856
Views
7
CrossRef citations to date
0
Altmetric
Systematic Review

The role of additives on acrylamide formation in food products: a systematic review

, , , ORCID Icon, , , , & ORCID Icon show all

References

  • Abedini, A., M. A. Alizadeh, A. Mahdavi, A. S. Golzan, M. Salimi, B. Tajdar-Oranj, and H. Hosseini. 2022. Oilseed cakes in the food industry; a review on applications, challenges, and future perspectives. Current Nutrition & Food Science 18 (4):345–62. doi: 10.2174/1573401317666211209150147.
  • Abedini, A., A. Mahdavi, A. Mirza Alizadeh, E. Hejazi, and H. Hosseini. 2022. A review on dietary additive, food supplement and exercise effects on the prevention of Covid-19. Nutrition and Food Sciences Research 9 (1):1–14. doi: 10.52547/nfsr.9.1.1.
  • Abedini, A., M. R. Zirak, N Akbari, V. Saatloo, A. Badeenezhad, and P. Sadighara. 2022. Acrylamide; a neurotoxin in popcorns: a systematic review and meta-analysis. Reviews on Environmental Health.
  • Abedi, A.-S., F. Hemmati, A. H. Abedini, A. Mohammadi, and M. Moslemi. 2021. Application of thermal ultrasound-assisted liquid–liquid micro-extraction coupled with HPLC-UV for rapid determination of synthetic phenolic antioxidants in edible oils. Journal of the American Oil Chemists’ Society 98 (10):969–78. doi: 10.1002/aocs.12534.
  • Abdel-Daim, M. M., F. I. Abo El-Ela, F. K. Alshahrani, M. Bin-Jumah, M. Al-Zharani, B. Almutairi, M. S. Alyousif, S. Bungau, L. Aleya, and S. Alkahtani. 2020. Protective effects of thymoquinone against acrylamide-induced liver, kidney and brain oxidative damage in rats. Environmental Science and Pollution Research 27 (30):37709–17. doi: 10.1007/s11356-020-09516-3.
  • Abboudi, M., M. Al-Bachir, Y. Koudsi, and H. Jouhara. 2016. Combined effects of gamma irradiation and blanching process on acrylamide content in fried potato strips. International Journal of Food Properties 19 (7):1447–54. doi: 10.1080/10942912.2014.968790.
  • Aras, D., Z. Cakar, S. Ozkavukcu, A. Can, and O. Cinar. 2017. In vivo acrylamide exposure may cause severe toxicity to mouse oocytes through its metabolite glycidamide. PLoS One 12 (2):e0172026. doi: 10.1371/journal.pone.0172026.
  • Aarabi, F, and M. Seyedain Ardebili. 2020. The effect of sugar type and baking condition on formation of acrylamide in industrial rotary moulded biscuit. Journal of Food Measurement and Characterization 14 (4):2230–9. doi: 10.1007/s11694-020-00470-9.
  • Aiswarya, R, and G. Baskar. 2018. Enzymatic mitigation of acrylamide in fried potato chips using asparaginase from Aspergillus terreus. International Journal of Food Science & Technology 53 (2):491–8. doi: 10.1111/ijfs.13608.
  • Aiswarya, R, and G. Baskar. 2018. Microbial production of L-asparaginase and its immobilization on chitosan for the mitigation of acrylamide in heat processed carrot slices. Indian Journal of Experimental Biology 56 (7):504–10.
  • Akgun, B., M. Arici, F. Cavus, A. B. Karatas, H. E. Karaagac, and H. O. Ucurum. 2021. Application of L-asparaginase to produce high-quality Turkish coffee and the role of precursors in acrylamide formation. Journal of Food Processing and Preservation 45 (6):170–80.
  • Alafeef, A. K., F. Ariffin, and M. Zulkurnain. 2020. Organic selenium as antioxidant additive in mitigating acrylamide in coffee beans roasted via conventional and superheated steam. Foods 9 (9):1197–238. doi: 10.3390/foods9091197.
  • Alam, S., T. Nagpal, R. Singhal, and S. Kumar Khare. 2021. Immobilization of L-asparaginase on magnetic nanoparticles: kinetics and functional characterization and applications. Bioresource Technology 339 (1):125599. doi: 10.1016/j.biortech.2021.125599.
  • Al-Anbari, I. H. A., A. T. Al-Musawi, M. T. H. Al-Ani, and I. O. C. AlKaraquly. 2019. Effect of addition of various proportions of rosemary powder, citric acid and table salt in reducing the ratios of acrylamide in potato fries. Plant Archives 19 (1):1223–9.
  • Al-Ansi, W., A. A. Mahdi, Q. A. Al-Maqtari, M. C. Fan, L. Wang, Y. Li, H. F. Qian, and H. Zhang. 2019. Evaluating the role of microwave-baking and fennel (Foeniculum vulgare L.)/nigella (Nigella sativa L.) on acrylamide growth and antioxidants potential in biscuits. Journal of Food Measurement and Characterization 13 (3):2426–37. doi: 10.1007/s11694-019-00163-y.
  • Al-Asmar, A., C. V. L. Giosafatto, L. Panzella, and L. Mariniello. 2019. The effect of transglutaminase to improve the quality of either traditional or pectin-coated falafel (fried middle eastern food). Coatings 9 (5):331. doi: 10.3390/coatings9050331.
  • Al-Asmar, A., D. Naviglio, C. V. L. Giosafatto, and L. Mariniello. 2018. Hydrocolloid-based coatings are effective at reducing acrylamide and oil content of French fries. Coatings 8 (4):147–59. doi: 10.3390/coatings8040147.
  • Akıllıoglu, H, and V. Gökmen. 2014. Mitigation of acrylamide and hydroxymethyl furfural in instant coffee by yeast fermentation. Food Research International 61:252–6. doi: 10.1016/j.foodres.2013.07.057.
