L. Morera, A. S. Moriello, M. Nalli, V. Di Marzo, and G. Ortar. 2012. Synthesis and biological evaluation of [6]-gingerol analogues as transient receptor potential channel TRPV1 and TRPA1 modulators. Bioorganic & Medicinal Chemistry Letters 22 (4):1674–7. doi: 10.1016/j.bmcl.2011.12.113.
  • Mozaffari-Khosravi, H., Z. Naderi, A. Dehghan, A. Nadjarzadeh, and H. Fallah Huseini. 2016. Effect of ginger supplementation on proinflammatory cytokines in older patients with osteoarthritis: outcomes of a randomized controlled clinical trial. Journal of Nutrition in Gerontology and Geriatrics 35 (3):209–18. doi: 10.1080/21551197.2016.1206762.
  • Naidu, P. B., V. S. Uddandrao, R. R. Naik, P. Suresh, B. Meriga, M. S. Begum, R. Pandiyan, and G. Saravanan. 2016. Ameliorative potential of gingerol: promising modulation of inflammatory factors and lipid marker enzymes expressions in HFD induced obesity in rats. Molecular and Cellular Endocrinology 419:139–47. doi: 10.1016/j.mce.2015.10.007.
  • Nasri, H., M. Nematbakhsh, S. Ghobadi, R. Ansari, N. Shahinfard, and M. Rafieian-Kopaei. 2013. Preventive and curative effects of ginger extract against histopathologic changes of gentamicin-induced tubular toxicity in rats. International Journal of Preventive Medicine 4 (3):316–21.
  • Nile, S. H, and S. W. Park. 2015. Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Industrial Crops and Products 70:238–44. doi: 10.1016/j.indcrop.2015.03.033.
  • Nourbakhsh Amiri, Z., G. Najafpour, M. Mohammadi, and A. Moghadamnia. 2018. Subcritical water extraction of bioactive compounds from ginger (Zingiber officinale Roscoe). International Journal of Engineering 31:1991–2000.
  • Nurhadi, B., R. A. Saputra, and N. Sukri. 2020. The role of encapsulant materials on the stability of bioactive compounds of red ginger (Zingiber officinale Roscoe. var. Rubrum) extract powder during storage. Food Chemistry 333:127490. doi: 10.1016/j.foodchem.2020.127490.
  • Oliveira, C. T., Ramos, A. L. C. C. Mendonça, H. d O. P. Consenza, Silva, M. R. Fernandes, C. Augusti, R. Melo, J. O. F. Ferreira, A. V. M, and de Araújo, R. L. B. 2020. Quantification of 6-gingerol, metabolomic analysis by paper spray mass spectrometry and determination of antioxidant activity of ginger rhizomes (Zingiber officinale). Research, Society and Development 9 (8):e366984822-e366984822. doi: 10.33448/rsd-v9i8.4822.
  • Ono, M., Y. Kawamoto, C. Uemori, W. Diono, H. Kanda, and M. Goto. 2017. Extraction of phytochemicals from grains of paradise using supercritical carbon dioxide. Engineering Journal 21 (4):53–64. doi: 10.4186/ej.2017.21.4.53.
  • Pais, J. M., B. Pereira, F. A. A. Paz, S. M. Cardoso, and S. S. Braga. 2020. Solid γ-cyclodextrin inclusion compound with gingerols, a multi-component guest: preparation, properties and application in yogurt. Biomolecules 10 (2):344. doi: 10.3390/biom10020344.
  • Panadare, D, and V. K. Rathod. 2018. Extraction and purification of polyphenol oxidase: a review. Biocatalysis and Agricultural Biotechnology 14:431–7. doi: 10.1016/j.bcab.2018.03.010.
  • Pandey, S., M. K. Tekam, S. Arun, A. Dey, V. Baskar, J. Mathew, M. Rajkumar, G. Anuradha, A. S. Prabha, and T. Hamalton. 2017. Science last fortnight. Current Science 112:440–3.
