1,204
Views
18
CrossRef citations to date
0
Altmetric
Review

The encapsulation strategy to improve the survival of probiotics for food application: From rough multicellular to single-cell surface engineering and microbial mediation

ORCID Icon, , & ORCID Icon

References

  • Abedinia, A., F. Alimohammadi, F. Teymori, N. Razgardani, M. R. Saeidi Asl, F. Ariffin, A. Mohammadi Nafchi, N. Huda, and J. Roslan. 2021. Characterization and cell viability of probiotic/prebiotics film based on duck feet gelatin: A novel poultry gelatin as a suitable matrix for probiotics. Foods 10 (8):1761. doi: 10.3390/foods10081761.
  • Afzaal, M., A. U. Khan, F. Saeed, M. S. Arshad, M. A. Khan, M. Saeed, A. A. Maan, M. K. Khan, Z. Ismail, A. Ahmed, et al. 2020a. Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal conditions and in ice cream. Food Science & Nutrition 8 (3):1649–56. doi: 10.1002/fsn3.1451.
  • Afzaal, M., F. Saeed, S. Hussain, A. A. Mohamed, M. S. Alamri, A. Ahmad, H. Ateeq, T. Tufail, and M. Hussain. 2020b. Survival and storage stability of encapsulated probiotic under simulated digestion conditions and on dried apple snacks. Food Science & Nutrition 8 (10):5392–401. doi: 10.1002/fsn3.1815.
  • Ajalloueian, F., P. R. Guerra, M. I. Bahl, A. M. Torp, E. T. Hwu, T. R. Licht, and A. Boisen. 2022. Multi-layer PLGA-pullulan-PLGA electrospun nanofibers for probiotic delivery. Food Hydrocolloids. 123:107112. doi: 10.1016/j.foodhyd.2021.107112.
  • Akman, P. K., F. Bozkurt, K. Dogan, F. Tornuk, and F. Tamturk. 2021. Fabrication and characterization of probiotic Lactobacillus plantarum loaded sodium alginate edible films. Journal of Food Measurement and Characterization 15 (1):84–92. doi: 10.1007/s11694-020-00619-6.
  • Al-Dulaimi, M., A. Algburi, A. Abdelhameed, M. S. Mazanko, D. V. Rudoy, A. M. Ermakov, and M. L. Chikindas. 2021. Antimicrobial and anti-biofilm activity of polymyxin E alone and in combination with probiotic strains of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 against clinical isolates of selected Acinetobacter spp. A preliminary study. Pathogens 10 (12):1574. doi: 10.3390/pathogens10121574.
  • Albadran, H. A., A. Monteagudo-Mera, V. V. Khutoryanskiy, and D. Charalampopoulos. 2020. Development of chitosan-coated agar-gelatin particles for probiotic delivery and targeted release in the gastrointestinal tract. Applied Microbiology and Biotechnology 104 (13):5749–57. doi: 10.1007/s00253-020-10632-w.
  • Atraki, R., and M. Azizkhani. 2021. Survival of probiotic bacteria nanoencapsulated within biopolymers in a simulated gastrointestinal model. Innovative Food Science & Emerging Technologies 72:102750. doi: 10.1016/j.ifset.2021.102750.
  • Azam, M., M. Saeed, T. Ahmad, I. Yamin, W. A. Khan, M. W. Iqbal, S. Mahmood, M. Rizwan, and T. Riaz. 2022. Characterization of biopolymeric encapsulation system for improved survival of Lactobacillus brevis. Journal of Food Measurement and Characterization 16 (3):2292–9. doi: 10.1007/s11694-022-01334-0.
  • Azizi, S., M. Rezazadeh-Bari, H. Almasi, and S. Amiri. 2021. Microencapsulation of Lactobacillus rhamnosus using sesame protein isolate: Effect of encapsulation method and transglutaminase. Food Bioscience 41:101012. doi: 10.1016/j.fbio.2021.101012.
  • Cavalheiro, C. P., C. Ruiz‐Capillas, A. M. Herrero, F. Jiménez‐Colmenero, T. Pintado, C. R. Menezes, and L. L. M. Fries. 2020. Effect of encapsulated Lactobacillus plantarum as probiotic on dry‐sausages during chilled storage. International Journal of Food Science & Technology 55 (12):3613–21. doi: 10.1111/ijfs.14695.
  • Centurion, F., S. Merhebi, M. Baharfar, R. Abbasi, C. Zhang, M. Mousavi, W. Xie, J. Yang, Z. Cao, F. M. Allioux, et al. 2022. Cell‐mediated biointerfacial phenolic assembly for probiotic nano encapsulation. Advanced Functional Materials 32 (26):2200775. doi: 10.1002/adfm.202200775.
