1,127
Views
5
CrossRef citations to date
0
Altmetric
Review

CRISPR-Cas systems mediated biosensing and applications in food safety detection

, , , , , ORCID Icon & show all

References

  • Abnous, K., N. M. Danesh, M. Ramezani, M. Alibolandi, M. A. Nameghi, T. S. Zavvar, and S. M. Taghdisi. 2021. A novel colorimetric aptasensor for ultrasensitive detection of aflatoxin M1 based on the combination of CRISPR-Cas12a, rolling circle amplification and catalytic activity of gold nanoparticles. Analytica Chimica Acta 1165:338549. doi: 10.1016/j.aca.2021.338549.
  • Abudayyeh, O. O., J. S. Gootenberg, S. Konermann, J. Joung, I. M. Slaymaker, D. B. T. Cox, S. Shmakov, K. S. Makarova, E. Semenova, L. Minakhin, et al. 2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353 (6299): aaf5573. doi: 10.1126/science.aaf5573.
  • Ackerman, C. M., C. Myhrvold, S. G. Thakku, C. A. Freije, H. C. Metsky, D. K. Yang, S. H. Ye, C. K. Boehm, T. F. Kosoko-Thoroddsen, J. Kehe, et al. 2020. Massively multiplexed nucleic acid detection with Cas13. Nature 582 (7811):277–82. doi: 10.1038/s41586-020-2279-8.
  • Alahi, M. E. E, and S. C. Mukhopadhyay. 2017. Detection methodologies for pathogen and toxins: a review. Sensors 17 (8):1885. doi: 10.3390/s17081885.
  • Alavanja, M. C., J. A. Hoppin, and F. J. A. R. P. H. Kamel. 2004. Health effects of chronic pesticide exposure: cancer and neurotoxicity. Annual Review of Public Health 25:155–97. doi: 10.1146/annurev.publhealth.25.101802.123020.
  • Ali, M. M., F. Li, Z. Zhang, K. Zhang, D. K. Kang, J. A. Ankrum, X. C. Le, and W. Zhao. 2014. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chemical Society Reviews 43 (10):3324–41. doi: 10.1039/c3cs60439j.
  • Anfossi, L., C. Giovannoli, and C. Baggiani. 2016. Mycotoxin detection. Current Opinion in Biotechnology 37:120–6. doi: 10.1016/j.copbio.2015.11.005.
  • Ang, W. L., X. Y. Seah, P. C. Koh, C. Caroline, and A. Bonanni. 2020. Electrochemical polymerase chain reaction using electroactive graphene oxide nanoparticles as detection labels. ACS Applied Nano Materials 3 (6):5489–98. doi: 10.1021/acsanm.0c00797.
  • Aroca, R. F., R. A. Alvarez-Puebla, N. Pieczonka, S. Sanchez-Cortez, and J. V. Garcia-Ramos. 2005. Surface-enhanced Raman scattering on colloidal nanostructures. Advances in Colloid and Interface Science 116 (1-3):45–61. doi: 10.1016/j.cis.2005.04.007.
  • Barrangou, R., C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D. A. Romero, and P. Horvath. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, N.Y.) 315 (5819):1709–12. doi: 10.1126/science.1138140.
  • Bohme, K., P. Calo-Mata, J. Barros-Velazquez, and I. Ortea. 2019. Review of recent DNA-based methods for main food-authentication topics. Journal of Agricultural and Food Chemistry 67 (14):3854–64. doi: 10.1021/acs.jafc.8b07016.
  • Bolotin, A., B. Quinquis, A. Sorokin, and S. D. Ehrlich. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading, England) 151 (Pt 8):2551–61. doi: 10.1099/mic.0.28048-0.
  • Brooks, C., L. Parr, J. M. Smith, D. Buchanan, D. Snioch, and E. Hebishy. 2021. A review of food fraud and food authenticity across the food supply chain, with an examination of the impact of the COVID-19 pandemic and Brexit on food industry. Food Control 130. doi: 10.1016/j.foodcont.2021.108171.
  • Brouns, S. J., M. M. Jore, M. Lundgren, E. R. Westra, R. J. Slijkhuis, A. P. Snijders, M. J. Dickman, K. S. Makarova, E. V. Koonin, and J. van der Oost. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science (New York, N.Y.) 321 (5891):960–4. doi: 10.1126/science.1159689.
  • Bruch, R., J. Baaske, C. Chatelle, M. Meirich, S. Madlener, W. Weber, C. Dincer, and G. A. Urban. 2019. CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Advanced Materials (Deerfield Beach, Fla.) 31 (51):e1905311. doi: 10.1002/adma.201905311.
  • Bu, S., X. Liu, Z. Wang, H. Wei, S. Yu, Z. Li, Z. Hao, W. Liu, and J. Wan. 2021. Ultrasensitive detection of pathogenic bacteria by CRISPR/Cas12a coupling with a primer exchange reaction. Sensors and Actuators B: Chemical 347:130630. doi: 10.1016/j.snb.2021.130630.
  • Cai, Q., R. Wang, Z. Qiao, and W. Yang. 2021. Single-digit Salmonella detection with the naked eye using bio-barcode immunoassay coupled with recombinase polymerase amplification and a CRISPR-Cas12a system. The Analyst 146 (17):5271–9. doi: 10.1039/d1an00717c.
  • Ceylan, Z., R. Meral, and T. Cetinkaya. 2020. Relevance of SARS-CoV-2 in food safety and food hygiene: potential preventive measures, suggestions and nanotechnological approaches. Virusdisease 31 (2):154–60. doi: 10.1007/s13337-020-00611-0.
  • Chang, W., W. Liu, H. Shen, S. Chen, P. Liao, and Y. Liu. 2020. Molecular AND logic gate for multiple single-nucleotide mutations detection based on CRISPR/Cas9n system-trigged signal amplification. Analytica Chimica Acta 1112:46–53. doi: 10.1016/j.aca.2020.03.058.
  • Chen, C., X.-N. Li, G.-X. Li, L. Zhao, S.-X. Duan, T.-F. Yan, Z.-S. Feng, and X.-J. Ma. 2018. Use of a rapid reverse-transcription recombinase aided amplification assay for respiratory syncytial virus detection. Diagnostic Microbiology and Infectious Disease 90 (2):90–5. doi: 10.1016/j.diagmicrobio.2017.10.005.
  • Chen, J., S. M. Andler, J. M. Goddard, S. R. Nugen, and V. M. Rotello. 2017. Integrating recognition elements with nanomaterials for bacteria sensing. Chemical Society Reviews 46 (5):1272–83. doi: 10.1039/c6cs00313c.
  • Chen, J. S., E. Ma, L. B. Harrington, M. Da Costa, X. Tian, J. M. Palefsky, and J. A. Doudna. 2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science (New York, N.Y.) 360 (6387):436–9. doi: 10.1126/science.aar6245.
  • Chen, X., L. Wang, F. He, G. Chen, L. Bai, K. He, F. Zhang, and X. Xu. 2021. Label-free colorimetric method for detection of Vibrio parahaemolyticus by trimming the G-quadruplex DNAzyme with CRISPR/Cas12a. Analytical Chemistry 93 (42):14300–6. doi: 10.1021/acs.analchem.1c03468.
  • Chen, X., H. Wu, X. Tang, Z. Zhang, and P. Li. 2021. Recent advances in electrochemical sensors for mycotoxin detection in food. Electroanalysis 33:1-11. doi: 10.1002/elan.202100223.
  • Chen, Z., L. Ma, S. Bu, W. Zhang, J. Chen, Z. Li, Z. Hao, and J. Wan. 2021. CRISPR/Cas12a and immuno-RCA based electrochemical biosensor for detecting pathogenic bacteria. Journal of Electroanalytical Chemistry 901:115755. doi: 10.1016/j.jelechem.2021.115755.
  • Cheng, W., X. Tang, Y. Zhang, D. Wu, and W. Yang. 2021. Applications of metal-organic framework (MOF)-based sensors for food safety: enhancing mechanisms and recent advances. Trends in Food Science & Technology 112:268–82. doi: 10.1016/j.tifs.2021.04.004.