  • Anese, M., M. Suman, and M. Nicoli. 2009. Technological strategies to reduce acrylamide levels in heated foods. Food Engineering Reviews 1 (2):169–79. doi: 10.1007/s12393-009-9008-2.
  • Arámbula-Villa, G., V. Flores-Casamayor, J. J. Velés-Medina, and R. Salazar. 2018. Mitigating effect of calcium and magnesium on acrylamide formation in tortilla chips. Cereal Chemistry 95 (1):94–7. doi: 10.1002/cche.10009.
  • Arisseto, A. P., M. C, de Figueiredo Toledo, Y. Govaert, J. van Loco, S. Fraselle, J. M. Degroodt, & D. C. R. Caroba. 2009. Contribution of selected foods to acrylamide intake by a population of Brazilian adolescents. LWT-Food Science and Technology 42 (1):207–211.
  • Babu, P. A. S., B. V. Aafrin, G. Archana, K. Sabina, K. Sudharsan, M. Sivarajan, and M. Sukumar. 2017. Effects of polyphenols from Caralluma fimbriata on acrylamide formation and lipid oxidation an integrated approach of nutritional quality and degradation of fried food. International Journal of Food Properties 20 (6):1378–90. doi: 10.1080/10942912.2016.1210161.
  • Bowyer, J. F., J. R. Latendresse, R. R. Delongchamp, L. Muskhelishvili, A. R. Warbritton, M. Thomas, E. Tareke, L. P. McDaniel, and D. R. Doerge. 2008. The effects of subchronic acrylamide exposure on gene expression, neurochemistry, hormones, and histopathology in the hypothalamus-pituitary-thyroid axis of male Fischer 344 rats. Toxicology and Applied Pharmacology 230 (2):208–15. doi: 10.1016/j.taap.2008.02.028.
  • Boon, P., E. de Mul, A. van der Voet, H. van Donkersgoed, G. Brette, M. van Klaveren, and J. D. 2005. Calculations of dietary exposure to acrylamide. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 580 (1-2):143–55. doi: 10.1016/j.mrgentox.2004.10.014.
  • Carocho, M., P. Morales, and I. C. F. R. Ferreira. 2017. Sweeteners as food additives in the XXI century: a review of what is known, and what is to come. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 107 (Pt A):302–17. doi: 10.1016/j.fct.2017.06.046.
  • Capuano, E, and V. Fogliano. 2011. Acrylamide and 5-hydroxymethylfurfural (HMF): a review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT - Food Science and Technology 44 (4):793–810. doi: 10.1016/j.lwt.2010.11.002.
  • Champrasert, O., J. Chu, Q. Meng, S. Viney, M. Holmes, P. Suwannaporn, and C. Orfila. 2021. Inhibitory effect of polysaccharides on acrylamide formation in chemical and food model systems. Food Chemistry 363:130213.
  • Champrasert, O., C. Orfila, and P. Suwannaporn. 2022. Acrylamide mitigation using zein–polysaccharide complex particles. Food Hydrocolloids. 124:107317. doi: 10.1016/j.foodhyd.2021.107317.
  • Charoenprasert, S., J. A. Zweigenbaum, G. Zhang, and A. E. Mitchell. 2017. The influence of pH and sodium hydroxide exposure time on glucosamine and acrylamide levels in California-style black ripe olives. Journal of Food Science 82 (7):1574–81. doi: 10.1111/1750-3841.13748.
  • Corrêa, C. L. O., das Merces Penha, E. dos Anjos, M. R. Pacheco, S. Freitas-Silva, O. Luna, A. S. Gottschalk, and L. M. F. 2021. Use of asparaginase for acrylamide mitigation in coffee and its influence on the content of caffeine, chlorogenic acid, and caffeic acid. Food Chemistry 338:128045. doi: 10.1016/j.foodchem.2020.128045.
  • Cerit, İ, and O. Demirkol. 2021. Application of thiol compounds to reduce acrylamide levels and increase antioxidant activity of French fries. LWT 143:111165. doi: 10.1016/j.lwt.2021.111165.
  • Dange, V. U., B. K. Sakhale, and N. A. Giri. 2018. Enzyme application for reduction of acrylamide formation in fried potato chips. Current Research in Nutrition and Food Science Journal 6 (1):222–6. doi: 10.12944/CRNFSJ.6.1.25.
  • Daniali, G., S. Jinap, M. Sanny, and C. P. Tan. 2018. Effect of amino acids and frequency of reuse frying oils at different temperature on acrylamide formation in palm olein and soy bean oils via modeling system. Food Chemistry 245:1–6. doi: 10.1016/j.foodchem.2017.10.070.
  • Dias, F., F. G. Bogusz, S. Hantao, L. W. Augusto, F, and Sato, H. H. 2017. Acrylamide mitigation in French fries using native L-asparaginase from Aspergillus oryzae CCT 3940. LWT - Food Science and Technology 76:222–9. doi: 10.1016/j.lwt.2016.04.017.
  • Ershadi, A., M. H. Azizi, and L. Najafian. 2021. Incorporation of high fructose corn syrup with different fructose levels into biscuit: an assessment of physicochemical and textural properties. Food Science & Nutrition 9 (10):5344–51. doi: 10.1002/fsn3.2452.
  • Elias, A., M. Roasto, M. Reinik, K. Nelis, E. Nurk, and T. Elias. 2017. Acrylamide in commercial foods and intake by infants in Estonia. Food Additives & Contaminants: Part A 34 (11):1875–84. doi: 10.1080/19440049.2017.1347283.
  • Elahi, M., M. Kamankesh, A. Mohammadi, and S. Jazaeri. 2019. Acrylamide in cookie samples: analysis using an efficient co-derivatization coupled with sensitive microextraction method followed by gas chromatography-mass spectrometry. Food Analytical Methods 12 (6):1439–47. doi: 10.1007/s12161-019-01479-7.