  • Paritakul, P., K. Ruangrongmorakot, W. Laosooksathit, M. Suksamarnwong, and P. Puapornpong. 2016. The effect of ginger on breast milk volume in the early postpartum period: a randomized, double-blind controlled trial. Breastfeeding Medicine: The Official Journal of the Academy of Breastfeeding Medicine 11:361–5.
  • Park, G. H., J. H. Park, H. M. Song, H. J. Eo, M. K. Kim, J. W. Lee, M. H. Lee, K.-H. Cho, J. R. Lee, H. J. Cho, et al. 2014. Anti-cancer activity of Ginger (Zingiber officinale) leaf through the expression of activating transcription factor 3 in human colorectal cancer cells. BMC Complementary and Alternative Medicine 14:408– doi: 10.1186/1472-6882-14-408.
  • Patwardhan, M., M. T. Morgan, V. Dia, and D. H. D’Souza. 2020. Heat sensitization of hepatitis A virus and Tulane virus using grape seed extract, gingerol and curcumin. Food Microbiology 90:103461. doi: 10.1016/j.fm.2020.103461.
  • Peng, L.-Q., J. Cao, L.-J. Du, Q.-D. Zhang, J.-J. Xu, Y.-B. Chen, Y.-T. Shi, and R.-R. Li. 2017. Rapid ultrasonic and microwave-assisted micellar extraction of zingiberone, shogaol and gingerols from gingers using biosurfactants. Journal of Chromatography. A 1515:37–44. doi: 10.1016/j.chroma.2017.07.092.
  • Pluskal, T, and J.-K. Weng. 2018. Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Chemical Society Reviews 47 (5):1592–637. doi: 10.1039/c7cs00411g.
  • Prado, J. M., R. Vardanega, I. C. Debien, M. A. A. Meireles, L. N. Gerschenson, H. B. Sowbhagya, and S. Chemat. 2021. Conventional extraction. In Food waste recovery, ed. C. Galanakis, 109–27. Cambridge, USA: Elsevier.
  • Prasad, S, and A. K. Tyagi. 2015. Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer. Gastroenterology Research and Practice 2015:142979. doi: 10.1155/2015/142979.
  • Putnik, P., D. B. Kovačević, M. Penić, M. Fegeš, and V. Dragović-Uzelac. 2016. microwave-assisted extraction (MAE) of dalmatian sage leaves for the optimal yield of polyphenols: HPLC-DAD identification and quantification. Food Analytical Methods 9 (8):2385–94. doi: 10.1007/s12161-016-0428-3.
  • Qiao, L., L. Jiao, G. Pang, and J. Xie. 2015. A novel pungency biosensor prepared with fixing taste-bud tissue of rats. Biosensors & Bioelectronics 68:454–61. doi: 10.1016/j.bios.2015.01.032.
  • Radhakrishnan, E., S. V. Bava, S. S. Narayanan, L. R. Nath, A. K. T. Thulasidasan, E. V. Soniya, and R. J. Anto. 2014. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PloS One 9 (8):e104401. doi: 10.1371/journal.pone.0104401.
  • Ramesh Reddy, A., S. B. Wadavrao, J. Yadav, and A. Venkat Narsaiah. 2015. An efficient enantioselective synthesis of natural gingerols, the active principles of ginger. Helvetica Chimica Acta 98 (7):1009–17. doi: 10.1002/hlca.201400393.
  • Ramkissoon, J. S., M. F. Mahomoodally, N. Ahmed, and A. H. Subratty. 2012. Relationship between total phenolic content, antioxidant ­potential, and antiglycation abilities of common culinary herbs and spices. Journal of Medicinal Food 15 (12):1116–23.
  • Ramos, M., A. Jiménez, and M. C. Garrigós. 2019. Il-based advanced techniques for the extraction of value-added compounds from natural sources and food by-products. TrAC Trends in Analytical Chemistry 119:115616. doi: 10.1016/j.trac.2019.07.027.
  • Rani, M., M. Shylaja, D. Mathew, D. Girija, M. A. Shankar, P. Sureshkumar, and C. Beena. 2022. Potential of microrhizomes for in vitro gingerol and shogaol synthesis in ginger (Zingiber officinale Rosc.). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 92 (1):121–29.