  • Cong, L., F. A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P. D. Hsu, X. Wu, W. Jiang, L. A. Marraffini, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science (New York, N.Y.) 339 (6121):819–23. doi: 10.1126/science.1231143.
  • Craig, A. P., A. S. Franca, and J. Irudayaraj. 2013. Surface-enhanced Raman spectroscopy applied to food safety. Annual Review of Food Science and Technology 4:369–80. doi: 10.1146/annurev-food-022811-101227.
  • Dai, Y., R. A. Somoza, L. Wang, J. F. Welter, Y. Li, A. I. Caplan, and C. C. Liu. 2019. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angewandte Chemie (International ed. in English) 58 (48):17399–405. doi: 10.1002/anie.201910772.
  • Dai, Y., Y. Wu, G. Liu, and J. J. Gooding. 2020. CRISPR mediated biosensing toward understanding cellular biology and point-of-care diagnosis. Angewandte Chemie (International ed. in English) 59 (47):20754–66. doi: 10.1002/anie.202005398.
  • Derz, W., M. Pavlovic, I. Huber, B. Schalch, and L. Gerdes. 2021. Food fraud in the Alps? — Detection of chamois (Rupicapra rupicapra) in firm raw sausages, ham, and meat via qualitative duplex real-time PCR. Food Control. 123:107764. doi: 10.1016/j.foodcont.2020.107764.
  • Dirks, R. M, and N. A. Pierce. 2004. Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences of the United States of America 101 (43):15275–8. doi: 10.1073/pnas.0407024101.
  • Fire, A, and S. Q. Xu. 1995. Rolling replication of short DNA circles. Proceedings of the National Academy of Sciences of the United States of America 92 (10):4641–5. doi: 10.1073/pnas.92.10.4641.
  • Fozouni, P., S. Son, M. Díaz de León Derby, G. J. Knott, C. N. Gray, M. V. D’Ambrosio, C. Zhao, N. A. Switz, G. R. Kumar, S. I. Stephens, et al. 2021. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 184 (2):323–33 e9. doi: 10.1016/j.cell.2020.12.001.
  • Fu, R., Y. Wang, Y. Liu, H. Liu, Q. Zhao, Y. Zhang, C. Wang, Z. Li, B. Jiao, and Y. He. 2022. CRISPR-Cas12a based fluorescence assay for organophosphorus pesticides in agricultural products. Food Chemistry 387:132919. doi: 10.1016/j.foodchem.2022.132919.
  • Fu, X., J. Sun, Y. Ye, Y. Zhang, and X. Sun. 2022. A rapid and ultrasensitive dual detection platform based on Cas12a for simultaneous detection of virulence and resistance genes of drug-resistant Salmonella. Biosensors & Bioelectronics 195:113682. doi: 10.1016/j.bios.2021.113682.
  • Gao, S., J. Liu, Z. Li, Y. Ma, and J. Wang. 2021. Sensitive detection of foodborne pathogens based on CRISPR-Cas13a. Journal of Food Science 86 (6):2615–25. doi: 10.1111/1750-3841.15745.
  • Ge, X., T. Meng, X. Tan, Y. Wei, Z. Tao, Z. Yang, F. Song, P. Wang, and Y. Wan. 2021. Cas14a1-mediated nucleic acid detectifon platform for pathogens. Biosensors & Bioelectronics 189:113350. doi: 10.1016/j.bios.2021.113350.
  • Gootenberg, J. S., O. O. Abudayyeh, M. J. Kellner, J. Joung, J. J. Collins, and F. J. S. Zhang. 2018. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science (New York, N.Y.) 360 (6387):439–44. doi: 10.1126/aaq0179.
  • Gossner, C. M., J. Schlundt, P. Ben Embarek, S. Hird, D. Lo-Fo-Wong, J. J. Beltran, K. N. Teoh, and A. Tritscher. 2009. The melamine incident: implications for international food and feed safety. Environmental Health Perspectives 117 (12):1803–8. doi: 10.1289/ehp.0900949.
  • Gu, K., Z. Song, C. Zhou, P. Ma, C. Li, Q. Lu, Z. Liao, Z. Huang, Y. Tang, H. Li, et al. 2022. Development of nanobody-horseradish peroxidase-based sandwich ELISA to detect Salmonella Enteritidis in milk and in vivo colonization in chicken. Journal of Nanobiotechnology 20 (1):167. doi: 10.1186/s12951-022-01376-y.
  • Guan, N., Q. Fan, J. Ding, Y. Zhao, J. Lu, Y. Ai, G. Xu, S. Zhu, C. Yao, L. Jiang, et al. 2009. Melamine-contaminated powdered formula and urolithiasis in young children. New England Journal of Medicine 360 (11):1067–74. doi: 10.1056/NEJMoa0809550.
  • Guo, Y., X. Pan, W. Zhang, Z. Hu, K. W. Wong, Z. He, and H. W. Li. 2020. Label-free probes using DNA-templated silver nanoclusters as versatile reporters. Biosensors & Bioelectronics 150:111926. doi: 10.1016/j.bios.2019.111926.
  • Han, J., X. Zhang, S. He, and P. Jia. 2021. Can the coronavirus disease be transmitted from food? A review of evidence, risks, policies and knowledge gaps. Environmental Chemistry Letters 19 (1):5–16. doi: 10.1007/s10311-020-01101-x.
  • Han, S., P. K. Roy, M. I. Hossain, K. H. Byun, C. Choi, and S. D. Ha. 2021. COVID-19 pandemic crisis and food safety: implications and inactivation strategies. Trends in Food Science & Technology 109:25–36. doi: 10.1016/j.tifs.2021.01.004.
  • Han, Z., C. Xia, B. a Ning, Z. Xu, X. Liu, H. Zuo, L. Cai, T. Sun, and Y. Liu. 2022. Fluorescent and colorimetric detection of Norfloxacin with a bifunctional ligand and enzymatic signal amplification system. Microchemical Journal 179:107660. doi: 10.1016/j.microc.2022.107660.
  • Harrington, L. B., D. Burstein, J. S. Chen, D. Paez-Espino, E. Ma, I. P. Witte, J. C. Cofsky, N. C. Kyrpides, J. F. Banfield, and J. A. Doudna. 2018. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science (New York, N.Y.) 362 (6416):839–42. doi: 10.1126/science.aav4294.
  • Hu, J., H. Song, J. Zhou, R. Liu, and Y. Lv. 2021. Metal-tagged CRISPR/Cas12a bioassay enables ultrasensitive and highly selective evaluation of kanamycin bioaccumulation in fish samples. Analytical Chemistry 93 (42):14214–22. doi: 10.1021/acs.analchem.1c03094.
  • Hua, Z., T. Yu, D. Liu, and Y. Xianyu. 2021. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosensors & Bioelectronics 179:113076. doi: 10.1016/j.bios.2021.113076.
  • Huang, C.-C., C.-Y. Cheng, and Y.-S. Lai. 2020. Paper-based flexible surface enhanced Raman scattering platforms and their applications to food safety. Trends in Food Science & Technology 100:349–58. doi: 10.1016/j.tifs.2020.04.019.
  • Huang, C.-C., Z.-H. Hsu, and Y.-S. Lai. 2021. Raman spectroscopy for virus detection and the implementation of unorthodox food safety. Trends in Food Science & Technology 116:525–32. doi: 10.1016/j.tifs.2021.08.008.
  • Huang, D., J. Qian, Z. Shi, J. Zhao, M. Fang, and Z. Xu. 2020. CRISPR-Cas12a-assisted multicolor biosensor for semiquantitative point-of-use testing of the nopaline synthase terminator in genetically modified crops by unaided eyes. ACS Synthetic Biology 9 (11):3114–23. doi: 10.1021/acssynbio.0c00365.
  • Huang, Y., D. Gu, H. Xue, J. Yu, Y. Tang, J. Huang, Y. Zhang, and X. Jiao. 2021. Rapid and accurate Campylobacter jejuni detection with CRISPR-Cas12b based on newly identified Campylobacter jejuni-specific and -conserved genomic signatures. Frontiers in Microbiology 12:649010. doi: 10.3389/fmicb.2021.649010.
  • Ishino, Y., H. Shinagawa, K. Makino, M. Amemura, and A. Nakata. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169 (12):5429–33. doi: 10.1128/jb.169.12.54291987.