  • EU 2002. Dietary exposure to acrylamide in food European Commission, Health and Consumer Protection Directorate-General. European Food Safety Authority. https://food.ec.europa.eu/safety/chemicalsafety/contaminants/catalogue/acrylamide_en.
  • EFSA 2011. Scientific report of European Food Safety Authority, results on acrylamide levels in food from monitoring years 2007–2009 and exposure assessment, (p. 44). Parma: European Food Safety Authority.
  • Farah, D. M. H., A. H. Zaibunnisa, J. Misnawi, and S. Zainal. 2012. Effect of roasting process on the concentration of acrylamide and pyrizines in roasted cocoa beans from different origins. APCBEE Procedia 4:204–8. doi: 10.1016/j.apcbee.2012.11.034.
  • Friedman, M, and C. E. Levin. 2008. Review of methods for the reduction of dietary content and toxicity of acrylamide. Journal of Agricultural and Food Chemistry 56 (15):6113–40. doi: 10.1021/jf0730486.
  • Fu, Z., M. J. Y. Yoo, W. Zhou, L. Zhang, Y. Chen, and J. Lu. 2018. Effect of (-)-epigallocatechin gallate (EGCG) extracted from green tea in reducing the formation of acrylamide during the bread baking process. Food Chemistry 242:162–8. doi: 10.1016/j.foodchem.2017.09.050.
  • Fohgelberg, P., J. Rosén, K. E. Hellenäs, and L. Abramsson-Zetterberg. 2005. The acrylamide intake via some common baby food for children in Sweden during their first year of life—an improved method for analysis of acrylamide. Food and Chemical Toxicology 43 (6):951–9. doi: 10.1016/j.fct.2005.02.001.
  • Genovese, J., S. Tappi, W. Luo, U. Tylewicz, S. Marzocchi, S. Marziali, S. Romani, L. Ragni, and P. Rocculi. 2019. Important factors to consider for acrylamide mitigation in potato crisps using pulsed electric fields. Innovative Food Science & Emerging Technologies 55:18–26. doi: 10.1016/j.ifset.2019.05.008.
  • Ghanayem, B. I., K. L. Witt, L. El-Hadri, U. Hoffler, G. E. Kissling, M. D. Shelby, and J. B. Bishop. 2005. Comparison of germ cell mutagenicity in male CYP2E1-null and wild-type mice treated with acrylamide: evidence supporting a glycidamide-mediated effect. Biology of Reproduction 72 (1):157–63. doi: 10.1095/biolreprod.104.033308.
  • Ghafoor, K., B. Yüksel, F. A. L. Juhaimi, M. M. Özcan, N. Uslu, E. E. Babiker, I. M. A. Ahmed, and I. U. Azmi. 2020. Effect of frying on physicochemical and sensory properties of potato chips fried in palm oil supplemented with thyme and rosemary extracts. Journal of Oleo Science 69 (10):1219–30. doi: 10.5650/jos.ess20149.
  • Gumul, D., J. Korus, M. Surma, and R. Ziobro. 2020. Pulp obtained after isolation of starch from red and purple potatoes (Solanum tuberosum L.) as an innovative ingredient in the production of gluten-free bread. PLoS One 15 (9):e0229841. doi: 10.1371/journal.pone.0229841.
  • Guo, J., R. M. Zhao, J. Q. Li, D. Y. Wu, Q. Y. Yang, Y. Zhang, and S. Wang. 2019. Furan formation from ingredient interactions and furan mitigation by sugar alcohols and antioxidants of bamboo leaves in milk beverage model systems. Journal of the Science of Food and Agriculture 99 (11):4993–9.
  • Hamzalıoğlu, A, and V. Gökmen. 2020. 5-Hydroxymethylfurfural accumulation plays a critical role on acrylamide formation in coffee during roasting as confirmed by multiresponse kinetic modelling. Food Chemistry 318:126467. doi: 10.1016/j.foodchem.2020.126467.
  • Hamdy, S. M., H. M. Bakeer, E. F. Eskander, and O. N. Sayed. 2012. Effect of acrylamide on some hormones and endocrine tissues in male rats. Human & Experimental Toxicology 31 (5):483–91. doi: 10.1177/0960327111417267.
  • Haddarah, A., E. Naim, I. Dankar, F. Sepulcre, M. Pujolà, and M. Chkeir. 2021. The effect of borage, ginger and fennel extracts on acrylamide formation in French fries in deep and electric air frying. Food Chemistry 350:129060–837. doi: 10.1016/j.foodchem.2021.129060.
  • Heydari Ashkezari, M, and M. Salehifar. 2019. Inhibitory effects of pomegranate flower extract and vitamin B3 on the formation of acrylamide during the donut making process. Journal of Food Measurement and Characterization 13 (1):735–44. doi: 10.1007/s11694-018-9986-y.
  • Hilbig, A., N. Freidank, M. Kersting, M. Wilhelm, & J. Wittsiepe. 2004. Estimation of the dietary intake of acrylamide by German infants, children and adolescents as calculated from dietary records and available data on acrylamide levels in food groups. International Journal of Hygiene and Environmental Health 207 (5):463–471.
  • Huang, Y., H. B. Xiao, L. Zhang, D. Q. Guo, S. H. Z. Chen, X. Y. Qiu, and X. J. Hou. 2020. The effect of superfine tea powder addition on the acrylamide content of innovative Xinjiang nang products (tea nang). Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 37 (8):1–18. doi: 10.1080/19440049.2020.1769199.
  • Iyer, S., A. Patkar, A. Dabade, and A. Dabade. 2018. Hydrocolloid based edible coatings to reduce acrylamide in fried products. In NCIFEH Conference Proceeding Life Science Informatics Publications (pp. 335–340).