  • Champagne, C. P., N. Guertin, and Y. Raymond. 2022. Strategies to improve the survival of probiotic Lacticaseibacillus rhamnosus R0011 during the production and storage of granola bars. Canadian Journal of Microbiology 68 (3):147–56. doi: 10.1139/cjm-2021-0130.
  • de Marins, A. R., T. A. F. de Campos, A. F. Pereira Batista, V. G. Correa, R. M. Peralta, J. M. Graton Mikcha, R. G. Gomes, and A. C. Feihrmann. 2022. Effect of the addition of encapsulated Lactiplantibacillus plantarum Lp-115, Bifidobacterium animalis spp. lactis Bb-12, and Lactobacillus acidophilus La-5 to cooked burger. LWT 155:112946. doi: 10.1016/j.lwt.2021.112946.
  • de Paiva e Silva, K. K., M. de Souza Queirós, A. P. B. Ribeiro, and M. L. Gigante. 2022. Modified milk fat as encapsulating material for the probiotic microorganism Lactobacillus acidophilus LA3. International Dairy Journal 125:105237. doi: 10.1016/j.idairyj.2021.105237.
  • Deng, Z., J. Li, R. Song, B. Zhou, B. Li, and H. Liang. 2021. Carboxymethylpachymaran/alginate gel entrapping of natural pollen capsules for the encapsulation, protection and delivery of probiotics with enhanced viability. Food Hydrocolloids 120:106855. doi: 10.1016/j.foodhyd.2021.106855.
  • Devarajan, A., P. Mudgil, F. Aldhaheri, F. Hamed, S. Dhital, and S. Maqsood. 2022. Camel milk-derived probiotic strains encapsulated in camel casein and gelatin complex microcapsules: Stability against thermal challenge and simulated gastrointestinal digestion conditions. Journal of Dairy Science 105 (3):1862–77. doi: 10.3168/jds.2021-20745.
  • Diệp Huy Vũ, P., A. Rodklongtan, and P. Chitprasert. 2021. Whey protein isolate-lignin complexes as encapsulating agents for enhanced survival during spray drying, storage, and in vitro gastrointestinal passage of Lactobacillus reuteri KUB-AC5. LWT 148:111725. doi: 10.1016/j.lwt.2021.111725.
  • Ding, X., Y. Xu, Y. Wang, L. Xie, S. Liang, D. Li, Y. Wang, J. Wang, and X. Zhan. 2022. Carboxymethyl konjac glucomannan-chitosan complex nanogels stabilized double emulsions incorporated into alginate hydrogel beads for the encapsulation, protection and delivery of probiotics. Carbohydrate Polymers 289:119438. doi: 10.1016/j.carbpol.2022.119438.
  • Ebrahimi Monfared, K., M. Gharachorloo, A. Jafarpour, and J. Varvani. 2022a. Effect of storage and packaging conditions on physicochemical and bioactivity of matcha‐enriched muesli containing probiotic bacteria. Journal of Food Processing and Preservation: e16878. doi: 10.1111/jfpp.16878.
  • Ebrahimi Monfared, K., M. Gharachorloo, A. Jafarpour, and J. Varvani. 2022b. Production feasibility of functional probiotic muesli containing matcha and investigation of its physicochemical, microbial, and sensory properties. Journal of Food Measurement and Characterization 16 (2):975–86. doi: 10.1007/s11694-021-01224-x.
  • Fan, G., P. Wasuwanich, M. R. Rodriguez-Otero, and A. L. Furst. 2022. Protection of anaerobic microbes from processing stressors using metal-phenolic networks. Journal of the American Chemical Society 144 (6):2438–43. doi: 10.1021/jacs.1c09018.
  • Ferreira de Campos, T. A., A. Rech de Marins, N. Marques da Silva, M. A. Matiucci, I. Catarini dos Santos, C. R. Alcalde, M. L. Rodrigues de Souza, R. G. Gomes, and A. C. Feihrmann. 2022. Effect of the addition of the probiotic Bifidobacterium animalis subsp. Lactis (BB-12) in free and microencapsulated form and the prebiotic inulin to synbiotic dry coppa. Food Research International (Ottawa, ON) 158:111544. doi: 10.1016/j.foodres.2022.111544.
  • Frakolaki, G., V. Giannou, D. Kekos, and C. Tzia. 2021. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Critical Reviews in Food Science and Nutrition 61 (9):1515–36. doi: 10.1080/10408398.2020.1761773.