  • Ji, H., C. Xia, J. Xu, X. Wu, L. Qiao, and C. Zhang. 2020. A highly sensitive immunoassay of pesticide and veterinary drug residues in food by tandem conjugation of bi-functional mesoporous silica nanospheres. The Analyst 145 (6):2226–32. doi: 10.1039/c9an02430a.
  • Ji, Y., X. Li, Y. Lu, P. Guo, G. Zhang, Y. Wang, Y. Zhang, W. Zhu, J. Pan, and J. Wang. 2020. Nanobodies based on a sandwich immunoassay for the detection of staphylococcal enterotoxin B free from interference by protein A. Journal of Agricultural and Food Chemistry 68 (21):5959–68. doi: 10.1021/acs.jafc.0c00422.
  • Jiang, F, and J. A. Doudna. 2017. CRISPR-Cas9 structures and mechanisms. Annual Review of Biophysics 46:505–29. doi: 10.1146/annurev-biophys-062215-010822.
  • Jiang, L., M. M. Hassan, S. Ali, H. Li, R. Sheng, and Q. Chen. 2021. Evolving trends in SERS-based techniques for food quality and safety: a review. Trends in Food Science & Technology 112:225–40. doi: 10.1016/j.tifs.2021.04.006.
  • Jiang, X., Q. Rao, K. Mittl, and Y.-H P. Hsieh. 2020. Monoclonal antibody-based sandwich ELISA for the detection of mammalian meats. Food Control. 110:107045. doi: 10.1016/j.foodcont.2019.107045.
  • Jin, X., R. He, X. Ju, J. Zhang, M. Wang, C. Xing, and J. Yuan. 2019. Development and optimization of an immunoassay for the detection of Hg(II) in lake water. Food Science & Nutrition 7 (5):1615–22. doi: 10.1002/fsn3.991.
  • Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, N.Y.) 337 (6096):816–21. doi: 10.1126/science.1225829.
  • Kamle, M., P. Kumar, J. K. Patra, and V. K. Bajpai. 2017. Current perspectives on genetically modified crops and detection methods. 3 Biotech 7 (3):219. doi: 10.1007/s13205-017-0809-3.
  • Karvelis, T., G. Bigelyte, J. K. Young, Z. Hou, R. Zedaveinyte, K. Budre, S. Paulraj, V. Djukanovic, S. Gasior, A. Silanskas, et al. 2020. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Research 48 (9):5016–23. doi: 10.1093/nar/gkaa208.
  • Klompe, S. E, and S. H. Sternberg. 2018. Harnessing “a billion years of experimentation”: the ongoing exploration and exploitation of CRISPR-Cas immune systems. The CRISPR Journal 1 (2):141–58. doi: 10.1089/crispr.2018.0012.
  • Koonin, E. V., K. S. Makarova, and F. Zhang. 2017. Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology 37:67–78. doi: 10.1016/j.mib.2017.05.008.
  • Lacombe, A., I. Quintela, Y. T. Liao, and V. C. H. Wu. 2021. Food safety lessons learned from the COVID-19 pandemic. Journal of Food Safety 41 (2):e12878.. doi: 10.1111/jfs.12878.
  • Labrador, M., C. Gimenez-Rota, and C. Rota. 2021. Real-time PCR method combined with a matrix lysis procedure for the quantification of Listeria monocytogenes in meat products. Foods 10 (4):735. doi: 10.3390/foods10040735.
  • Li, C.-Y., B. Zheng, J.-T. Li, J.-L. Gao, Y.-H. Liu, D.-W. Pang, and H.-W. Tang. 2021. Holographic optical tweezers and boosting upconversion luminescent resonance energy transfer combined clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a biosensors. ACS Nano 15 (5):8142–54. doi: 10.1021/acsnano.0c09986.
  • Li, C.-Y., B. Zheng, Y.-H. Liu, J.-L. Gao, M.-Q. Zheng, D.-W. Pang, and H.-W. Tang. 2020. A boosting upconversion luminescent resonance energy transfer and biomimetic periodic chip integrated CRISPR/Cas12a biosensor for functional DNA regulated transduction of non-nucleic acid targets. Biosensors & Bioelectronics 169:112650. doi: 10.1016/j.bios.2020.112650.
  • Li, D., S. Ling, H. Wu, Z. Yang, and B. Lv. 2022. CRISPR/Cas12a-based biosensors for ultrasensitive tobramycin detection with single- and double-stranded DNA activators. Sensors and Actuators B: Chemical 355:131329. doi: 10.1016/j.snb.2021.131329.
  • Li, F., Q. Ye, M. Chen, X. Xiang, J. Zhang, R. Pang, L. Xue, J. Wang, Q. Gu, T. Lei, et al. 2021. Cas12aFDet: a CRISPR/Cas12a-based fluorescence platform for sensitive and specific detection of Listeria monocytogenes serotype 4c. Analytica Chimica Acta 1151:338248. doi: 10.1016/j.aca.2021.338248.
  • Li, F., Q. Ye, M. Chen, B. Zhou, J. Zhang, R. Pang, L. Xue, J. Wang, H. Zeng, S. Wu, et al. 2021. An ultrasensitive CRISPR/Cas12a based electrochemical biosensor for Listeria monocytogenes detection. Biosensors & Bioelectronics 179:113073. doi: 10.1016/j.bios.2021.113073.
  • Li, J., S. Yang, C. Zuo, L. Dai, Y. Guo, and G. Xie. 2020. Applying CRISPR-Cas12a as a signal amplifier to construct biosensors for non-DNA targets in ultralow concentrations. ACS Sensors 5 (4):970–7. doi: 10.1021/acssensors.9b02305.
  • Li, S. Y., Q. X. Cheng, J. K. Liu, X. Q. Nie, G. P. Zhao, and J. Wang. 2018. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Research 28 (4):491–3. doi: 10.1038/s41422-018-0022-x.
  • Li, Y., L. Liu, and G. Liu. 2019. CRISPR/Cas multiplexed biosensing: a challenge or an insurmountable obstacle? Trends in Biotechnology 37 (8):792–5. doi: 10.1016/j.tibtech.2019.04.012.
  • Li, Y., S. Man, S. Ye, G. Liu, and L. Ma. 2022. CRISPR-Cas-based detection for food safety problems: current status, challenges, and opportunities. Comprehensive Reviews in Food Science and Food Safety 21 (4):3770–98. doi: 10.1111/1541-4337.13000.
  • Li, Y., H. Mansour, T. Wang, S. Poojari, and F. Li. 2019. Naked-eye detection of grapevine red-blotch viral infection using a plasmonic CRISPR Cas12a assay. Analytical Chemistry 91 (18):11510–3. doi: 10.1021/acs.analchem.9b03545.
  • Lin, X., C. Li, X. Meng, W. Yu, N. Duan, Z. Wang, and S. Wu. 2022. CRISPR-Cas12a-mediated luminescence resonance energy transfer aptasensing platform for deoxynivalenol using gold nanoparticle-decorated Ti3C2Tx MXene as the enhanced quencher. Journal of Hazardous Materials 433:128750. doi: 10.1016/j.jhazmat.2022.128750.
  • Lin, Z, and L. He. 2019. Recent advance in SERS techniques for food safety and quality analysis: a brief review. Current Opinion in Food Science 28:82–7. doi: 10.1016/j.cofs.2019.10.001.
  • Liu, D., S. L. Daubendiek, M. A. Zillman, K. Ryan, and E. T. Kool. 1996. Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. Journal of the American Chemical Society 118 (7):1587–94. doi: 10.1021/ja952786k.
  • Liu, F., Y. Yang, X. Wan, H. Gao, Y. Wang, J. Lu, L. P. Xu, and S. Wang. 2022. Space-confinment-enhanced fluorescence detection of DNA on hydrogel particles array. ACS Nano. 16 (4):6266–73. doi: 10.1021/acsnano.2c00157.
  • Liu, J., J. Chen, D. Wu, M. Huang, J. Chen, R. Pan, Y. Wu, and G. Li. 2021. CRISPR-/Cas12a-mediated liposome-amplified strategy for the surface-enhanced Raman scattering and naked-eye detection of nucleic acid and application to food authenticity screening. Analytical Chemistry 93 (29):10167–74. doi: 10.1021/acs.analchem.1c01163.