  • Jaworska, D., H. Mojska, I. Gielecińska, K. Najman, E. Gondek, W. Przybylski, and P. Krzyczkowska. 2019. The effect of vegetable and spice addition on the acrylamide content and antioxidant activity of innovative cereal products. Food Additives & Contaminants: Part A 36 (3):374–84. doi: 10.1080/19440049.2019.1577991.
  • Jiao, L. S., H. B. Chi, Z. X. Lu, C. Zhang, S. R. Chia, P. L. Show, Y. Tao, and F. X. Lu. 2020. Characterization of a novel type I L-asparaginase from Acinetobacter soli and its ability to inhibit acrylamide formation in potato chips. Journal of Bioscience and Bioengineering 129 (6):672–8. doi: 10.1016/j.jbiosc.2020.01.007.
  • Jing, Y., X. Li, X. Hu, Z. Ma, L. Liu, and X. Ma. 2019. Effect of buckwheat extracts on acrylamide formation and the quality of bread. Journal of the Science of Food and Agriculture 99 (14):6482–9. doi: 10.1002/jsfa.9927.
  • Jiang, Y., R. Qin, C. Jia, J. Rong, Y. Hu, and R. Liu. 2021. Hydrocolloid effects on Nε-carboxymethyllysine and acrylamide of deep-fried fish nuggets. Food Bioscience 39:100797. doi: 10.1016/j.fbio.2020.100797.
  • Joint, F., and W. E. C. O. F. Additives, and W. H. Organization. 2011. Safety evaluation of certain contaminants in food: prepared by the Seventy-second meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). World Health Organization. https://apps.who.int/iris/handle/10665/44520.
  • Ji, K., S. Kang, G. Lee, S. Lee, A. Jo, K. Kwak, and K. Choi. 2013. Urinary levels of N-acetyl-S-(2-carbamoylethyl)-cysteine (AAMA), an acrylamide metabolite, in Korean children and their association with food consumption. Science of the Total Environment. 456: 17–23.
  • Kamarudin, S. A., S. Jinap, R. Sukor, S. P. Foo, and M. Sanny. 2018. Effect of fat-soluble anti-oxidants in vegetable oils on acrylamide concentrations during deep-fat frying of French fries. The Malaysian Journal of Medical Sciences: MJMS 25 (5):128–39. doi: 10.21315/mjms2018.25.5.12.
  • Kalaivani, M., U. V. Saleena, K. G. K. Katapadi, Y. P. Kumar, and D. Nayak. 2018. Effect of acrylamide ingestion on reproductive organs of adult male wistar rats. Journal of Clinical and Diagnostic Research 12 (11):234–458. doi: 10.7860/JCDR/2018/38170.12364.
  • Kashani, M. H., M. Ramezani, and Z. Piravar. 2021. The effect of acrylamide on sperm oxidative stress, total antioxidant levels, tyrosine phosphorylation, and carboxymethyl-lysine expression: a laboratory study. International Journal of Reproductive BioMedicine 19 (7):625–38.
  • Kawahara, J., Y. Imaizumi, K. Kuroda, Y. Aoki, and N. Suzuki. 2018. Estimation of long-term dietary exposure to acrylamide of the Japanese people. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 35 (9):1689–702. doi: 10.1080/19440049.2018.1484179.
  • Kasar, S., A. Giri, P. Pawar, and V. Maheshwari. 2019. A protein α-amylase inhibitor from Withania somnifera and its role in overall quality and nutritional value improvement of potato chips during processing. Food and Bioprocess Technology 12 (4):636–44. doi: 10.1007/s11947-019-2233-7.
  • Kito, K., J. Ishihara, A. Kotemori, L. Zha, R. Liu, N. Sawada, M. Iwasaki, T. Sobue, and S. Tsugane. 2020. Dietary acrylamide intake and the risk of pancreatic cancer: the Japan public health center-based prospective study. Nutrients 12 (11):3584. doi: 10.3390/nu12113584.
  • Komprda, T., A. Pridal, R. Mikulíková, Z. Svoboda, O. Cwiková, Š. Nedomová, and V. Sýkora. 2017. A combination of additives can synergically decrease acrylamide content in gingerbread without compromising sensory quality. Journal of the Science of Food and Agriculture 97 (3):889–95. doi: 10.1002/jsfa.7811.
  • Koszucka, A., A. Nowak, I. Nowak, and I. Motyl. 2020. Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Critical Reviews in Food Science and Nutrition 60 (10):1677–92. doi: 10.1080/10408398.2019.1588222.
  • Kobayashi, R., M. Enomoto, M. Higa, I. Okuno, F. Kizaki, A. Taniguchi, and T. Enomoto. 2019. Usefulness of barley flour for retention of palatability and antioxidant capacity and inhibition of acrylamide formation in flour products cooked at high temperatures. International Journal of Gastronomy and Food Science 17:100163. doi: 10.1016/j.ijgfs.2019.100163.
  • Khorshidian, N., M. Yousefi, M. Shadnoush, S. D. Siadat, M. Mohammadi, and A. M. Mortazavian. 2020. Using probiotics for mitigation of acrylamide in food products: a mini review. Current Opinion in Food Science 32:67–75. doi: 10.1016/j.cofs.2020.01.011.
  • Krishnakumar, T, and R. Visvanathan. 2014. Acrylamide in food products: a review. Journal of Food Processing & Technology 5 (7):1.
  • Kumar, J., S. Das, and S. L. Teoh. 2018. Dietary acrylamide and the risks of developing cancer: facts to ponder. Frontiers in Nutrition 5:14.