  • Gao, H., L. Ma, W. Sun, D. J. McClements, C. Cheng, H. Zeng, L. Zou, and W. Liu. 2022. Impact of encapsulation of probiotics in oil-in-water high internal phase emulsions on their thermostability and gastrointestinal survival. Food Hydrocolloids 126:107478. doi: 10.1016/j.foodhyd.2021.107478.
  • Ge, Y., J. Wu, M. Pang, D. Hu, Z. Li, X. Wang, L. Sun, X. Chen, and J. Yao. 2022. Novel carboxymethyl chitosan/N-acetylneuraminic acid hydrogel for the protection of Pediococcus pentosaceus. Food Research International (Ottawa, ON) 156:111355. doi: 10.1016/j.foodres.2022.111355.
  • Ghasemi, L., L. Nouri, A. Mohammadi Nafchi, and A. A. Al‐Hassan. 2022. The effects of encapsulated probiotic bacteria on the physicochemical properties, staling, and viability of probiotic bacteria in gluten‐free bread. Journal of Food Processing and Preservation 46 (3):e16359. doi: 10.1111/jfpp.16359.
  • Ghazal, A. F., M. Zhang, A. S. Mujumdar, and M. Ghamry. 2022. Progress in 4D/5D/6D printing of foods: Applications and R&D opportunities. Critical Reviews in Food Science and Nutrition: 1–24. doi: 10.1080/10408398.2022.2045896.
  • González-Ferrero, C., J. M. Irache, B. Marín-Calvo, L. Ortiz-Romero, R. Virto-Resano, and C. J. González-Navarro. 2020. Encapsulation of probiotics in soybean protein-based microparticles preserves viable cell concentration in foods all along the production and storage processes. Journal of Microencapsulation 37 (3):242–53. doi: 10.1080/02652048.2020.1724203.
  • Guo, Q., T. Li, C. Yuan, L. Liang, M. G. Ganzle, and M. Zhao. 2022. Effects of protein fibrillation and antioxidants on probiotic survival during ambient storage. Food Chemistry 389:133117. doi: 10.1016/j.foodchem.2022.133117.
  • Hadidi, M., N. Majidiyan, A. Z. Jelyani, A. Moreno, Z. Hadian, and A. Mousavi Khanegah. 2021. Alginate/fish gelatin-encapsulated Lactobacillus acidophilus: A study on viability and technological quality of bread during baking and storage. Foods 10 (9):2215. doi: 10.3390/foods10092215.
  • He, C., I. Sampers, D. Van de Walle, K. Dewettinck, and K. Raes. 2021. Encapsulation of lactobacillus in low-methoxyl pectin-based microcapsules stimulates biofilm formation: Enhanced resistances to heat shock and simulated gastrointestinal digestion. Journal of Agricultural and Food Chemistry 69 (22):6281–90. doi: 10.1021/acs.jafc.1c00719.
  • Heumann, A., A. Assifaoui, D. Da Silva Barreira, C. Thomas, R. Briandet, J. Laurent, L. Beney, P. Lapaquette, J. Guzzo, and A. Rieu. 2020. Intestinal release of biofilm-like microcolonies encased in calcium-pectinate beads increases probiotic properties of Lacticaseibacillus paracasei. NPJ Biofilms and Microbiomes 6 (1):44. doi: 10.1038/s41522-020-00159-3.
  • Hossain, M. N., C. S. Ranadheera, Z. Fang, and S. Ajlouni. 2022a. Interaction between chocolate polyphenols and encapsulated probiotics during in vitro digestion and colonic fermentation. Fermentation 8 (6):253. doi: 10.3390/fermentation8060253.
  • Hossain, M. N., C. S. Ranadheera, Z. Fang, and S. Ajlouni. 2022b. Production of short chain fatty acids and vitamin B12 during the in-vitro digestion and fermentation of probiotic chocolate. Food Bioscience 47:101682. doi: 10.1016/j.fbio.2022.101682.
  • Hosseini, S. F., B. Ansari, and A. Gharsallaoui. 2022. Polyelectrolytes-stabilized liposomes for efficient encapsulation of Lactobacillus rhamnosus and improvement of its survivability under adverse conditions. Food Chemistry 372:131358. doi: 10.1016/j.foodchem.2021.131358.
  • Hotel, A. C. P., and A. Cordoba. 2001. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention 5:1–10.
  • Hu, M. X., F. He, Z. S. Zhao, Y. X. Guo, X. K. Ma, C. K. Tu, H. Teng, Z. X. Chen, H. Yan, and X. Shao. 2022. Electrospun nanofibrous membranes accelerate biofilm formation and probiotic enrichment: Enhanced tolerances to pH and antibiotics. ACS Applied Materials & Interfaces 14 (28):31601–12. doi: 10.1021/acsami.2c04540.