  • Rani, M. P., M. S. Krishna, K. P. Padmakumari, K. G. Raghu, and A. Sundaresan. 2012. Zingiber officinale extract exhibits antidiabetic potential via modulating glucose uptake, protein glycation and inhibiting adipocyte differentiation: an in vitro study. Journal of the Science of Food and Agriculture 92 (9):1948–55. doi: 10.1002/jsfa.5567.
  • Rastogi, N., S. Duggal, S. K. Singh, K. Porwal, V. K. Srivastava, R. Maurya, M. L. Bhatt, and D. P. Mishra. 2015. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-gingerol in cervical cancer cells. Oncotarget 6 (41):43310–25. doi: 10.18632/oncotarget.6383.
  • Rasul, M. G. 2018. Extraction, isolation and characterization of natural products from medicinal plants. International Journal of Basic Sciences and Applied Computing 2:1–6.
  • Risso, D., D. Drayna, and G. Morini. 2020. Alteration, reduction and taste loss: main causes and potential implications on dietary habits. Nutrients 12 (11):3284. doi: 10.3390/nu12113284.
  • Rodrigues, F. A. P., M. M. G. Prata, I. C. M. Oliveira, N. T. Q. Alves, R. E. M. Freitas, H. S. A. Monteiro, J. A. Silva, P. C. Vieira, D. A. Viana, A. B. Libório, et al. 2014. Gingerol fraction from Zingiber officinale protects against gentamicin-induced nephrotoxicity. Antimicrobial Agents and Chemotherapy 58 (4):1872–8.
  • Roper, S. D. 2014. TRPs in taste and chemesthesis. Mammalian Transient Receptor Potential (TRP) Cation Channels 223:827–71.
  • Roufogalis, B. D. 2014. Zingiber officinale (Ginger): a future outlook on its potential in prevention and treatment of diabetes and prediabetic states. New Journal of Science 2014:1–15. doi: 10.1155/2014/674684.
  • Ryu, M. J., and H. S. Chung. 2015. [10]-Gingerol induces mitochondrial apoptosis through activation of MAPK pathway in HCT116 human colon cancer cells. In Vitro Cellular & Developmental Biology. Animal 51 (1):92–101. doi: 10.1007/s11626-014-9806-6.
  • Saha, A., J. Blando, E. Silver, L. Beltran, J. Sessler, and J. DiGiovanni. 2014. 6-Shogaol from dried ginger inhibits growth of prostate cancer cells both in vitro and in vivo through inhibition of STAT3 and NF-κB signaling. Cancer Prevention Research (Philadelphia, Pa.) 7 (6):627–38. doi: 10.1158/1940-6207.CAPR-13-0420.
  • Salea, R., B. Veriansyah, and R. R. Tjandrawinata. 2017. Optimization and scale-up process for supercritical fluids extraction of ginger oil from Zingiber officinale var. Amarum. The Journal of Supercritical Fluids 120:285–94. doi: 10.1016/j.supflu.2016.05.035.
  • Salem, M. A., A. Zayed, S. Alseekh, A. R. Fernie, and P. Giavalisco. 2021. The integration of MS-based metabolomics and multivariate data analysis allows for improved quality assessment of Zingiber officinale Roscoe. Phytochemistry 190:112843. doi: 10.1016/j.phytochem.2021.112843.
  • Samanta, A., T. E. Hughes, and V. Y. Moiseenkova-Bell. 2018. Transient receptor potential (TRP) channels. Membrane Protein Complexes: Structure and Function 87:141–65.
  • Saravanan, G., P. Ponmurugan, M. A. Deepa, and B. Senthilkumar. 2014. Anti‐obesity action of gingerol: effect on lipid profile, insulin, leptin, amylase and lipase in male obese rats induced by a high‐fat diet. Journal of the Science of Food and Agriculture 94 (14):2972–7. doi: 10.1002/jsfa.6642.