  • Khezerolou, A., M. Alizadeh-Sani, N. Zolfaghari Firouzsalari, and A. Ehsani. 2018. Formation, properties, and reduction methods of acrylamide in foods: a review study. Journal of Nutrition, Fasting and Health 6:52–9.
  • Lee, W.-J., M.-H. Chi, and W.-C. Sung. 2020. Effects of calcium citrate, chitosan and chitooligosaccharide addition on acrylamide and 5-hydroxymethylfurfural formation in dark brown sugar. Journal of Food Science and Technology 57 (5):1636–46. doi: 10.1007/s13197-019-04196-5.
  • Liu, H., J. Roasa, L. Mats, H. Zhu, and S. Shao. 2020. Effect of acid on glycoalkaloids and acrylamide in French fries. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 37 (6):938–45. doi: 10.1080/19440049.2020.1743883.
  • Li, J., D. Li, Y. Yang, T. Xu, P. Li, and D. He. 2016. Acrylamide induces locomotor defects and degeneration of dopamine neurons in Caenorhabditis elegans. Journal of Applied Toxicology: JAT 36 (1):60–7. doi: 10.1002/jat.3144.
  • Liu, Z. M., L. A. Tse, S. C. Ho, S. Wu, B. Chen, D. Chan, and S. Y. Wong. 2017. Dietary acrylamide exposure was associated with increased cancer mortality in Chinese elderly men and women: a 11-year prospective study of Mr. and Ms. OS Hong Kong. Journal of Cancer Research and Clinical Oncology 143 (11):2317–26. doi: 10.1007/s00432-017-2477-4.
  • Ledbetter, M., L. Bartlett, A. Fiore, G. Montague, K. Sturrock, and G. McNamara. 2020. Acrylamide in industrial potato crisp manufacturing: a potential tool for its reduction. LWT 123:109111. doi: 10.1016/j.lwt.2020.109111.
  • LoPachin, R. M., C. D. Balaban, and J. F. Ross. 2003. Acrylamide axonopathy revisited. Toxicology and Applied Pharmacology 188 (3):135–53. doi: 10.1016/S0041-008X(02)00072-8.
  • Ma, Q., S. B. Cai, Y. J. Jia, X. Y. Sun, J. J. Yi, and J. Du. 2020. Effects of hot-water extract from vine tea (Ampelopsis grossedentata) on acrylamide formation, quality and consumer acceptability of bread. Foods 9 (3):373. doi: 10.3390/foods9030373.
  • Maan, A. A., M. A. Anjum, M. K. I. Khan, A. Nazir, F. Saeed, M. Afzaal, and R. M. Aadil. 2022. Acrylamide formation and different mitigation strategies during food processing—a review. Food Reviews International 38 (1):70–87. doi: 10.1080/87559129.2020.1719505.
  • Martín-Vertedor, D., A. Fernández, M. Mesías, M. Martínez, M. Díaz, and E. Martín-Tornero. 2020. Industrial strategies to reduce acrylamide formation in Californian-style green ripe olives. Foods 9 (9):1202. doi: 10.3390/foods9091202.
  • Matouri, M, and I. Alemzadeh. 2018. Suppressed acrylamide formation during baking in yeast-leavened bread based on added asparaginase, baking time and temperature using response surface methodology. Applied Food Biotechnology 5 (1):29–36.
  • Medeiros Vinci, R., F. Mestdagh, C. Van Poucke, B. Kerkaert, N. de Muer, Q. Denon, C. Van Peteghem, and B. De Meulenaer. 2011. Implementation of acrylamide mitigation strategies on industrial production of French fries: challenges and pitfalls. Journal of Agricultural and Food Chemistry 59 (3):898–906. doi: 10.1021/jf1042486.
  • Mesias, M., C. Delgado-Andrade, and F. J. Morales. 2019. Risk/benefit evaluation of traditional and novel formulations for snacking: acrylamide and furfurals as process contaminants. Journal of Food Composition and Analysis 79:114–21. doi: 10.1016/j.jfca.2019.03.011.
  • Meghavarnam, A. K and S. Janakiraman. 2018. Evaluation of acrylamide reduction potential of L-asparaginase from Fusarium culmorum (ASP-87) in starchy products. LWT 89:32–7. doi: 10.1016/j.lwt.2017.09.048.
  • Mekawi, E. M., A. M. Sharoba, and M. F. Ramadan. 2019. Reduction of acrylamide formation in potato chips during deep-frying in sunflower oil using pomegranate peel nanoparticles extract. Journal of Food Measurement and Characterization 13 (4):3298–306. doi: 10.1007/s11694-019-00252-y.
  • Mildner-Szkudlarz, S., M. Różańska, P. Piechowska, A. Waśkiewicz, and R. Zawirska-Wojtasiak. 2019. Effects of polyphenols on volatile profile and acrylamide formation in a model wheat bread system. Food Chemistry 297:125008. doi: 10.1016/j.foodchem.2019.125008.
  • Miśkiewicz, K., E. Nebesny, J. Rosicka-Kaczmarek, D. Żyżelewicz, and G. Budryn. 2018. The effects of baking conditions on acrylamide content in shortcrust cookies with added freeze-dried aqueous rosemary extract. Journal of Food Science and Technology 55 (10):4184–96. doi: 10.1007/s13197-018-3349-x.
  • Mostafa, R., M. Ali, and M. Mahmoud. 2019. Comparative Study between fermented lactic acid bacteria solution and brine solution on reduction of acrylamide formed during production of fried potato. Journal of Food and Nutritional Disorders 8 (1-2).
  • Mousa, R. M. A. 2018. Simultaneous inhibition of acrylamide and oil uptake in deep fat fried potato strips using gum Arabic-based coating incorporated with antioxidants extracted from spices. Food Hydrocolloids. 83:265–74. doi: 10.1016/j.foodhyd.2018.05.007.