  • Huang, R.-M., K. Feng, S.-F. Li, M.-H. Zong, H. Wu, and S.-Y. Han. 2021a. Enhanced survival of probiotics in the electrosprayed microcapsule by addition of fish oil. Journal of Food Engineering 307:110650. doi: 10.1016/j.jfoodeng.2021.110650.
  • Huang, X., M. Ganzle, H. Zhang, M. Zhao, Y. Fang, and K. Nishinari. 2021b. Microencapsulation of probiotic lactobacilli with shellac as moisture barrier and to allow controlled release. Journal of the Science of Food and Agriculture 101 (2):726–34. doi: 10.1002/jsfa.10685.
  • Jayani, T., B. Sanjeev, S. Marimuthu, and S. Uthandi. 2020. Bacterial Cellulose Nano Fiber (BCNF) as carrier support for the immobilization of probiotic, Lactobacillus acidophilus 016. Carbohydrate Polymers 250:116965.
  • Jiang, Z., M. Li, D. J. McClements, X. Liu, and F. Liu. 2022. Recent advances in the design and fabrication of probiotic delivery systems to target intestinal inflammation. Food Hydrocolloids 125:107438. doi: 10.1016/j.foodhyd.2021.107438.
  • Jouki, M., N. Khazaei, S. Rashidi-Alavijeh, and S. Ahmadi. 2021. Encapsulation of Lactobacillus casei in quince seed gum-alginate beads to produce a functional synbiotic drink powder by agro-industrial by-products and freeze-drying. Food Hydrocolloids 120:106895. doi: 10.1016/j.foodhyd.2021.106895.
  • Karimi, M., S. S. Sekhavatizadeh, and S. Hosseinzadeh. 2021. Milk dessert containing Lactobacillus reuteri (ATCC 23272) encapsulated with sodium alginate, Ferula assa-foetida and Zedo (Amygdalus scoparia) gum as three layers of wall materials. Food and Bioproducts Processing 127:244–54. doi: 10.1016/j.fbp.2021.03.003.
  • Katiyar, N. K., K. Biswas, and C. S. Tiwary. 2021. Cryomilling as environmentally friendly synthesis route to prepare nanomaterials. International Materials Reviews 66 (7):493–532. doi: 10.1080/09506608.2020.1825175.
  • Kazemi, M., F. Shahidi, M. J. Varidi, and S. Roshanak. 2022. Encapsulation of Lactobacillus acidophilus in solid lipid microparticles via cryomilling. Food Chemistry 395:133564. doi: 10.1016/j.foodchem.2022.133564.
  • Krunic, T. Z., and M. B. Rakin. 2022. Enriching alginate matrix used for probiotic encapsulation with whey protein concentrate or its trypsin-derived hydrolysate: Impact on antioxidant capacity and stability of fermented whey-based beverages. Food Chemistry 370:130931. doi: 10.1016/j.foodchem.2021.130931.
  • Kuo, C.-C., S. Clark, H. Qin, and X. Shi. 2022. Development of a shelf-stable, gel-based delivery system for probiotics by encapsulation, 3D printing, and freeze-drying. LWT 157:113075. doi: 10.1016/j.lwt.2022.113075.
  • Lai, K. W., Y. H. How, and L. P. Pui. 2020. Storage stability of microencapsulated Lactobacillus rhamnosus GG in hawthorn berry tea with flaxseed mucilage. Journal of Food Processing and Preservation 44 (12):e14965. doi: 10.1111/jfpp.14965.
  • Lasta, E. L., E. da Silva Pereira Ronning, R. F. H. Dekker, and M. A. A. da Cunha. 2021. Encapsulation and dispersion of Lactobacillus acidophilus in a chocolate coating as a strategy for maintaining cell viability in cereal bars. Scientific Reports 11 (1):20550. doi: 10.1038/s41598-021-00077-0.
  • Lu, M., and J. Yu. 2018. Mussel-inspired biomaterials for cell and tissue engineering. Advances in Experimental Medicine and Biology 1077:451–74.
  • Mahmoodi Pour, H., M. H. Marhamatizadeh, H. Fattahi, and A. Di Maro. 2022. Encapsulation of different types of probiotic bacteria within conventional/multilayer emulsion and its effect on the properties of probiotic yogurt. Journal of Food Quality 2022:1–12. doi: 10.1155/2022/7923899.