  • Sarip, M. S. M., N. A. Morad, N. A. M. Ali, Y. A. M. Yusof, and M. A. C. Yunus. 2014. The kinetics of extraction of the medicinal ginger bioactive compounds using hot compressed water. Separation and Purification Technology 124:141–7. doi: 10.1016/j.seppur.2014.01.008.
  • Sarrafan, A., M. Ghobeh, and P. Yaghmaei. 2021. The effect of 6-gingerol on biochemical and histological parameters in cholesterol-induced nonalcoholic fatty liver disease in NMRI mice. Brazilian Journal of Pharmaceutical Sciences 57 doi: 10.1590/s2175-979020200003181020.
  • Schling, P. 2021. Flavors. In The sense of taste, ed. P. Schling, 7–33. Wiesbaden, Germany: Springer.
  • Semwal, R. B., D. K. Semwal, S. Combrinck, and A. M. Viljoen. 2015. Gingerols and shogaols: important nutraceutical principles from ginger. Phytochemistry 117:554–68. doi: 10.1016/j.phytochem.2015.07.012.
  • Sharif, M. F, and M. T. Bennett. 2016. The effect of different methods and solvents on the extraction of polyphenols in ginger (Zingiber officinale). Jurnal Teknologi 78 (11–2):e18020. doi: 10.11113/jt.v78.9943.
  • Shidfar, F., A. Rajab, T. Rahideh, N. Khandouzi, S. Hosseini, and S. Shidfar. 2015. The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. Journal of Complementary and Integrative Medicine 12 (2):165–70. doi: 10.1515/jcim-2014-0021.
  • Shih, H.-C., C.-Y. Chern, P.-C. Kuo, Y.-C. Wu, Y.-Y. Chan, Y.-R. Liao, C.-M. Teng, and T.-S. Wu. 2014. Synthesis of analogues of gingerol and shogaol, the active pungent principles from the rhizomes of Zingiber officinale and evaluation of their anti-platelet aggregation effects. International Journal of Molecular Sciences 15 (3):3926–51.
  • Shukla, A., R. Shukla, C. Das, and V. V. Goud. 2019. Gingerols infusion and multi-step process optimization for enhancement of color, sensory and functional profiles of candied mango. Food Chemistry 300:125195.
  • Singh, N., S. Srivastava, and A. Sharma. 2016. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene 575 (2 Pt 2):570–6. doi: 10.1016/j.gene.2015.09.036.
  • Sonar, M. P, and V. K. Rathod. 2020. Extraction of type ii antidiabetic compound corosolic acid from Lagerstroemia speciosa by batch extraction and three phase partitioning. Biocatalysis and Agricultural Biotechnology 27:101694. doi: 10.1016/j.bcab.2020.101694.
  • Sp, N., D. Y. Kang, J.-M. Lee, S. W. Bae, and K.-J. Jang. 2021. Potential antitumor effects of 6-gingerol in p53-dependent mitochondrial apoptosis and inhibition of tumor sphere formation in breast cancer cells. International Journal of Molecular Sciences 22 (9):4660. doi: 10.3390/ijms22094660.
  • Subedi, B., L. Aguilar, E. M. Robinson, K. J. Hageman, E. Björklund, R. J. Sheesley, and S. Usenko. 2015. Selective pressurized liquid extraction as a sample-preparation technique for persistent organic pollutants and contaminants of emerging concern. TrAC Trends in Analytical Chemistry 68:119–32. doi: 10.1016/j.trac.2015.02.011.
  • Suk, S., S. G. Seo, J. G. Yu, H. Yang, E. Jeong, Y. J. Jang, S. S. Yaghmoor, Y. Ahmed, J. M. Yousef, K. O. Abualnaja, et al. 2016. A bioactive constituent of ginger, 6‐shogaol, prevents adipogenesis and stimulates lipolysis in 3 T 3‐L 1 adipocytes. Journal of Food Biochemistry 40 (1):84–90. doi: 10.1111/jfbc.12191.
  • Suman, K. M., A. Gupta, D. Vaidya, and K. Ranjan. 2021. Standardization of formulation for the preparation of ginger supplemented jelly candies. Journal of Pharmaceutical Innovation 10:608–13.