  • Mousa, R. M. A. 2021. Simultaneous inhibition of acrylamide formation and fat oxidation in quinoa cakes using gum Arabic supplementation coupled with fat reduction. International journal of food properties 24 (1):749–763.
  • Mousavi Khaneghah, A., Y. Fakhri, A. Nematollahi, F. Seilani, and Y. Vasseghian. 2020. The concentration of acrylamide in different food products: a global systematic review, meta-analysis, and meta-regression. Food Reviews International 38 (6):1286–1304.
  • Muttucumaru, N., S. J. Powers, J. S. Elmore, A. Dodson, A. Briddon, D. S. Mottram, and N. G. Halford. 2017. Acrylamide-forming potential of potatoes grown at different locations, and the ratio of free asparagine to reducing sugars at which free asparagine becomes a limiting factor for acrylamide formation. Food Chemistry 220:76–86. doi: 10.1016/j.foodchem.2016.09.199.
  • Nagpal, T., S. Alam, S. K. Khare, S. Satya, S. Chaturvedi, and J. K. Sahu. 2021. Effect of Psidium guajava leaves extracts on thermo-lipid oxidation and Maillard pathway born food toxicant acrylamide in Indian staple food. Journal of Food Science and Technology 28 (6):188–200.
  • Nabih, H. K. 2021. Risk assessment of human carcinogenicity of acrylamide in food: way to reduce the predicted mitogenic side effects through mitigation strategy. Food Security and Safety 12:855–68.
  • Namir, M., M. A. Rabie, N. A. Rabie, and M. F. Ramadan. 2018. Optimizing the addition of functional plant extracts and baking conditions to develop acrylamide-free pita bread. Journal of Food Protection 81 (10):1696–706. doi: 10.4315/0362-028X.JFP-18-150.
  • Ngo-Thanh, H., T. D. Thuy, K. Suzue, W. Kamitani, H. Yokoo, K. Isoda, C. Shimokawa, H. Hisaeda, and T. Imai. 2021. Long-term acrylamide exposure exacerbates brain and lung pathology in a mouse malaria model. Food and Chemical Toxicology 151:112132. doi: 10.1016/j.fct.2021.112132.
  • Normandin, L., M. Bouchard, P. Ayotte, C. Blanchet, A. Becalski, Y. Bonvalot, D. Phaneuf, C. Lapointe, M. Gagné, and M. Courteau. 2013. Dietary exposure to acrylamide in adolescents from a Canadian urban center. Food and Chemical Toxicology. 57:75–83. doi: 10.1016/j.fct.2013.03.005.
  • Nematollahi, A., N. Mollakhalili Meybodi, and A. Mousavi Khaneghah. 2021. An overview of the combination of emerging technologies with conventional methods to reduce acrylamide in different food products: perspectives and future challenges. Food Control. 127:108144. doi: 10.1016/j.foodcont.2021.108144.
  • Ofosu, I. W., G. M. Ankar-Brewoo, H. E. Lutterodt, E. O. Benefo, and C. A. Menyah. 2019. Estimated daily intake and risk of prevailing acrylamide content of alkalized roasted cocoa beans. Scientific African 6:e00176. doi: 10.1016/j.sciaf.2019.e00176.
  • Omini, J. J., O. E. Omotosho, and O. D. Akinyomi. 2019. Sodium chloride inhibits acrylamide formation during deep fat frying of plantain. 1378 (4 ed.).
  • Passos, C. P., S. S. Ferreira, A. Serôdio, E. Basil, L. Marková, K. Kukurová, Z. Ciesarová, and M. A. Coimbra. 2018. Pectic polysaccharides as an acrylamide mitigation strategy—competition between reducing sugars and sugar acids. Food Hydrocolloids. 81:113–9. doi: 10.1016/j.foodhyd.2018.02.032.
  • Passos, C. P., K. Kukurová, E. Basil, P. A. R. Fernandes, A. Neto, F. M. Nunes, M. Murkovic, Z. Ciesarová, and M. A. Coimbra. 2017. Instant coffee as a source of antioxidant-rich and sugar-free coloured compounds for use in bakery: application in biscuits. Food Chemistry 231:114–21. doi: 10.1016/j.foodchem.2017.03.105.
  • Patras, A. 2019. Stability and colour evaluation of red cabbage waste hydroethanolic extract in presence of different food additives or ingredients. Food Chemistry 275:539–48. doi: 10.1016/j.foodchem.2018.09.100.
  • Paul, V, and B. N. Tiwary. 2020. An investigation on the acrylamide mitigation potential of L-asparaginase from Aspergillus terreus BV-C strain. Biocatalysis and Agricultural Biotechnology 27:101677. doi: 10.1016/j.bcab.2020.101677.
  • Pantalone, S., L. Tonucci, A. Cichelli, L. Cerretani, A. M. Gómez-Caravaca, and N. d’Alessandro. 2021. Acrylamide mitigation in processed potato derivatives by addition of natural phenols from olive chain by-products. Journal of Food Composition and Analysis 95:103682. doi: 10.1016/j.jfca.2020.103682.
  • Pedreschi, F., I. Saavedra, A. Bunger, R. N. Zuñiga, R. Pedreschi, R. Chirinos, D. Campos, and M. S. Mariotti-Celis. 2018. Tara pod (Caesalpinia spinosa) extract mitigates neo-contaminant formation in Chilean bread preserving their sensory attributes. LWT 95:116–22. doi: 10.1016/j.lwt.2018.04.086.
  • Perera, D. N., Hewavitharana, G. G. Navaratne, and S. B. 2021. Comprehensive study on the acrylamide content of high thermally processed foods. BioMed Research International 2021:1–13. doi: 10.1155/2021/6258508.