  • Maleki, O., M. A. Khaledabad, S. Amiri, A. K. Asl, and S. Makouie. 2020. Microencapsulation of Lactobacillus rhamnosus ATCC 7469 in whey protein isolate-crystalline nanocellulose-inulin composite enhanced gastrointestinal survivability. LWT 126:109224. doi: 10.1016/j.lwt.2020.109224.
  • Mojaveri, S. J., S. F. Hosseini, and A. Gharsallaoui. 2020. Viability improvement of Bifidobacterium animalis Bb12 by encapsulation in chitosan/poly(vinyl alcohol) hybrid electrospun fiber mats. Carbohydrate Polymers 241:116278. doi: 10.1016/j.carbpol.2020.116278.
  • Motalebi Moghanjougi, Z., M. Rezazadeh Bari, M. Alizadeh Khaledabad, H. Almasi, and S. Amiri. 2020. Bio-preservation of white brined cheese (Feta) by using probiotic bacteria immobilized in bacterial cellulose: Optimization by response surface method and characterization. LWT 117:108603. doi: 10.1016/j.lwt.2019.108603.
  • Mudgil, P., F. Aldhaheri, M. Hamdi, S. Punia, and S. Maqsood. 2022. Fortification of Chami (traditional soft cheese) with probiotic-loaded protein and starch microparticles: Characterization, bioactive properties, and storage stability. LWT 158:113036. doi: 10.1016/j.lwt.2021.113036.
  • Naissinger da Silva, M., B. L. Tagliapietra, F. P. Pivetta, and N. S. P. dos Santos Richards. 2022. Nutritional, functional and sensory profile of added butter from Lactobacillus acidophilus encapsulated and hyposodium salt. LWT 161:113385. doi: 10.1016/j.lwt.2022.113385.
  • Naissinger da Silva, M., B. L. Tagliapietra, and N. S. P. dos Santos Richards. 2021. Encapsulation, storage viability, and consumer acceptance of probiotic butter. LWT 139:110536. doi: 10.1016/j.lwt.2020.110536.
  • Nasirvand, F., and N. Babolani Mogadam. 2022. Investigation of survival of probiotic Lactobacillus casei and Bifidobacterium lactis encapsulated with calcium alginate-inulin in cold green tea drink. Journal of Food Research 32:137–49.
  • Neuenfeldt, N. H., C. A. Almeida Farias, R. de Oliveira Mello, S. S. Robalo, J. S. Barin, L. Picolli da Silva, E. I. Müller, E. M. Moraes Flores, M. T. Barcia, and C. Ragagnin de Menezes. 2022. Effects of blueberry extract co-microencapsulation on the survival of Lactobacillus rhamnosus. LWT 155:112886. doi: 10.1016/j.lwt.2021.112886.
  • Nguyen, T. T., P. T. Nguyen, T. T. Nguyen, T. B. Nguyen, N. B. Bui, and H. T. Nguyen. 2022. Efficacy of the incorporation between self-encapsulation and cryoprotectants on improving the freeze-dried survival of probiotic bacteria. Journal of Applied Microbiology 132 (4):3217–25. doi: 10.1111/jam.15473.
  • Nisar, T., A. Alim, T. Iqbal, M. Iqbal, S. Tehseen, W. Zi‐Chao, and Y. Guo. 2022. Functionality of different probiotic strains embedded in citrus pectin based edible films. International Journal of Food Science & Technology 57 (2):1005–15. doi: 10.1111/ijfs.15460.
  • Obradović, N., M. Volić, V. Nedović, M. Rakin, and B. Bugarski. 2022. Microencapsulation of probiotic starter culture in protein–carbohydrate carriers using spray and freeze-drying processes: Implementation in whey-based beverages. Journal of Food Engineering 321:110948. doi: 10.1016/j.jfoodeng.2022.110948.
  • Pan, C., J. Li, W. Hou, S. Lin, L. Wang, Y. Pang, Y. Wang, and J. Liu. 2021. Polymerization-mediated multifunctionalization of living cells for enhanced cell-based therapy. Advanced Materials (Deerfield Beach, FL) 33 (13):e2007379. doi: 10.1002/adma.202007379.
  • Pan, J., G. Gong, Q. Wang, J. Shang, Y. He, C. Catania, D. Birnbaum, Y. Li, Z. Jia, Y. Zhang, et al. 2022. A single-cell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea. Nature Communications 13 (1):2117. doi: 10.1038/s41467-022-29672-z.
  • Pino, A., A. M. C. Rapisarda, S. G. Vitale, S. Cianci, C. Caggia, C. L. Randazzo, and A. Cianci. 2021. A clinical pilot study on the effect of the probiotic Lacticaseibacillus rhamnosus TOM 22.8 strain in women with vaginal dysbiosis. Scientific Reports 11 (1):1–12. doi: 10.1038/s41598-021-81931-z.