  • Surh, Y.-J, and S. S. Lee. 1994. Enzymic reduction of [6]-gingerol, a major pungent principle of ginger, in the cell-free preparation of rat liver. Life Sciences 54 (19):PL321–PL326. doi: 10.1016/0024-3205(94)00602-4.
  • Swapna Sonale, R, and U. S. Kadimi. 2014. Characterization of gingerol analogues in supercritical carbon dioxide (SC CO2) extract of ginger (Zingiber officinale, R.). Journal of Food Science and Technology 51 (11):3383–9. doi: 10.1007/s13197-012-0851-4.
  • Tabibi, H., H. Imani, S. Atabak, I. Najafi, M. Hedayati, and L. Rahmani. 2016. Effects of ginger on serum lipids and lipoproteins in peritoneal dialysis patients: a randomized controlled trial. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis 36 (2):140–5. doi: 10.3747/pdi.2015.00006.
  • Tanweer, S., T. Mehmood, S. Zainab, Z. Ahmad, and A. Shehzad. 2020. Comparison and HPLC quantification of antioxidant profiling of ginger rhizome, leaves and flower extracts. Clinical Phytoscience 6 (1):1–12. doi: 10.1186/s40816-020-00158-z.
  • Teng, H., K. T. Seuseu, W.-Y. Lee, and L. Chen. 2019. Comparing the effects of microwave radiation on 6-gingerol and 6-shogaol from ginger rhizomes (Zingiber officinale Rosc). PloS One 14 (6):e0214893. doi: 10.1371/journal.pone.0214893.
  • Tinello, F, and A. Lante. 2020. Accelerated storage conditions effect on ginger-and turmeric-enriched soybean oils with comparing a synthetic antioxidant BHT. LWT 131:109797. doi: 10.1016/j.lwt.2020.109797.
  • Tiwari, B. K. 2015. Ultrasound: a clean, green extraction technology. TrAC Trends in Analytical Chemistry 71:100–9. doi: 10.1016/j.trac.2015.04.013.
  • Turnwald, B. P, and A. J. Crum. 2019. Smart food policy for healthy food labeling: leading with taste, not healthiness, to shift consumption and enjoyment of healthy foods. Preventive Medicine 119:7–13. doi: 10.1016/j.ypmed.2018.11.021.
  • Tzeng, T. F., C. J. Chang, and I. M. Liu. 2014. 6‐Gingerol inhibits rosiglitazone‐induced adipogenesis in 3T3‐L1 adipocytes. Phytotherapy Research: PTR 28 (2):187–92. doi: 10.1002/ptr.4976.
  • Varakumar, S., K. V. Umesh, and R. S. Singhal. 2017. Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning. Food Chemistry 216:27–36. doi: 10.1016/j.foodchem.2016.07.180.
  • Vázquez-Fresno, R., A. R. R. Rosana, T. Sajed, T. Onookome-Okome, N. A. Wishart, and D. S. Wishart. 2019. Herbs and spices-biomarkers of intake based on human intervention studies–a systematic review. Genes & Nutrition 14:18–27. doi: 10.1186/s12263-019-0636-8.
  • Vipin, A., R. Rao, N. K. Kurrey, A. A. Ka, and G. Venkateswaran. 2017. Protective effects of phenolics rich extract of ginger against Aflatoxin B1-induced oxidative stress and hepatotoxicity. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 91:415–24. doi: 10.1016/j.biopha.2017.04.107.
  • Walstab, J., D. Krüger, T. Stark, T. Hofmann, I. Demir, G. Ceyhan, B. Feistel, M. Schemann, and B. Niesler. 2013. Ginger and its pungent constituents non‐competitively inhibit activation of human recombinant and native 5‐HT3 receptors of enteric neurons. Neurogastroenterology and Motility: The Official Journal of the European Gastrointestinal Motility Society 25 (5):439–e302. doi: 10.1111/nmo.12107.