  • Liu, L., Z. Xu, K. Awayda, S. J. Dollery, M. Bao, J. Fan, D. Cormier, M. R. O’Connell, G. J. Tobin, and K. Du. 2022. Gold nanoparticle‐labeled CRISPR‐Cas13a assay for the sensitive solid‐state nanopore molecular counting. Advanced Materials Technologies 7 (3):2101550. doi: 10.1002/admt.20:2101550.
  • Liu, T. Y., G. J. Knott, D. C. J. Smock, J. J. Desmarais, S. Son, A. Bhuiya, S. Jakhanwal, N. Prywes, S. Agrawal, M. Díaz de León Derby, IGI Testing Consortium, et al. 2021. Accelerated RNA detection using tandem CRISPR nucleases. Nature Chemical Biology 17 (9):982–8. doi: 10.1038/s41589-021-00842-2.
  • Liu, X., S. Bu, J. Feng, H. Wei, Z. Wang, X. Li, H. Zhou, X. He, and J. Wan. 2022. Electrochemical biosensor for detecting pathogenic bacteria based on a hybridization chain reaction and CRISPR-Cas12a. Analytical and Bioanalytical Chemistry 414 (2):1073–80. doi: 10.1007/s00216-021-03733-6.
  • Luo, X., Y. Han, X. Chen, W. Tang, T. Yue, and Z. Li. 2020. Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: a review. Trends in Food Science & Technology 95:149–61. doi: 10.1016/j.tifs.2019.11.017.
  • Lv, M., Y. Liu, J. Geng, X. Kou, Z. Xin, and D. Yang. 2018. Engineering nanomaterials-based biosensors for food safety detection. Biosensors & Bioelectronics 106:122–8. doi: 10.1016/j.bios.2018.01.049.
  • Ma, L., L. Peng, L. Yin, G. Liu, and S. Man. 2021. CRISPR-Cas12a-powered dual-mode biosensor for ultrasensitive and cross-validating detection of pathogenic bacteria. ACS Sensors 6 (8):2920–7. doi: 10.1021/acssensors.1c00686.
  • Ma, P., Q. Meng, B. Sun, B. Zhao, L. Dang, M. Zhong, S. Liu, H. Xu, H. Mei, J. Liu, et al. 2020. MeCas12a, a highly sensitive and specific system for COVID-19 detection. Advanced Science 7 (20):2001300. doi: 10.1002/advs.202001300.
  • Madichie, N. O. 2015. The European ‘horsemeat scandal’: a welcome opportunity for the supply chain. ? Journal of Customer Behaviour 14 (1):63–82. doi: 10.1362/147539215X14267608004122.
  • Makarova, K. S., Y. I. Wolf, O. S. Alkhnbashi, F. Costa, S. A. Shah, S. J. Saunders, R. Barrangou, S. J. J. Brouns, E. Charpentier, D. H. Haft, et al. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews. Microbiology 13 (11):722–36. doi: 10.1038/nrmicro3569.
  • Malekzad, H., A. Jouyban, M. Hasanzadeh, N. Shadjou, and M. de la Guardia. 2017. Ensuring food safety using aptamer based assays: electroanalytical approach. Trends in Analytical Chemistry: TRAC 94:77–94. doi: 10.1016/j.trac.2017.07.001.
  • Malvano, F., R. Pilloton, and D. Albanese. 2020. Label-free impedimetric biosensors for the control of food safety—a review. International Journal of Environmental Analytical Chemistry 100 (4):468–91. doi: 10.1080/03067319.2019.1667096.
  • Mao, Z., R. Chen, X. Wang, Z. Zhou, Y. Peng, S. Li, D. Han, S. Li, Y. Wang, T. Han, et al. 2022. CRISPR/Cas12a-based technology: a powerful tool for biosensing in food safety. Trends in Food Science & Technology 122:211–22. doi: 10.1016/j.tifs.2022.02.030.
  • Meng, Q., H. Yang, G. Zhang, W. Sun, P. Ma, X. Liu, L. Dang, G. Li, X. Huang, X. Wang, et al. 2021. CRISPR/Cas12a-assisted rapid identification of key beer spoilage bacteria. Innovative Food Science & Emerging Technologies 74:102854. doi: 10.1016/j.ifset.2021.
  • Meng, X. J. 2011. From barnyard to food table: the omnipresence of hepatitis E virus and risk for zoonotic infection and food safety. Virus Research 161 (1):23–30. doi: 10.1016/j.virusres.2011.01.016.
  • Muehlethaler, C., M. Leona, and J. R. Lombardi. 2016. Review of surface enhanced Raman scattering applications in forensic science. Analytical Chemistry 88 (1):152–69. doi: 10.1021/acs.analchem.5b04131.
  • Nesvadbova, M., P. Kralik, R. Dziedzinska, M. Dufkova, and G. Borilova. 2022. An integrated system of four multiplex qPCR assays for the precise and sensitive identification of animal species in food and feed. Food Control. 135:108781. doi: 10.1016/j.foodcont.2021.108781.
  • Nguyen, L. T., B. M. Smith, and P. K. Jain. 2020. Enhancement of trans-cleavage activity of Cas12a with engineered crRNA enables amplified nucleic acid detection. Nature Communications 11 (1):4906. doi: 10.1038/s41467-020-18615-1.
  • Nguyen, V. T., S. Song, S. Park, and C. Joo. 2020. Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. Biosensors & Bioelectronics 152:112015. doi: 10.1016/j.bios.2020.112015.
  • Nishimasu, H., F. A. Ran, P. D. Hsu, S. Konermann, S. I. Shehata, N. Dohmae, R. Ishitani, F. Zhang, and O. Nureki. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156 (5):935–49. doi: 10.1016/j.cell.2014.02.001.
  • Notomi, T., H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research 28 (12):E63. doi: 10.1093/nar/28.12.e63.
  • Nouri, R., Y. Jiang, X. L. Lian, and W. Guan. 2020. Sequence-specific recognition of HIV-1 DNA with solid-state CRISPR-Cas12a-assisted nanopores (SCAN). ACS Sensors 5 (5):1273–80. doi: 10.1021/acssensors.0c00497.
  • Nouri, R., Y. Jiang, Z. Tang, X. L. Lian, and W. Guan. 2021. Detection of SARS-CoV-2 with solid-state CRISPR-Cas12a-assisted nanopores. Nano Letters 21 (19):8393–400. doi: 10.1021/acs.nanolett.1c02974.
  • Pan, R., J. Liu, P. Wang, D. Wu, J. Chen, Y. Wu, and G. Li. 2022. Ultrasensitive CRISPR/Cas12a-driven SERS biosensor for on-site nucleic acid detection and its application to milk authenticity testing. Journal of Agricultural and Food Chemistry 70 (14):4484–91. doi: 10.1021/acs.jafc.1c08262.
  • Park, Y. M., J. Park, S. Y. Lim, Y. Kwon, N. H. Bae, J.-K. Park, and S. J. Lee. 2021. Integrated pumpless microfluidic chip for the detection of foodborne pathogens by polymerase chain reaction and electrochemical analysis. Sensors and Actuators B: Chemical 329:129130. doi: 10.1016/j.snb.2020.129130.
  • Peng, L., J. Zhou, L. Yin, S. Man, and L. Ma. 2020. Integration of logic gates to CRISPR/Cas12a system for rapid and sensitive detection of pathogenic bacterial genes. Analytica Chimica Acta 1125:162–8. doi: 10.1016/j.aca.2020.05.017.
  • Piepenburg, O., C. H. Williams, D. L. Stemple, and N. A. Armes. 2006. DNA detection using recombination proteins. PLoS Biology 4 (7):e204. doi: 10.1371/journal.pbio.0040204.
  • Pourcel, C., G. Salvignol, and G. Vergnaud. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading, England) 151 (Pt 3):653–63. doi: 10.1099/mic.0.27437-0.
  • Qian, C., R. Wang, H. Wu, J. Ping, and J. Wu. 2018. Recent advances in emerging DNA-based methods for genetically modified organisms (GMOs) rapid detection. TrAC Trends in Analytical Chemistry 109:19–31. doi: 10.1016/j.trac.2018.09.021.