  • Pivetta, F. P., M. N. d. Silva, B. L. Tagliapietra, V. d. A. Flores, and N. S. P. dos Santos Richards. 2022. Probiotic viability of requeijão cremoso processed cheese formulations. Research, Society and Development 11 (6):e27211629027. doi: 10.33448/rsd-v11i6.29027.
  • Qi, X., S. Simsek, J. B. Ohm, B. Chen, and J. Rao. 2020. Viability of Lactobacillus rhamnosus GG microencapsulated in alginate/chitosan hydrogel particles during storage and simulated gastrointestinal digestion: Role of chitosan molecular weight. Soft Matter 16 (7):1877–87. doi: 10.1039/c9sm02387a.
  • Qin, X.-S., Q.-Y. Gao, and Z.-G. Luo. 2021. Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus Plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles. Food Hydrocolloids 116:106658. doi: 10.1016/j.foodhyd.2021.106658.
  • Qin, X.-S., Z.-G. Luo, and X.-L. Li. 2021. An enhanced pH-sensitive carrier based on alginate-Ca-EDTA in a set-type W1/O/W2 double emulsion model stabilized with WPI-EGCG covalent conjugates for probiotics colon-targeted release. Food Hydrocolloids 113:106460. doi: 10.1016/j.foodhyd.2020.106460.
  • Quintana, G., E. Gerbino, P. Alves, P. N. Simoes, M. L. Rua, C. Fucinos, and A. Gomez-Zavaglia. 2021. Microencapsulation of Lactobacillus plantarum in W/O emulsions of okara oil and block-copolymers of poly(acrylic acid) and pluronic using microfluidic devices. Food Research International 140:110053. doi: 10.1016/j.foodres.2020.110053.
  • Raddatz, G. C., V. R. Fonseca, A. J. Cichoski, L. Q. Zepka, E. Jacob-Lopes, P. C. B. Campagnol, R. Wagner, E. I. Muller, E. M. de Moraes Flores, C. de Bona da Silva, et al. 2022. Viability and stability evaluation of Lactobacillus casei LC03 co-encapsulated with red onion (Allium cepa L.) peel extract. LWT 153:112434. doi: 10.1016/j.lwt.2021.112434.
  • Romero-Chapol, O. O., A. Varela-Pérez, A. G. Castillo-Olmos, H. S. García, J. Singh, P. J. García-Ramírez, R. Viveros-Contreras, C. Y. Figueroa-Hernández, and C. Cano-Sarmiento. 2022. Encapsulation of Lacticaseibacillus rhamnosus GG: Probiotic survival, in vitro digestion and viability in apple juice and yogurt. Applied Sciences 12 (4):2141. doi: 10.3390/app12042141.
  • Rosales Delgado, S., A. F. Alzate Arbeláez, K. Zapata Acosta, F. B. Cortés, and B. A. Rojano. 2022. Improvement of probiotic viability through the design of novel biomaterials using coffee pulp wastes and Lactobacillus rhamnosus. Food Science and Technology International: 108201322211006. doi: 10.1177/10820132221100683.
  • Roy, A., M. Patra, S. Sarkhel, S. Sengupta, S. Saha, S. Jha, G. Sarkhel, and S. L. Shrivastava. 2022. Fucose-containing Abroma augusta mucilage hydrogel as a potential probiotic carrier with prebiotic function. Food Chemistry 387:132941. doi: 10.1016/j.foodchem.2022.132941.
  • Saeed, F., M. Afzaal, A. Ahmad, M. Aamir, M. Aziz, S. Aslam, H. Ateeq, and M. Hussain. 2022. Enhanced viability of microencapsulated lyophilized probiotics under in vitro simulated gastrointestinal conditions. Journal of Food Processing and Preservation 46 (5):e16543. doi: 10.1111/jfpp.16543.
  • Santos, M. A. S., and M. T. C. Machado. 2021. Coated alginate–chitosan particles to improve the stability of probiotic yeast. International Journal of Food Science & Technology 56 (5):2122–31. doi: 10.1111/ijfs.14829.
  • Sharifi, S., M. Rezazad-Bari, M. Alizadeh, H. Almasi, and S. Amiri. 2021. Use of whey protein isolate and gum Arabic for the co-encapsulation of probiotic Lactobacillus plantarum and phytosterols by complex coacervation: Enhanced viability of probiotic in Iranian white cheese. Food Hydrocolloids 113:106496. doi: 10.1016/j.foodhyd.2020.106496.