  • Wang, G. 2021. Lipid-dependent sequential allosteric activation of heat-sensing TRPV1 channels by anchor-stereoselective “hot” vanilloid compounds and analogs. Biochemistry and Biophysics Reports 28:101109. doi: 10.1016/j.bbrep.2021.101109.
  • Wang, L. X., W. H. Zhao, Y. F. Lu, and C. X. Wang. 2019. Antioxidant and cytotoxic activities of distillates purified by means of molecular distillation from ginger extract obtained with supercritical CO2 fluid. Chemistry & Biodiversity 16 (11):e1900357.
  • Wang, Q., Q. Wei, Q. Yang, X. Cao, Q. Li, F. Shi, S. S. Tong, C. Feng, Q. Yu, J. Yu, et al. 2018. A novel formulation of [6]-gingerol: proliposomes with enhanced oral bioavailability and antitumor effect. International Journal of Pharmaceutics 535 (1-2):308–15. doi: 10.1016/j.ijpharm.2017.11.006.
  • Wei, C.-K., Y.-H. Tsai, M. Korinek, P.-H. Hung, M. El-Shazly, Y.-B. Cheng, Y.-C. Wu, T.-J. Hsieh, and F.-R. Chang. 2017. 6-paradol and 6-shogaol, the pungent compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6-paradol reduces blood glucose in high-fat diet-fed mice. International Journal of Molecular Sciences 18 (1):168. doi: 10.3390/ijms18010168.
  • Wu, J.-J., H. A. Omar, Y.-R. Lee, Y.-N. Teng, P.-S. Chen, Y.-C. Chen, H.-S. Huang, K.-H. Lee, and J.-H. Hung. 2015. 6-Shogaol induces cell cycle arrest and apoptosis in human hepatoma cells through pleiotropic mechanisms. European Journal of Pharmacology 762:449–58. doi: 10.1016/j.ejphar.2015.06.032.
  • Xu, S., H. Zhang, T. Liu, W. Yang, W. Lv, D. He, P. Guo, and L. Li. 2020. 6-Gingerol induces cell-cycle G1-phase arrest through AKT–GSK 3β–cyclin D1 pathway in renal-cell carcinoma. Cancer Chemotherapy and Pharmacology 85 (2):379–90. doi: 10.1007/s00280-019-03999-9.
  • Xu, S., H. Zhang, T. Liu, Z. Wang, W. Yang, T. Hou, X. Wang, D. He, and P. Zheng. 2021. 6‐Gingerol suppresses tumor cell metastasis by increasing YAPser127 phosphorylation in renal cell carcinoma. Journal of Biochemical and Molecular Toxicology 35 (1):e22609. doi: 10.1002/jbt.22609.
  • Yang, G., S. Wang, L. Zhong, X. Dong, W. Zhang, L. Jiang, C. Geng, X. Sun, X. Liu, M. Chen, et al. 2012. 6‐Gingerol induces apoptosis through lysosomal‐mitochondrial axis in human hepatoma G2 cells. Phytotherapy Research: PTR 26 (11):1667–73. doi: 10.1002/ptr.4632.
  • Yang, M., C. Liu, J. Jiang, G. Zuo, X. Lin, J. Yamahara, J. Wang, and Y. Li. 2014. Ginger extract diminishes chronic fructose consumption-induced kidney injury through suppression of renal overexpression of proinflammatory cytokines in rats. BMC Complementary and Alternative Medicine 14 (1):174. doi: 10.1186/1472-6882-14-174.
  • Yang, M.-Q., L.-L. Ye, X.-L. Liu, X.-M. Qi, J.-D. Lv, G. Wang, U.-K. Farhan, N. Waqas, D.-D. Chen, L. Han, 2016. Gingerol activates noxious cold ion channel TRPA1 in gastrointestinal tract. Chinese Journal of Natural Medicines 14 (6):434–40. doi: 10.1016/S1875-5364(16)30040-1.
  • Yao, C., J-h Oh, I. G. Oh, C-h Park, and J. H. Chung. 2013. [6]-Shogaol inhibits melanogenesis in B16 mouse melanoma cells through activation of the ERK pathway. Acta Pharmacologica Sinica 34 (2):289–94. doi: 10.1038/aps.2012.134.