  • Qian, J., T. M. Ferguson, D. N. Shinde, A. J. Ramirez-Borrero, A. Hintze, C. Adami, and A. Niemz. 2012. Sequence dependence of isothermal DNA amplification via EXPAR. Nucleic Acids Research 40 (11):e87. doi: 10.1093/nar/gks230.
  • Qian, J., D. Huang, D. Ni, J. Zhao, Z. Shi, M. Fang, and Z. Xu. 2022. A portable CRISPR Cas12a based lateral flow platform for sensitive detection of Staphylococcus aureus with double insurance. Food Control. 132:108485. doi: 10.1016/j.foodcont.2021.108485.
  • Qiao, B., J. Xu, W. Yin, W. Xin, L. Ma, J. Qiao, and Y. Liu. 2021. Aptamer-locker DNA coupling with CRISPR/Cas12a-guided biosensing for high-efficiency melamine analysis. Biosensors & Bioelectronics 183:113233. doi: 10.1016/j.bios.2021.113233.
  • Qiu, X.-Y., L.-Y. Zhu, C.-S. Zhu, J.-X. Ma, T. Hou, X.-M. Wu, S.-S. Xie, L. Min, D.-A. Tan, D.-Y. Zhang, et al. 2018. Highly effective and low-cost microRNA detection with CRISPR-Cas9. ACS Synthetic Biology 7 (3):807–13. doi: 10.1021/acssynbio.7b00446.
  • Qiu, Y., A. You, X. Fu, M. Zhang, H. Cui, B. Zhang, W. Qin, Z. Ye, and X. Yu. 2022. Quantum-dot-bead-based fluorescence-linked immunosorbent assay for sensitive detection of Cry2A toxin in cereals using nanobodies. Foods 11 (18):2780. doi: 10.3390/foods11182780.
  • Ramachandran, V., J. J. Weiland, and M. D. Bolton. 2021. CRISPR-based isothermal next-generation diagnostic method for virus detection in sugarbeet. Frontiers in Microbiology 12:679994. doi: 10.3389/fmicb.2021.679994.
  • Ren, Y., J. Wei, Y. Wang, P. Wang, Y. Ji, B. Liu, J. Wang, G. Gonzalez-Sapienza, and Y. Wang. 2022. Development of a streptavidin-bridged enhanced sandwich ELISA based on self-paired nanobodies for monitoring multiplex Salmonella serogroups. Analytica Chimica Acta 1203:339705. doi: 10.1016/j.aca.2022.339705.
  • Sabela, M., S. Balme, M. Bechelany, J. M. Janot, and K. Bisetty. 2017. A review of gold and silver nanoparticle‐based colorimetric sensing assays. Advanced Engineering Materials 19 (12):1700270. doi: 10.1002/adem.201700270.
  • Sajid, M., A.-N. Kawde, and M. Daud. 2015. Designs, formats and applications of lateral flow assay: a literature review. Journal of Saudi Chemical Society 19 (6):689–705. doi: 10.1016/j.jscs.2014.09.001.
  • Sha, Y., R. Huang, M. Huang, H. Yue, Y. Shan, J. Hu, and D. Xing. 2021. Cascade CRISPR/cas enables amplification-free microRNA sensing with fM-sensitivity and single-base-specificity. Chemical Communications (Cambridge, England) 57 (2):247–50. doi: 10.1039/d0cc06412b.
  • Shao, N., X. Han, Y. Song, P. Zhang, and L. Qin. 2019. CRISPR-Cas12a coupled with platinum nanoreporter for visual quantification of SNVs on a volumetric bar-chart chip. Analytical Chemistry 91 (19):12384–91. doi: 10.1021/acs.analchem.9b02925.
  • Shen, J., X. Zhou, Y. Shan, H. Yue, R. Huang, J. Hu, and D. Xing. 2020. Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction. Nature Communications 11 (1):267. doi: 10.1038/s41467-019-14135-9.
  • Sheng, A., P. Wang, J. Yang, L. Tang, F. Chen, and J. Zhang. 2021. MXene coupled with CRISPR-Cas12a for analysis of endotoxin and bacteria. Analytical Chemistry 93 (10):4676–81. doi: 10.1021/acs.analchem.1c00371.
  • Shi, P., S. Geng, T-t Li, Y-s Li, T. Feng, and H-n Wu. 2015. Methods to detect avian influenza virus for food safety surveillance. Journal of Integrative Agriculture 14 (11):2296–308. doi: 10.1016/S2095-3119(15)61122-4.
  • Shin, J., M. Miller, and Y. C. Wang. 2022. Recent advances in CRISPR-based systems for the detection of foodborne pathogens. Comprehensive Reviews in Food Science and Food Safety 21 (3):3010–29. doi: 10.1111/1541-4337.12956.
  • Sohn, S., I. S. Pandian, Y. J. Oh, J. Z. Zaukuu, H. J. Kang, T. H. Ryu, W. S. Cho, Y. S. Cho, E. K. Shin, and B. K. Cho. 2021. An overview of near infrared spectroscopy and its applications in the detection of genetically modified organisms. International Journal of Molecular Sciences 22 (18):9940. doi: 10.3390/ijms22189940.
  • Spink, J, and D. C. Moyer. 2011. Defining the public health threat of food fraud. Journal of Food Science 76 (9):R157–63. doi: 10.1111/j.1750-3841.2011.02417.x.
  • Su, Z., T. Li, D. Wu, Y. Wu, and G. Li. 2022. Recent progress on single-molecule detection technologies for food safety. Journal of Agricultural and Food Chemistry 70 (2):458–69. doi: 10.1021/acs.jafc.1c06808.
  • Sun, C., J. Chen, H. Li, L. Fang, S. Wu, P. Jayavanth, S. Tang, G. Sanchez, and X. Wu. 2021. One-step duplex RT-droplet digital PCR assay for the detection of norovirus GI and GII in lettuce and strawberry. Food Microbiology 94:103653. doi: 10.1016/j.fm.2020.103653.
  • Sun, X., Y. Wang, L. Zhang, S. Liu, M. Zhang, J. Wang, B. Ning, Y. Peng, J. He, Y. Hu, et al. 2020. CRISPR-Cas9 triggered two-step isothermal amplification method for E. coli O157:H7 detection based on a metal–organic framework platform. Analytical Chemistry 92 (4):3032–41. doi: 10.1021/acs.analchem.9b04162.
  • Tang, Y., L. Gao, W. Feng, C. Guo, Q. Yang, F. Li, and X. C. Le. 2021. The CRISPR-Cas toolbox for analytical and diagnostic assay development. Chemical Society Reviews 50 (21):11844–69. doi: 10.1039/d1cs00098e.
  • Tian, T., B. Shu, Y. Jiang, M. Ye, L. Liu, Z. Guo, Z. Han, Z. Wang, and X. Zhou. 2021. An ultralocalized Cas13a assay enables universal and nucleic acid amplification-free single-molecule RNA diagnostics. ACS Nano 15 (1):1167–78. doi: 10.1021/acsnano.0c08165.
  • Tian, Y., T. Liu, C. Liu, Q. Xu, S. Fang, Y. Wu, M. Wu, and Q. Liu. 2021. An ultrasensitive and contamination-free on-site nucleic acid detection platform for Listeria monocytogenes based on the CRISPR-Cas12a system combined with recombinase polymerase amplification. LWT-Food Science and Technology 152:112166. doi: 10.1016/j.lwt.2021.112166.
  • Tian, Y., T. Liu, C. Liu, Q. Xu, and Q. Liu. 2022. Pathogen detection strategy based on CRISPR. Microchemical Journal 174. doi: 10.1016/j.microc.2021.107036.
  • Tomita, N., Y. Mori, H. Kanda, and T. Notomi. 2008. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nature Protocols 3 (5):877–82. doi: 10.1038/nprot.2008.57.
  • Umapathi, R., S. Sonwal, M. J. Lee, G. Mohana Rani, E.-S. Lee, T.-J. Jeon, S.-M. Kang, M.-H. Oh, and Y. S. Huh. 2021. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: new horizons, perspectives, and challenges. Coordination Chemistry Reviews 446:214061. doi: 10.1016/j.ccr.2021.214061.