  • Pérez-López, A. J., L. Noguera-Artiaga, S. López-Miranda González, P. Gómez-San Miguel, B. Ferrández, and ÁA. Carbonell-Barrachina. 2021. Acrylamide content in French fries prepared with vegetable oils enriched with β-cyclodextrin or β-cyclodextrin-carvacrol complexes. LWT 148:111765. doi: 10.1016/j.lwt.2021.111765.
  • Primacella, M., T. Fei, N. Acevedo, and T. Wang. 2018. Effect of food additives on egg yolk gelation induced by freezing. Food Chemistry 263:142–50. doi: 10.1016/j.foodchem.2018.04.071.
  • Pan, X., X. Guo, F. Xiong, G. Cheng, Q. Lu, and H. Yan. 2015. Acrylamide increases dopamine levels by affecting dopamine transport and metabolism related genes in the striatal dopaminergic system. Toxicology Letters 236 (1):60–8. doi: 10.1016/j.toxlet.2015.04.017.
  • Qi, Y., H. Zhang, G. Wu, H. Zhang, L. Gu, L. Wang, H. Qian, and X. Qi. 2018. Mitigation effects of proanthocyanidins with different structures on acrylamide formation in chemical and fried potato crisp models. Food Chemistry 250:98–104.
  • Qi, Y., H. Zhang, H. Zhang, G. Wu, L. Wang, H. Qian, and X. Qi. 2018. Epicatechin adducting with 5-hydroxymethylfurfural as an inhibitory mechanism against acrylamide formation in maillard reactions. Journal of Agricultural and Food Chemistry 66 (47):12536–43.
  • Rannou, C., D. Laroque, E. Renault, C. Prost, and T. Sérot. 2016. Mitigation strategies of acrylamide, furans, heterocyclic amines and browning during the Maillard reaction in foods. Food Research International (Ottawa, Ont.) 90:154–76.
  • Rifai, L, and F. A. Saleh. 2020. A review on acrylamide in food: occurrence, toxicity, and mitigation strategies. International Journal of Toxicology 39 (2):93–102. doi: 10.1177/1091581820902405.
  • Sadighara, P., M. Safta, I. Limam, K. Ghanati, Z. Nazari, M. Karami, and A. Abedini. 2022. Association between food additives and prevalence of allergic reactions in children: a systematic review. Reviews on Environmental Health. doi: 10.1515/reveh-2021-0158.
  • Sarion, C., G. G. Codină, and A. Dabija. 2021. Acrylamide in bakery products: a review on health risks, legal regulations and strategies to reduce its formation. International Journal of Environmental Research and Public Health 18 (8):4332. doi: 10.3390/ijerph18084332.
  • Seilani, F., N. Shariatifar, S. Nazmara, G. J. Khaniki, P. Sadighara, and M. Arabameri. 2021. The analysis and probabilistic health risk assessment of acrylamide level in commercial nuggets samples marketed in Iran: effect of two different cooking methods. Journal of Environmental Health Science & Engineering 19 (1):465–73. doi: 10.1007/s40201-021-00619-8.
  • S̈¢Nchez-Otero, M. G., C. N. M̈¦Ndez-Santiago, F. Luna-V̈¢Zquez, I. Soto-Rodr̈aGuez, H. S. Garc̈AA, and J. C. Serrano-Ni?O. 2017. Assessment of the dietary intake of acrylamide by young adults in Mexico. Journal of Food and Nutrition Research 5 (12):894–9.
  • Şen, E., Y. Tunali, and M. Erkan. 2015. Testicular development of male mice offsprings exposed to acrylamide and alcohol during the gestation and lactation period. Human & Experimental Toxicology 34 (4):401–14. doi: 10.1177/0960327114542883.
  • Seyedi, S., M. Javanmarddakheli, A. Shekarabi, M. Shavandi, and S. Farhadi. 2021. Reduction of acrylamide by orange waste extract phenolic compounds in potato chips. Journal of Food and Bioprocess Engineering 4 (1):75–81.
  • Senthil Kumar, S., A. Swaminathan, M. M. Abdel-Daim, and S. Sheik Mohideen. 2022. A systematic review on the effects of acrylamide and bisphenol A on the development of Drosophila melanogaster. Molecular Biology Reports. 1–11.
  • Shen, Y. T., G. J. Chen, and Y. H. Li. 2019. Effect of added sugars and amino acids on acrylamide formation in white pan bread. Cereal Chemistry 96 (3):545–53. doi: 10.1002/cche.10154.
  • Shi, R., Y. Liu, Q. Mu, Z. Q. Jiang, and S. Q. Yang. 2017. Biochemical characterization of a novel L-asparaginase from Paenibacillus barengoltzii being suitable for acrylamide reduction in potato chips and mooncakes. International Journal of Biological Macromolecules 96:93–9.
  • Soncu, E. D, and N. Kolsarici. 2017. Microwave thawing and green tea extract efficiency for the formation of acrylamide throughout the production process of chicken burgers and chicken nuggets. Journal of the Science of Food and Agriculture 97 (6):1790–7. doi: 10.1002/jsfa.7976.
  • Suman, M., S. Generotti, M. Cirlini, and C. Dall’Asta. 2019. Acrylamide reduction strategy in combination with deoxynivalenol mitigation in industrial biscuits production. Toxins 11 (9):499. doi: 10.3390/toxins11090499.
  • Sung, W. C., M. H. Chi, T. Y. Chiou, S. H. Lin, and W. J. Lee. 2020. Influence of caramel and molasses addition on acrylamide and 5-hydroxylmethylfurfural formation and sensory characteristics of non-centrifugal cane sugar during manufacturing. Journal of the Science of Food and Agriculture 100 (12):4512–20. doi: 10.1002/jsfa.10492.
  • Timmermann, C. A. G., S. S. Mølck, M. Kadawathagedara, A. A. Bjerregaard, M. Törnqvist, A. L. Brantsaeter, and M. Pedersen. 2021. A review of dietary intake of acrylamide in humans. Toxics 9 (7):155. doi: 10.3390/toxics9070155.