  • Yao, J., Z. Du, Z. Li, S. Zhang, Y. Lin, H. Li, L. Zhou, Y. Wang, G. Yan, X. Wu, et al. 2018. 6-Gingerol as an arginase inhibitor prevents urethane-induced lung carcinogenesis by reprogramming tumor supporting M2 macrophages to M1 phenotype. Food & Function 9 (9):4611–20. doi: 10.1039/c8fo01147h.
  • Yue, Y., D. Yawen, V. Simon, Y. Fan, Y.-Y. Vladimir, T. Yuhua, and Z. Jie. 2019. Structural mechanisms underlying activation of TRPV1 channels by pungent compounds in gingers. British Journal of Pharmacology 176:3364–77.
  • Yusof, M, and Y. Anum. 2016. Gingerol and its role in chronic diseases. Drug Discovery from Mother Nature 177–207.
  • Zhai, K., A. Liskova, P. Kubatka, and D. Büsselberg. 2020. Calcium entry through TRPV1: a potential target for the regulation of proliferation and apoptosis in cancerous and healthy cells. International Journal of Molecular Sciences 21 (11):4177. doi: 10.3390/ijms21114177.
  • Zhang, F.-L., B.-W. Zhou, Z.-Z. Yan, J. Zhao, B.-C. Zhao, W.-F. Liu, C. Li, and K.-X. Liu. 2020a. 6-Gingerol attenuates macrophages pyroptosis via the inhibition of MAPK signaling pathways and predicts a good prognosis in sepsis. Cytokine 125:154854. doi: 10.1016/j.cyto.2019.154854.
  • Zhang, F., J.-G. Zhang, J. Qu, Q. Zhang, C. Prasad, and Z.-J. Wei. 2017. Assessment of anti-cancerous potential of 6-gingerol (Tongling White Ginger) and its synergy with drugs on human cervical adenocarcinoma cells. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 109 (Pt 2):910–22. doi: 10.1016/j.fct.2017.02.038.
  • Zhang, J., C. Wen, H. Zhang, Y. Duan, and H. Ma. 2020b. Recent advances in the extraction of bioactive compounds with subcritical water: a review. Trends in Food Science & Technology 95:183–95. doi: 10.1016/j.tifs.2019.11.018.
  • Zhang, M., R. Zhao, D. Wang, L. Wang, Q. Zhang, S. Wei, F. Lu, W. Peng, and C. Wu. 2021. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytotherapy Research: PTR 35 (2):711–42. doi: 10.1002/ptr.6858.
  • Zhang, Q.-W., L.-G. Lin, and W.-C. Ye. 2018. Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine 13:20–6. doi: 10.1186/s13020-018-0177-x.
  • Zhao, L., H. Zhu, B. Li, G. L. N. Ngea, X. Gu, X. Zhang, S. Dhanasekaran, and H. Zhang. 2021. Transcriptomic analysis of the disease-resistance response in mandarins induced by the biocontrol yeast, Yarrowia lipolytica. Biological Control 163:104607. doi: 10.1016/j.biocontrol.2021.104607.
  • Zheng, G., Y. Yang, C. Li, and H. Guo. 2017. Functional protein-protein interaction networks regulated by 6-gingerol targeting stomach and small intestine. In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1413–1419. doi: 10.1109/BIBM.2017.8217870.
  • Zouchoune, B. 2021. Theoretical investigation on the biological activities of ginger and some of its combinations: an overview of the antioxidant activity. Structural Chemistry 32 (4):1659–72. doi: 10.1007/s11224-021-01725-x.
  • Zwingelstein, M., M. Draye, J.-L. Besombes, C. Piot, and G. Chatel. 2020. Viticultural wood waste as a source of polyphenols of ­interest: opportunities and perspectives through conventional and emerging extraction methods. Waste Management (New York, N.Y.) 102:782–94. doi: 10.1016/j.wasman.2019.11.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.