  • van Dongen, J. E., J. T. W. Berendsen, R. D. M. Steenbergen, R. M. F. Wolthuis, J. C. T. Eijkel, and L. I. Segerink. 2020. Point-of-care CRISPR/Cas nucleic acid detection: recent advances, challenges and opportunities. Biosensors & Bioelectronics 166:112445. doi: 10.1016/j.bios.2020.112445.
  • Van Ness, J., L. K. Van Ness, and D. J. Galas. 2003. Isothermal reactions for the amplification of oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America 100 (8):4504–9. doi: 10.1073/pnas.0730811100.
  • Vigani, M, and A. Olper. 2013. GMO standards, endogenous policy and the market for information. Food Policy. 43:32–43. doi: 10.1016/j.foodpol.2013.08.001.
  • Walker, G. T., M. S. Fraiser, J. L. Schram, M. C. Little, J. G. Nadeau, and D. P. Malinowski. 1992. Strand displacement amplification–an isothermal, in vitro DNA amplification technique. Nucleic Acids Research 20 (7):1691–6. doi: 10.1093/nar/20.7.1691.
  • Walker, G. T., M. C. Little, J. G. Nadeau an, and d D. D. Shank. 1992. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proceedings of the National Academy of Sciences of the United States of America 89 (1):392–6. doi: 10.1073/pnas.89.1.392.
  • Wallace, R. J., J. Gropp, N. Dierick, L. G. Costa, G. Martelli, P. G. Brantom, V. Bampidis, D. W. Renshaw, and L. Leng. 2016. Risks associated with endotoxins in feed additives produced by fermentation. Environmental Health: A Global Access Science Source 15:5. doi: 10.1186/s12940-016-0087-2.
  • Wang, L., X. Shen, T. Wang, P. Chen, N. Qi, B. C. Yin, and B. C. Ye. 2020. A lateral flow strip combined with Cas9 nickase-triggered amplification reaction for dual food-borne pathogen detection. Biosensors & Bioelectronics 165:112364. doi: 10.1016/j.bios.2020.112364.
  • Wang, P., Y. Liu, Y. Yu, Y. Zhang, J. Peng, L. Niu, and J. Zhang. 2021. Hydrazone ligation assisted DNAzyme walking nanomachine coupled with CRISPR-Cas12a for lipopolysaccharide analysis. Analytica Chimica Acta 1174:338747. doi: 10.1016/j.aca.2021.338747.
  • Wang, Q. Y., F. Li, X. X. Shen, S. H. Fu, Y. He, W. W. Lei, G. D. Liang, H. Y. Wang, and X. J. Ma. 2019. A reverse-transcription recombinase-aided amplification assay for the rapid detection of the far-eastern subtype of tick-borne encephalitis virus. Biomedical and Environmental Sciences: BES 32 (5):357–62. doi: 10.3967/bes2019.047.
  • Wang, S., S. Lu, J. Zhao, and X. Yang. 2019. A ratiometric fluorescent DNA radar based on contrary response of DNA/silver nanoclusters and G-quadruplex/crystal violet. ACS Applied Materials & Interfaces 11 (28):25066–73. doi: 10.1021/acsami.9b08215.
  • Wang, T., Y. Liu, H. H. Sun, B. C. Yin, and C. Ye. 2019. An RNA-guided Cas9 nickase-based method for universal isothermal DNA amplification. Angewandte Chemie (International ed. in English) 58 (16):5382–6. doi: 10.1002/anie.201901292.
  • Wang, X., Y. Wang, S. Wang, J. Hou, L. Cai, and G. Fan. 2022. Indirect competitive ELISA for the determination of total chromium content in food, feed and environmental samples. Molecules 27 (5):1585. doi: 10.3390/molecules27051585.
  • Wang, X., E. Xiong, T. Tian, M. Cheng, W. Lin, H. Wang, G. Zhang, J. Sun, and X. Zhou. 2020. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay. ACS Nano 14 (2):2497–508. doi: 10.1021/acsnano.0c00022.
  • Wang, Y., Y. Ke, W. Liu, Y. Sun, and X. Ding. 2020. A one-pot toolbox based on Cas12a/crRNA enables rapid foodborne pathogen detection at attomolar level. ACS Sensors 5 (5):1427–35. doi: 10.1021/acssensors.0c00320.
  • Wang, Y., X. Wang, S. Wang, H. Fotina, and Z. Wang. 2022. Development of a highly sensitive and specific monoclonal antibody based on indirect competitive enzyme-linked immunosorbent assay for the determination of zearalenone in food and feed samples. Toxins 14 (9):615. doi: 10.3390/toxins14030220.
  • Wang, Y., X. Zhao, M. Zhang, X. Sun, J. Bai, Y. Peng, S. Li, D. Han, S. Ren, J. Wang, et al. 2021. Immunosorbent assay based on upconversion nanoparticles controllable assembly for simultaneous detection of three antibiotics. Journal of Hazardous Materials 406:124703. doi: 10.1016/j.jhazmat.2020.124703.
  • Wei, Y., Z. Yang, C. Zong, B. Wang, X. Ge, X. Tan, X. Liu, Z. Tao, P. Wang, C. Ma, et al. 2021. trans single-stranded DNA cleavage via CRISPR/Cas14a1 activated by target RNA without destruction. Angewandte Chemie (International ed. in English) 60 (45):24241–7. doi: 10.1002/anie.202110384.
  • Wu, H., X. Chen, M. Zhang, X. Wang, Y. Chen, C. Qian, J. Wu, and J. Xu. 2021. Versatile detection with CRISPR/Cas system from applications to challenges. TrAC Trends in Analytical Chemistry 135:116150. doi: 10.1016/j.trac.2020.116150.
  • Wu, H., Y. Chen, Y. Shi, L. Wang, M. Zhang, J. Wu, and H. Chen. 2021. Carrying out pseudo dual nucleic acid detection from sample to visual result in a polypropylene bag with CRISPR/Cas12a. Biosensors & Bioelectronics 178:113001. doi: 10.1016/j.bios.2021.113001.
  • Wu, H., Y. Chen, Q. Yang, C. Peng, X. Wang, M. Zhang, S. Qian, J. Xu, and J. Wu. 2021. A reversible valve-assisted chip coupling with integrated sample treatment and CRISPR/Cas12a for visual detection of Vibrio parahaemolyticus. Biosensors & Bioelectronics 188:113352. doi: 10.1016/j.bios.2021.113352.
  • Wu, H., C. Qian, C. Wu, Z. Wang, D. Wang, Z. Ye, J. Ping, J. Wu, and F. Ji. 2020. End-point dual specific detection of nucleic acids using CRISPR/Cas12a based portable biosensor. Biosensors & Bioelectronics 157:112153. doi: 10.1016/j.bios.2020.112153.
  • Wu, H., S. Qian, C. Peng, X. Wang, T. Wang, X. Zhong, Y. Chen, Q. Yang, J. Xu, and J. Wu. 2021. Rotary valve-assisted fluidic system coupling with CRISPR/Cas12a for fully integrated nucleic acid detection. ACS Sensors 6 (11):4048–56. doi: 10.1021/acssensors.1c01468.
  • Wu, J., O. Mukama, W. Wu, Z. Li, J. D. Habimana, Y. Zhang, R. Zeng, C. Nie, and L. Zeng. 2020. A CRISPR/Cas12a based universal lateral flow biosensor for the sensitive and specific detection of African swine-fever viruses in whole blood. Biosensors 10 (12):203. doi: 10.3390/bios10120203.
  • Wu, Y., Y. Dong, Y. Shi, H. Yang, J. Zhang, M. R. Khan, S. Deng, G. He, Q. He, Y. Lv, et al. 2021. CRISPR-Cas12-based rapid authentication of halal food. Journal of Agricultural and Food Chemistry 69 (35):10321–8. doi: 10.1021/acs.jafc.1c03078.
  • Wu, Y., J. Liu, H-t Li, T. Zhang, Y. Dong, S. Deng, Y. Lv, Q. He, and R. Deng. 2022. CRISPR-Cas system meets DNA barcoding: development of a universal nucleic acid test for food authentication. Sensors and Actuators B: Chemical 353:131138. doi: 10.1016/j.snb.2021.131138.