  • Topete-Betancourt, A., J. D. Figueroa Cárdenas, A. L. Rodríguez-Lino, E. Ríos-Leal, E. Morales-Sánchez, and H. E. Martínez-Flores. 2019. Effect of nixtamalization processes on mitigation of acrylamide formation in tortilla chips. Food Science and Biotechnology 28 (4):975–82. doi: 10.1007/s10068-019-00563-2.
  • Torres, J. D., V. Dueik, D. Carré, and P. Bouchon. 2019. Effect of the addition of soluble dietary fiber and green tea polyphenols on acrylamide formation and in vitro starch digestibility in baked starchy matrices. Molecules 24 (20):3674. doi: 10.3390/molecules24203674.
  • Troise, A. D., J. D. Wilkin, and A. Fiore. 2018. Impact of rapeseed press-cake on Maillard reaction in a cookie model system. Food Chemistry 243:365–72. doi: 10.1016/j.foodchem.2017.09.153.
  • Trujillo-Agudelo, S., A. Osorio, F. Gómez, J. Contreras-Caldern, M. Mesas-Garcia, C. DelgadoAndrade, F. Morales, and O. Vega-Castro. 2020. Evaluation of the application of an edible coating and different frying temperatures on acrylamide and fat content in potato chips. J Food Process Eng. 43:e13198. doi: 10.1111/jfpe.13198.
  • Trujillo-Mayol, I., C. S. M. Madalena, O. Viegas, S. C. Cunha, J. Alarcón-Enos, O. Pinho, and I. Ferreira. 2021. Incorporation of avocado peel extract to reduce cooking-induced hazards in beef and soy burgers: a clean label ingredient. Food Research International (Ottawa, Ont.) 147:110434. doi: 10.1016/j.foodres.2021.110434.
  • Wang, P., R. Ji, J. Ji, and F. Chen. 2019. Changes of metabolites of acrylamide and glycidamide in acrylamide-exposed rats pretreated with blueberry anthocyanins extract. Food Chemistry 274:611–9. doi: 10.1016/j.foodchem.2018.08.058.
  • Wang, Y., H. Wu, W. Zhang, W. Xu, and W. Mu. 2021. Efficient control of acrylamide in French fries by an extraordinarily active and thermo-stable L-asparaginase: a lab-scale study. Food Chemistry 360:130046–146. doi: 10.1016/j.foodchem.2021.130046.
  • World Health Organization, Food and Agriculture Organization of the United Nations & Joint FAO/WHO Expert Committee on Food Additives. Meeting (72nd : 2010 : Rome, Italy) (2011). Evaluation of certain contaminants in food: seventy second report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization. https://apps.who.int/iris/handle/10665/44514.
  • Yang, H., L. Li, Y. Yin, B. Li, X. Zhang, W. Jiao, and Y. Liang. 2019. Effect of ground ginger on dough and biscuit characteristics and acrylamide content. Food Science and Biotechnology 28 (5):1359–66. doi: 10.1007/s10068-019-00592-x.
  • Yu, S., Z. Chen, H. Meng, and M. Chen. 2020. Addition of lipophilic grape seed proanthocyanidin effectively reduces acrylamide formation. Journal of the Science of Food and Agriculture 100 (3):1213–9. doi: 10.1002/jsfa.10132.
  • Yuan, Y., Qi, M. Y. Liu, H. Y. Yan, and H. Y. 2019. Study of acrylamide mitigation in model systems and potato crisps: effect of rosmarinic acid. International Journal of Food Science & Technology 54 (9):2700–10. doi: 10.1111/ijfs.14180.
  • Zargar, S., N. J. Siddiqi, S. Ansar, M. S. Alsulaimani, and A. K. El Ansary. 2016. Therapeutic role of quercetin on oxidative damage induced by acrylamide in rat brain. Pharmaceutical Biology 54 (9):1763–7. doi: 10.3109/13880209.2015.1127977.
  • Zeng, X., K.-W. Cheng, Y. Du, R. Kong, C. Lo, I. Chu, F. Chen, and m Wang. 2010. Activities of hydrocolloids as inhibitors of acrylamide formation in model systems and fried potato strips. Food Chemistry 121 (2):424–8. doi: 10.1016/j.foodchem.2009.12.059.
  • Zhang, D., X. Cheng, D. Sun, S. Ding, P. Cai, L. Yuan, Y. Tian, W. Tu, and Q.-N. Hu. 2020. AdditiveChem: a comprehensive bioinformatics knowledge-base for food additive chemicals. Food Chemistry 308:125519.
  • Zhao, L., T. Zhou, F. Yan, X. Zhu, Q. Lu, and R. Liu. 2019. Synergistic inhibitory effects of procyanidin B2 and catechin on acrylamide in food matrix. Food Chemistry 296:94–9.
  • Zhu, Y., Y. Luo, G. Sun, P. Wang, X. Hu, and F. Chen. 2020. Inhibition of acrylamide by glutathione in asparagine/glucose model systems and cookies. Food Chemistry 329:127171.
  • Žilić, S., I. G. Aktağ, D. Dodig, and V. Gökmen. 2021. Investigations on the formation of Maillard reaction products in sweet cookies made of different cereals. Food Research International (Ottawa, Ont.) 144:110352.
  • Zokaei, M., M. Kamankesh, A. S. Abedi, M. H. Moosavi, A. Mohammadi, M. Rezvani, S. Shojaee-Aliabadi, and A. M. Khaneghah. 2020. Reduction in acrylamide formation in potato crisps: application of extract and hydrocolloid-based coatings. Journal of Food Protection 83 (5):754–61. doi: 10.4315/0362-028X.JFP-19-357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.