  • Silva, J. L., D. de Almeida Paula, C. A. Lelis, É. N. R. Vieira, and A. M. Ramos. 2022. Double emulsions containing probiotic cells (Lactiplantibacillus plantarum) added in a mango dessert. Journal of Food Processing and Preservation 46 (8):e16783. doi: 10.1111/jfpp.16783.
  • Silva, M. P., E. G. Farsoni, C. F. Gobato, M. Thomazini, and C. S. Favaro-Trindade. 2022. Simultaneous encapsulation of probiotic and guaraná peel extract for development of functional peanut butter. Food Control. 138:109050. doi: 10.1016/j.foodcont.2022.109050.
  • Silva, M. P., M. Martelli-Tosi, A. P. Massarioli, P. S. Melo, S. M. Alencar, and C. S. Favaro-Trindade. 2022. Co-encapsulation of guaraná extracts and probiotics increases probiotic survivability and simultaneously delivers bioactive compounds in simulated gastrointestinal fluids. LWT 161:113351. doi: 10.1016/j.lwt.2022.113351.
  • Singu, B. D., P. R. Bhushette, and U. S. Annapure. 2020. Thermo-tolerant Saccharomyces cerevisiae var. boulardii coated cornflakes as a potential probiotic vehicle. Food Bioscience 36:100668. doi: 10.1016/j.fbio.2020.100668.
  • Sogut, E., B. E. Filiz, and A. C. Seydim. 2022. Whey protein isolate- and carrageenan-based edible films as carriers of different probiotic bacteria. Journal of Dairy Science 105 (6):4829–42. doi: 10.3168/jds.2021-21245.
  • Soloveva, I. V., T. N. Ilyicheva, V. Y. Marchenko, O. V. Pyankov, A. G. Tochilina, I. V. Belova, V. A. Zhirnov, N. I. Bormotov, M. O. Skarnovich, A. G. Durymanov, et al. 2021. Genome features and in vitro activity against influenza A and SARS-CoV-2 viruses of six probiotic strains. BioMed Research International 2021:6662027. doi: 10.1155/2021/6662027.
  • Song, S., Y. Cui, X. Ji, F. Gao, H. Zhu, J. Zhu, X. Liu, and J. Guan. 2022. Microencapsulation of Lactobacillus plantarum with enzymatic hydrolysate of soybean protein isolate for improved acid resistance and gastrointestinal survival in vitro. International Journal of Food Engineering 18 (7):499–511. doi: 10.1515/ijfe-2021-0374.
  • Sun, Q., and L. Wicker. 2021. Hydrogel encapsulation of Lactobacillus casei by block charge modified pectin and improved gastric and storage stability. Foods 10 (6):1337. doi: 10.3390/foods10061337.
  • Tan, L. L., M. Mahotra, S. Y. Chan, and S. C. J. Loo. 2022. In situ alginate crosslinking during spray-drying of lactobacilli probiotics promotes gastrointestinal-targeted delivery. Carbohydrate Polymers 286:119279. doi: 10.1016/j.carbpol.2022.119279.
  • Tan, L. L., K. Sampathkumar, J. H. Wong, and S. C. J. Loo. 2020. Divalent cations are antagonistic to survivability of freeze-dried probiotics encapsulated in cross-linked alginate. Food and Bioproducts Processing 124:369–77. doi: 10.1016/j.fbp.2020.09.013.
  • Vanden Braber, N. L., L. I. Díaz Vergara, Y. E. Rossi, C. A. Aminahuel, A. N. Mauri, L. R. Cavaglieri, and M. A. Montenegro. 2020. Effect of microencapsulation in whey protein and water-soluble chitosan derivative on the viability of the probiotic Kluyveromyces marxianus VM004 during storage and in simulated gastrointestinal conditions. LWT 118:108844. doi: 10.1016/j.lwt.2019.108844.
  • Varela-Perez, A., O. O. Romero-Chapol, A. G. Castillo-Olmos, H. S. Garcia, M. L. Suarez-Quiroz, J. Singh, C. Y. Figueroa-Hernandez, R. Viveros-Contreras, and C. Cano-Sarmiento. 2022. Encapsulation of Lactobacillus gasseri: Characterization, probiotic survival, in vitro evaluation and viability in apple juice. Foods 11 (5):740. doi: 10.3390/foods11050740.
  • Wang, A., J. Lin, and Q. Zhong. 2021. Enteric rice protein-shellac composite coating to enhance the viability of probiotic Lactobacillus salivarius NRRL B-30514. Food Hydrocolloids 113:106469. doi: 10.1016/j.foodhyd.2020.106469.