  • Xia, X., B. Ma, T. Zhang, Y. Lu, M. R. Khan, Y. Hu, C. Lei, S. Deng, Q. He, G. He, et al. 2021. G-quadruplex-probing CRISPR-Cas12 assay for label-free analysis of foodborne pathogens and their colonization in vivo. ACS Sensors 6 (9):3295–302. doi: 10.1021/acssensors.1c01061.
  • Xia, X., H. Yang, J. Cao, J. Zhang, Q. He, and R. Deng. 2022. Isothermal nucleic acid amplification for food safety analysis. TrAC Trends in Analytical Chemistry 153:116641. doi: 10.1016/j.trac.2022.116641.
  • Xiao, X., Z. Lin, X. Huang, J. Lu, Y. Zhou, L. Zheng, and Y. Lou. 2021. Rapid and sensitive detection of Vibrio vulnificus using CRISPR/Cas12a combined with a recombinase-aided amplification assay. Frontiers in Microbiology 12:767315. doi: 10.3389/fmicb.2021.767315.
  • Xiong, E., L. Jiang, T. Tian, M. Hu, H. Yue, M. Huang, W. Lin, Y. Jiang, D. Zhu, and X. Zhou. 2021. Simultaneous dual‐gene diagnosis of SARS‐CoV‐2 based on CRISPR/Cas9‐mediated lateral flow assay. Angewandte Chemie (International ed. in English) 60 (10):5307–15. doi: 10.1002/anie.202014506.
  • Xu, L., X. Y. Suo, Q. Zhang, X. P. Li, C. Chen, and X. Y. Zhang. 2020. ELISA and chemiluminescent enzyme immunoassay for sensitive and specific determination of lead (II) in water, food and feed samples. Foods 9 (3):305. doi: 10.3390/foods9030305.
  • Xu, W., T. Jin, Y. Dai, and C. C. Liu. 2020. Surpassing the detection limit and accuracy of the electrochemical DNA sensor through the application of CRISPR Cas systems. Biosensors & Bioelectronics 155:112100. doi: 10.1016/j.bios.2020.112100.
  • Xu, Y., M. M. Hassan, A. S. Sharma, H. Li, and Q. Chen. 2021. Recent advancement in nano-optical strategies for detection of pathogenic bacteria and their metabolites in food safety. Critical Reviews in Food Science and Nutrition 1–19. doi: 10.1080/10408398.2021.1950117.
  • Xu, Y., P. Zhong, A. Jiang, X. Shen, X. Li, Z. Xu, Y. Shen, Y. Sun, and H. Lei. 2020. Raman spectroscopy coupled with chemometrics for food authentication: a review. TrAC Trends in Analytical Chemistry 131:116017. doi: 10.1016/j.trac.2020.116017.
  • Yang, H., Z. Peng, W. Song, C. Zhang, J. Fan, H. Chen, L. Hua, J. Pei, X. Tang, H. Chen, et al. 2022. A triplex real-time PCR method to detect African swine fever virus gene-deleted and wild type strains. Frontiers in Veterinary Science 9:943099. doi: 10.3389/fvets.2022.943099.
  • Yang, L., Y. Chen, R. Li, W. Xu, J. Cui, D. Zhang, and X. Zhang. 2021. Universal LNA probe-mediated multiplex droplet digital polymerase chain reaction for ultrasensitive and accurate quantitative analysis of genetically modified organisms. Journal of Agricultural and Food Chemistry 69 (5):1705–13. doi: 10.1021/acs.jafc.0c06433.
  • Yang, W., L. Restrepo-Pérez, M. Bengtson, S. J. Heerema, A. Birnie, J. van der Torre, and C. Dekker. 2018. Detection of CRISPR-dCas9 on DNA with solid-state nanopores. Nano Letters 18 (10):6469–74. doi: 10.1021/acs.nanolett.8b02968.
  • Yang, Y., G. Li, D. Wu, J. Liu, X. Li, P. Luo, N. Hu, H. Wang, and Y. Wu. 2020. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends in Food Science & Technology 96:233–52. doi: 10.1016/j.tifs.2019.12.021.
  • Yin, L., N. Duan, S. Chen, Y. Yao, J. Liu, and L. Ma. 2021. Ultrasensitive pathogenic bacteria detection by a smartphone-read G-quadruplex-based CRISPR-Cas12a bioassay. Sensors and Actuators B: Chemical 347:130586. doi: 10.1016/j.snb.2021.130586.
  • Yin, P., H. M. Choi, C. R. Calvert, and N. A. Pierce. 2008. Programming biomolecular self-assembly pathways. Nature 451 (7176):318–22. doi: 10.1038/nature06451.
  • Yu, L., Z. Song, J. Peng, M. Yang, H. Zhi, and H. He. 2020. Progress of gold nanomaterials for colorimetric sensing based on different strategies. TrAC Trends in Analytical Chemistry 127:115880. doi: 10.1016/j.trac.2020.115880.
  • Yu, Y., W. Li, X. Gu, X. Yang, Y. Han, Y. Ma, Z. Wang, and J. Zhang. 2022. Inhibition of CRISPR-Cas12a trans-cleavage by lead (II)-induced G-quadruplex and its analytical application. Food Chemistry 378:131802. doi: 10.1016/j.foodchem.2021.131802.
  • Yuan, C., J. Fang, M. L. de la Chapelle, Y. Zhang, X. Zeng, G. Huang, X. Yang, and W. Fu. 2021. Surface-enhanced Raman scattering inspired by programmable nucleic acid isothermal amplification technology. TrAC Trends in Analytical Chemistry 143:116401. doi: 10.1016/j.trac.2021.116401.
  • Yuan, C., T. Tian, J. Sun, M. Hu, X. Wang, E. Xiong, M. Cheng, Y. Bao, W. Lin, J. Jiang, et al. 2020. Universal and naked-eye gene detection platform based on the clustered regularly interspaced short palindromic repeats/Cas12a/13a system. Analytical Chemistry 92 (5):4029–37. doi: 10.1021/acs.analchem.9b05597.
  • Yue, H., M. Huang, T. Tian, E. Xiong, and X. Zhou. 2021. Advances in clustered, regularly interspaced short palindromic repeats (CRISPR)-based diagnostic assays assisted by micro/nanotechnologies. ACS Nano 15 (5):7848–59. doi: 10.1021/acsnano.1c02372.
  • Zhang, C., L. Huang, H. Pu, and D.-W. Sun. 2021. Magnetic surface-enhanced Raman scattering (MagSERS) biosensors for microbial food safety: fundamentals and applications. Trends in Food Science & Technology 113:366–81. doi: 10.1016/j.tifs.2021.05.007.
  • Zhang, C., R. Wohlhueter, and H. Zhang. 2016. Genetically modified foods: a critical review of their promise and problems. Food Science and Human Wellness 5 (3):116–23. doi: 10.1016/j.fshw.2016.04.002.
  • Zhang, D., L. Cai, X. Wei, Y. Wang, L. Shang, L. Sun, and Y. Zhao. 2021. Multiplexed CRISPR/Cas9 quantifications based on bioinspired photonic barcodes. Nano Today 40:101268. doi: 10.1016/j.nantod.2021.101268.
  • Zhang, F. 2019. Development of CRISPR-Cas systems for genome editing and beyond. Quarterly Reviews of Biophysics 52, e6: 1–31. doi: 10.1017/S0033583519000052.
  • Zhang, J., L. Zhang, Z. Li, Q. Zhang, Y. Li, Y. Ying, and Y. Fu. 2021. Nanoconfinement effect for signal amplification in electrochemical analysis and sensing. Small (Weinheim an Der Bergstrasse, Germany) 17 (39):e2101665. doi: 10.1002/smll.202101665.
  • Zhang, L., H. Jiang, Z. Zhu, J. Liu, and B. Li. 2022. Integrating CRISPR/Cas within isothermal amplification for point-of-care assay of nucleic acid. Talanta 243:123388. doi: 10.1016/j.talanta.2022.123388.
  • Zhang, M., C. Liu, Y. Shi, J. Wu, J. Wu, and H. Chen. 2020. Selective endpoint visualized detection of Vibrio parahaemolyticus with CRISPR/Cas12a assisted PCR using thermal cycler for on-site application. Talanta 214:120818. doi: 10.1016/j.talanta.2020.120818.
  • Zhang, M., X. Xue, H. Gong, B. Liu, and L. Ye. 2021. Double isothermal amplification and CRISPR-Cas12a for sensitive detection of citrinin. ACS Food Science & Technology 1 (10):1997–2005. doi: 10.1021/acsfoodscitech.1c00321.
  • Zhang, S., M. Liu, H. Cui, M. A. Ziaee, R. Sun, L. Chen, D. Chen, D. Garoli, and J. Wang. 2022. Detection of small-sized DNA fragments in a glassy nanopore by utilization of CRISPR-Cas12a as a converter system. The Analyst 147 (5):905–14. doi: 10.1039/d1an02313f.
  • Zhang, T., H.-T. Li, X. Xia, J. Liu, Y. Lu, M. R. Khan, S. Deng, R. Busquets, G. He, Q. He, et al. 2021. Direct detection of foodborne pathogens via a proximal DNA probe-based CRISPR-Cas12 assay. Journal of Agricultural and Food Chemistry 69 (43):12828–36. doi: 10.1021/acs.jafc.1c04663.
  • Zhang, T., W. Zhou, X. Lin, M. R. Khan, S. Deng, M. Zhou, G. He, C. Wu, R. Deng, and Q. He. 2021. Light-up RNA aptamer signaling-CRISPR-Cas13a-based mix-and-read assays for profiling viable pathogenic bacteria. Biosensors & Bioelectronics 176:112906. doi: 10.1016/j.bios.2020.112906.
  • Zhang, W., Y. Jiao, C. Ding, L. Shen, Y. Li, Y. Yu, K. Huang, B. Li, F. Wang, and J. Yang. 2021. Rapid detection of tomato spotted wilt virus with Cas13a in tomato and Frankliniella occidentalis. Frontiers in Microbiology 12:745173. doi: 10.3389/fmicb.2021.745173.
  • Zhang, X., L. Fan, Z. Su, Q. Xu, L. Xi, L. Li, Y. Wu, and G. Li. 2023. Artificial clickase-triggered fluorescence “turn on” based on a click bio-conjugation strategy for the immunoassay of food allergenic protein. Food Chemistry 398:133882. doi: 10.1016/j.foodchem.2022.133882.
  • Zhang, X., L. Guo, R. Ma, L. Cong, Z. Wu, Y. Wei, S. Xue, W. Zheng, and S. Tang. 2017. Rapid detection of Salmonella with recombinase aided amplification. Journal of Microbiological Methods 139:202–4. doi: 10.1016/j.mimet.2017.06.011.
  • Zhang, X., G. Li, D. Wu, X. Li, N. Hu, J. Chen, G. Chen, and Y. Wu. 2019. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosensors & Bioelectronics 137:178–98. doi: 10.1016/j.bios.2019.04.061.
  • Zhang, X., D. Wu, X. Zhou, Y. Yu, J. Liu, N. Hu, H. Wang, G. Li, and Y. Wu. 2019. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends in Analytical Chemistry 121:115668. doi: 10.1016/j.trac.2019.115668.
  • Zhang, Y., G. Li, D. Wu, X. Li, Y. Yu, P. Luo, J. Chen, C. Dai, and Y. Wu. 2019. Recent advances in emerging nanomaterials based food sample pretreatment methods for food safety screening. TrAC Trends in Analytical Chemistry 121:115669. doi: 10.1016/j.trac.2019.115669.
  • Zhang, Y., L. Qian, W. Wei, Y. Wang, B. Wang, P. Lin, W. Liu, L. Xu, X. Li, D. Liu, et al. 2017. Paired design of dCas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains. ACS Synthetic Biology 6 (2):211–6. doi: 10.1021/acssynbio.6b00215.
  • Zhang, Y., Y. Wu, Y. Wu, Y. Chang, and M. Liu. 2021. CRISPR-Cas systems: from gene scissors to programmable biosensors. TrAC Trends in Analytical Chemistry 137:116210. doi: 10.1016/j.trac.2021.116210.
  • Zhang, Z., S. Shikha, J. Liu, J. Zhang, Q. Mei, and Y. Zhang. 2019. Upconversion nanoprobes: recent advances in sensing applications. Analytical Chemistry 91 (1):548–68. doi: 10.1021/acs.analchem.8b04049.
  • Zhao, C., Y. Si, B. Pan, A. Y. Taha, T. Pan, and G. Sun. 2020. Design and fabrication of a highly sensitive and naked-eye distinguishable colorimetric biosensor for chloramphenicol detection by using ELISA on nanofibrous membranes. Talanta 217:121054. doi: 10.1016/j.talanta.2020.121054.
  • Zhao, L., K. Wang, C. Yan, J. Xiao, H. Wu, H. Zhang, X. Zhang, C. Zhang, Y. Hu, X. Lu, et al. 2020. A PCR-based lateral flow assay for the detection of Turkey ingredient in food products. Food Control. 107:106774. doi: 10.1016/j.foodcont.2019.
  • Zhao, W., M. M. Ali, M. A. Brook, and Y. Li. 2008. Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angewandte Chemie (International ed. in English) 47 (34):6330–7. doi: 10.1002/anie.200705982.
  • Zhao, Y., F. Chen, Q. Li, L. Wang, and C. Fan. 2015. Isothermal amplification of nucleic acids. Chemical Reviews 115 (22):12491–545. doi: 10.1021/acs.chemrev.5b00428.
  • Zhao, Z., X. Dou, J. Luo, M. Jin, J. Qin, C. Wang, S. Yang, and M. Yang. 2021. Magnetic particles encoding a suspension probe for ultra-sensitive and quantitative determination of atrazine. Journal of Pharmaceutical and Biomedical Analysis 195:113868. doi: 10.1016/j.jpba.2020.113868.
  • Zheng, Y., H. Karimi-Maleh, and L. Fu. 2022. Advances in electrochemical techniques for the detection and analysis of genetically modified organisms: an analysis based on bibliometrics. Chemosensors 10 (5):194. doi: 10.3390/chemosensors10050194.
  • Zhou, B., Q. Ye, F. Li, X. Xiang, Y. Shang, C. Wang, Y. Shao, L. Xue, J. Zhang, J. Wang, et al. 2022. CRISPR/Cas12a based fluorescence-enhanced lateral flow biosensor for detection of Staphylococcus aureus. Sensors and Actuators B: Chemical 351:130906. doi: 10.1016/j.snb.2021.130906.
  • Zhou, B., Q. Ye, M. Chen, F. Li, X. Xiang, Y. Shang, C. Wang, J. Zhang, L. Xue, J. Wang, et al. 2022. Novel species-specific targets for real-time PCR detection of four common pathogenic Staphylococcus spp. Food Control. 131:108478. doi: 10.1016/j.foodcont.2021.
  • Zhou, C., Z. Fang, C. Zhao, X. Mai, S. Emami, A. Y. Taha, G. Sun, and T. Pan. 2021. Sample-to-answer robotic ELISA. Analytical Chemistry 93 (33):11424–32. doi: 10.1021/acs.analchem.1c01231.
  • Zhou, J., L. Yin, Y. Dong, L. Peng, G. Liu, S. Man, and L. Ma. 2020. CRISPR-Cas13a based bacterial detection platform: sensing pathogen Staphylococcus aureus in food samples. Analytica Chimica Acta 1127:225–33. doi: 10.1016/j.aca.2020.06.041.
  • Zhou, W., L. Hu, L. Ying, Z. Zhao, P. K. Chu, and X.-F. Yu. 2018. A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nature Communications 9 (1):5012. doi: 10.1038/s41467-018-07324-5.
  • Zhou, X., H. Pu, and D. W. Sun. 2021. DNA functionalized metal and metal oxide nanoparticles: principles and recent advances in food safety detection. Critical Reviews in Food Science and Nutrition 61 (14):2277–96. doi: 10.1080/10408398.2020.1809343.
  • Zhou, Y., M. Ren, P. Zhang, D. Jiang, X. Yao, Y. Luo, Z. Yang, and Y. Wang. 2022. Application of nanopore sequencing in the detection of foodborne microorganisms. Nanomaterials 12 (9):1534. doi: 10.3390/nano12091534.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.