  • Wang, R., K. Guo, W. Zhang, Y. He, K. Yang, Q. Chen, L. Yang, Z. Di, J. Qiu, P. Lei, et al. 2022. Poly‐γ‐glutamic acid microgel‐encapsulated probiotics with gastric acid resistance and smart inflammatory factor targeted delivery performance to ameliorate colitis. Advanced Functional Materials 32 (26):2113034. doi: 10.1002/adfm.202113034.
  • Wei, H., W. Geng, X. Y. Yang, J. Kuipers, H. C. van der Mei, and H. J. Busscher. 2022. Activation of a passive, mesoporous silica nanoparticle layer through attachment of bacterially-derived carbon-quantum-dots for protection and functional enhancement of probiotics. Materials Today. Bio 15:100293.
  • Xiao, Y., C. Lu, Y. Liu, L. Kong, H. Bai, H. Mu, Z. Li, H. Geng, and J. Duan. 2020. Encapsulation of Lactobacillus rhamnosus in hyaluronic acid-based hydrogel for pathogen-targeted delivery to ameliorate enteritis. ACS Applied Materials & Interfaces 12 (33):36967–77. doi: 10.1021/acsami.0c11959.
  • Xie, J., M. Yao, Y. Lu, M. Yu, S. Han, D. J. McClements, H. Xiao, and L. Li. 2021. Impact of encapsulating a probiotic (Pediococcus pentosaceus Li05) within gastro-responsive microgels on Clostridium difficile infections. Food & Function 12 (7):3180–90. doi: 10.1039/d0fo03235b.
  • Xu, C., J. Ma, W. Wang, Z. Liu, L. Gu, S. Qian, J. Hou, and Z. Jiang. 2022. Preparation of pectin-based nanofibers encapsulating Lactobacillus rhamnosus 1.0320 by electrospinning. Food Hydrocolloids 124:107216. doi: 10.1016/j.foodhyd.2021.107216.
  • Yilmaz, M. T., O. Taylan, C. Y. Karakas, and E. Dertli. 2020. An alternative way to encapsulate probiotics within electrospun alginate nanofibers as monitored under simulated gastrointestinal conditions and in kefir. Carbohydrate Polymers 244:116447. doi: 10.1016/j.carbpol.2020.116447.
  • Yin, M., Y. Yuan, M. Chen, F. Liu, M. N. Saqib, B. S. Chiou, and F. Zhong. 2022. The dual effect of shellac on survival of spray-dried Lactobacillus rhamnosus GG microcapsules. Food Chemistry 389:132999. doi: 10.1016/j.foodchem.2022.132999.
  • Yoha, K. S., T. Anukiruthika, W. Anila, J. A. Moses, and C. Anandharamakrishnan. 2021. 3D printing of encapsulated probiotics: Effect of different post-processing methods on the stability of Lactiplantibacillus plantarum (NCIM 2083) under static in vitro digestion conditions and during storage. LWT 146:111461. doi: 10.1016/j.lwt.2021.111461.
  • Yu, Y., X. Yu, J. Ouyang, and X. Ma. 2021. Complete genome sequence of Bacillus coagulans BC01, a promising human probiotic strain isolated from thick broad bean sauce. Microbiology Resource Announcements 10 (19):e00392-21. doi: 10.1128/MRA.00392-21.
  • Yuan, Y., M. Yin, L. Chen, F. Liu, M. Chen, and F. Zhong. 2022. Effect of calcium ions on the freeze-drying survival of probiotic encapsulated in sodium alginate. Food Hydrocolloids 130:107668. doi: 10.1016/j.foodhyd.2022.107668.
  • Zaeim, D., M. Sarabi-Jamab, B. Ghorani, R. Kadkhodaee, W. Liu, and R. H. Tromp. 2020. Microencapsulation of probiotics in multi-polysaccharide microcapsules by electro-hydrodynamic atomization and incorporation into ice-cream formulation. Food Structure 25:100147. doi: 10.1016/j.foostr.2020.100147.
  • Zhang, Z.-H., M.-F. Li, F. Peng, S.-R. Zhong, Z. Huang, M.-H. Zong, and W.-Y. Lou. 2021. Oxidized high-amylose starch macrogel as a novel delivery vehicle for probiotic and bioactive substances. Food Hydrocolloids 114:106578. doi: 10.1016/j.foodhyd.2020.106578.
  • Zhao, C., Y. Zhu, B. Kong, Y. Huang, D. Yan, H. Tan, and L. Shang. 2020. Dual-core prebiotic microcapsule encapsulating probiotics for metabolic syndrome. ACS Applied Materials & Interfaces 12 (38):42586–94. doi: 10.1021/acsami.0c13518.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.